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Simulating catalytic reactivity under operative conditions poses a significant challenge due to the dynamic
nature of the catalysts and the high computational cost of electronic structure calculations. Machine learning
potentials offer a promising avenue to simulate dynamics at a fraction of the cost, but they require datasets
containing all relevant configurations, particularly reactive ones. Here we present a scheme to construct
reactive potentials in a data-efficient manner. This is achieved by combining enhanced sampling methods
first with Gaussian processes to discover transition paths and then with graph neural networks to obtain a
uniformly accurate description. The necessary configurations are extracted via an active learning procedure
based on local environment uncertainty. We validated our approach by studying several reactions related to the
decomposition of ammonia on iron-cobalt alloy catalysts. Our scheme proved efficient, requiring only ∼ 1,000
DFT calculations per reaction, and robust, sampling reactive configurations from the different accessible
pathways. Using this potential, we calculated free energy profiles and characterized reaction mechanisms,
showing the ability to provide microscopic insights into complex processes under dynamic conditions.

Dynamics has long been recognized as a key ingredi-
ent in chemical reactivity, particularly in heterogeneous
catalysis where active sites continuously evolve according
to reaction conditions1,2. High temperatures and pres-
sures induce intricate transformations in the microscopic
structure of the catalyst, ranging from surface diffusivity3

to reactant- or adsorbate-induced4 reconstructions. If
capturing these dynamic phenomena experimentally is
a formidable challenge, their computational modeling is
no less so. Atomistic simulations, particularly molecular
dynamics (MD), are an ideal candidate for providing mi-
croscopic insights into their workings5–7. However, to fully
describe these dynamical effects we need both accurate
quantum-mechanical (QM) models of the potential energy
surface and extended time- and length-scale simulations6,
two often conflicting requirements.

Machine learning (ML) potentials8 have emerged in
recent years as promising tools to address the accuracy-
efficiency trade-off. They are optimized to reproduce en-
ergies and forces from a dataset of reference calculations,
typically performed at the Density Functional Theory
(DFT) level. Hence, their effectiveness depends on the
quality of the training dataset, which must include not
only the equilibrium structures but also the relevant high-
energy ones. This is especially crucial for transition state
(TS) geometries, whose energies are connected to reac-
tion rates through an exponential relationship. However,
the identification of these structures in a complex and
dynamic environment remains elusive, especially under
operating conditions where an ensemble of TS configu-
rations often exists9–11. The quest is made even more
challenging by the cost of ab initio calculations, which can
rapidly become prohibitive for large systems or when an
accurate electronic description is required. Therefore, the
ability to efficiently construct reactive potentials with a

a)luigi.bonati@iit.it

minimum number of QM calculations is critical to enable
their widespread use. In this regard, recent developments
in data-efficient architectures can help in reducing the
number of points needed to train a robust model. These
advances include equivariant graph neural networks12 or
transfer learning approaches13 leveraging foundational
models14,15. However, these techniques still do not solve
the crucial issue of identifying the few relevant configura-
tions to be included in the reference dataset set.

The training set construction typically involves active
learning procedures16–18, in which an ML model is trained
on an initial dataset and used to generate new structures
(e.g., via molecular dynamics). A subset of these configu-
rations is then labeled with single-point DFT calculations
and added to the training set, proceeding iteratively until
convergence. In the field of computational catalysis, such
schemes have been also employed in combination with
nudged elastic band19 and minima hopping20 to accelerate
the calculation of energetic barriers and adsorbate geome-
tries. However, we cannot rely on these static approaches
to simulate the dynamics under operating conditions,
since the mechanism and the relevant environments may
deviate significantly from the calculations performed at
T=0 K9,21–23. Adaptive enhanced sampling techniques,
such as metadynamics24, are better suited to sample the
reactive landscape at finite temperatures and to collect
a diverse set of atomic environments25,26. These meth-
ods introduce an external bias potential that increases
the fluctuations of selected collective variables (CVs),
allowing to sample the transitions between metastable
states27. By integrating these sampling techniques with
active learning strategies, it has been possible to construct
ML potentials for a wide variety of rare events, from phase
transitions 28–30 to chemical reactions31–34, and catalytic
processes11,23,35–37. Recently, these techniques have been
also used to enhance the model uncertainty to explore
high-uncertainty configurations38–41. Despite the success
of enhanced sampling-based active learning, these studies
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Figure 1. Diagram of the protocol used to obtain uniformly
accurate and data-efficient reactive potentials. On the right,
we have reported some details regarding the ML potential,
enhanced sampling scheme, and selection criterion used in the
different stages.

often required many iterations and numerous DFT cal-
culations, leaving room for improvement. Two aspects
should be considered to make the process more efficient.
At first, when there is little data available on the reactive
regions, incremental learning42 approaches should be used
in which the potential is frequently updated. Otherwise,
by pushing the system out of equilibrium with enhanced
sampling, we risk extrapolating poorly and sampling the
wrong configurational regions. On the other hand, we also
need an efficient criterion for selecting structures for DFT
calculations from those obtained in the active learning
process.

In this manuscript, we introduce a new scheme to ef-
ficiently construct reactive potentials, leveraging both
enhanced sampling methods and on-the-fly selection of
relevant structures. This is achieved following a two-step
protocol: an exploratory phase to harvest an initial pool
of reactive configurations and a second stage in which
we obtain a uniformly accurate description of the tran-
sition pathways (see Fig. 1 for a diagram of the proto-

col). As an enhanced sampling method, we used OPES43,
a recent evolution of metadynamics that offers greater
flexibility and comes with different variants that can be
used to explore or converge the free energy landscape.
Furthermore, another important ingredient are Gaussian
processes (GPs)44, which we used first to learn the poten-
tial energy surface on-the-fly and then to identify novel
local environments to build a minimal data set within our
active learning scheme.

We illustrate these methodological advances by study-
ing several reactions related to ammonia decomposition
over iron-cobalt alloy catalysts. This process is the reverse
of ammonia synthesis, carried out through the famous
Haber-Bosch process, and is crucial to enable ammo-
nia to be used as a hydrogen carrier45. On metal sur-
faces, cracking of ammonia typically occurs through three
steps of dehydrogenation followed by nitrogen desorption
via recombination46. In addition, the ferromagnetic and
metallic properties of the surface make the description
of the electronic structure particularly computationally
expensive. Experimentally, an improvement in catalytic
performance over pure Fe has been observed47,48, but a
microscopic understanding of the mechanism is still lack-
ing. Moreover, the crystal structure is the same as that of
α-iron (bcc), on which we have extensively investigated
both ammonia synthesis 23,36 and decomposition11. All
these features thus make it an ideal candidate for show-
casing our highly data-efficient protocol in a real-world
scenario.

RESULTS

Preliminary construction of reactant potentials.

In our pursuit to model the catalytic process of ammo-
nia decomposition FeCo surfaces, we initiated our investi-
gation by constructing ML potentials for the reactants.
This involved gathering configurations to characterize the
pristine 110 surface (see Fig. S1) and the different inter-
mediate species adsorbed on it (NH3, NH2, NH, N, N2,
H,...). To efficiently accomplish this task, we employed
GPs to learn on-the-fly the potential energy surface, with
the sparse implementation of FLARE49 using the Atomic
Cluster Expansion (ACE) descriptors50. Recognizing the
limitations of GPs with large training datasets44, we
trained separate models for each intermediate species.

Initially, we generated a dataset by conducting a set of
uncertainty-aware molecular dynamics (MD) simulations
based on GPs at the operando temperature of T=700 K.
Subsequently, we performed simulations at higher temper-
atures to diversify our configurations and capture surface
dynamics. In addition, to obtain an exhaustive coverage
of the reactant space, we carried out enhanced sampling
simulations to explore the various adsorption sites and the
diffusion of the molecules on the surface. This prepara-
tory stage produced about 2500 configurations for all the
different intermediates.
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Figure 2. Exploration stage: iterative discovery of reaction paths through flooding simulations and GP-based MD.
We report a schematic presentation for the case of N2 dissociation. a) The reactant free energy landscape constructed at the end
of the preliminary phase, highlighting the metastable minima (gas phase and two adsorption states). Arrows indicate that the
reaction paths toward the product state are unknown a priori. Several iterations are then initiated from the reactant basin. The
time evolution of the distance between N atoms dN,N (b) and the GP maximum uncertainty on the local environments (c) are
shown for a specific iteration. Every time the uncertainty of the GP exceeds the threshold of 0.1 (red dotted line), energy and
forces are recomputed at the DFT level (red dots), and the GP is updated. Panel (d) shows all iterations in the 2D space defined
by dN,N and the coordination number between N and surface atoms CN,Fe|Co, with the trajectory shown in (b,c) highlighted.
Above the top axis, we report the distribution of points where DFT calculations were performed, projected along dN,N .

Given the complexity of the reaction pathways and the
potential existence of multiple channels, we approached
the collection of reactive configurations through a two-step
process. In the first, the reactive pathways are discovered,
while in the second, the description of these pathways is
improved until high accuracy is achieved.

Reactive pathways discovery via uncertainty-aware flooding
simulations.

The initial step in harvesting reactive configurations is
the discovery of reaction pathways and transition state
structures. While for gas phase reactions a simple inter-
polation between reactants and products can provide a
reasonable guess, for catalyzed reactions this is not possi-
ble, especially at high temperature. Indeed, the active site
is not known beforehand or may change due to dynam-
ics23 or, again, there may be multiple reaction pathways
that need to be sampled11. To address this challenge, we
used OPES to perform a set of "flooding-like"51 simula-
tions together with uncertainty-aware MD (see Methods).
OPES-flooding introduces an external potential to fill
the reactant basin and then let the reactive event occur
as spontaneously as possible along the low free-energy
pathways. This allowed us to sample reactive processes
with minimal knowledge of the reaction mechanism. The
only requirement for these methods is the definition of

collective variables (CVs) that can distinguish between
reactant and product states. We note that, in the case
where the products of the reaction to be studied are not
known, generic CVs could be used to discover the possible
products52. In addition, the integration with uncertainty-
aware MD brings two significant advantages: it allows
for an efficient selection of reactive configurations based
on the uncertainty of the local environments, and it up-
dates the potential energy surface model in an incremental
manner, correcting wrong extrapolations to nonphysical
regions of phase space.

To illustrate our workflow and demonstrate its effec-
tiveness in sampling reactive pathways, we start with the
case of N2 dissociation, a process that we have extensively
examined on Fe surfaces23,36. Nitrogen molecules can ad-
sorb onto the (110) surface in two main configurations,
either parallel (α) or perpendicular (γ) to the surface (see
Fig. 2a). A priori, we do not know from which adsorption
site the molecule may break. To find out, we performed
a set of iterative OPES-flooding simulations, using the
same CVs of Ref.23, namely the N-N distance dN,N and
the coordination of N with surface atoms CN,Fe|Co. As
it can be seen in Fig. 2b, the bias potential promoted
the exploration of new regions of the potential energy
surface. Whenever the uncertainty of the local environ-
ments (Fig. 2c) exceeded a predefined threshold (i.e., it
was structurally different from the environments in the
training set), a new DFT calculation was performed, and
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Figure 3. Reaction path discovery for the hydrogenation steps. The trajectories are visualized in the space defined
by CN,H and CN,Co. To facilitate the understanding of the sampled paths, we have shown in the background the free energy
surface obtained from the final simulations, highlighting the minimum free energy paths. The dots represent the structures
recalculated with DFT, whose distributions along CN,H are projected above the upper axis.

the GP model was updated. The reactive pathway of
N2 dissociation can be effectively visualized in the plane
defined by the two CVs (thick orange curve in Fig. 2d),
illustrating the progression from the gas phase through
the adsorption sites γ and α and finally to the transition
state region. Whenever the system reached the product
state (vertical dashed line), the simulation was stopped
and a new one started. In this way, an ensemble of reac-
tive pathways was iteratively collected (Fig. 2d), ensuring
continuous refinement of the potential energy surface and
inclusion of a diverse set of reactive environments. In-
deed, each pathway exhibited geometric diversity covering
a wide range of coordination with surface atoms while
originating from the same horizontal adsorption site α.

The need for a flexible and adaptive approach is even
more important for modeling the three dehydrogenation
steps from ammonia to atomic nitrogen. To harvest such
reactive structures, we followed the same protocol, using
uncertainty-aware flooding simulations starting from the
GP potentials optimized for each reactant. In previous
work on the Fe surfaces11, despite being three steps of the
same chemical process (dehydrogenation), the different
interactions of the adsorbates with surface atoms had
necessitated the use of different CVs to converge the free
energy calculations. Since we are in an exploratory phase
here, we wanted to use instead a single generic CV (i.e.,
the planar distance between N and H) for all reaction steps
in order to demonstrate the ability of our approach to find
the accessible pathways with minimal knowledge. The
resulting trajectories are visualized in the plane defined
by nitrogen-hydrogen and nitrogen-cobalt coordination
(Fig. 3), whose distribution revealed a broad spectrum
indicative of the existence of at least two distinct reaction

channels. To put our results into context, we superim-
posed the reactive pathways on the free energy surface
derived later from our study (Fig. S5). The remarkable
alignment between the sampled and minimum free energy
pathways confirmed the effectiveness of our methodology
in accurately sampling the crucial reactive configurations
without prior assumptions on the adsorption sites or the
transition states. Although each dehydrogenation step
occurred from different adsorption sites characterized by
increasing coordination with the surface, thanks to the
flooding scheme, we were able to find reactive pathways
using a generic CV that only distinguished reactants from
products. Furthermore, an analysis of the evolution of the
sampled paths as a function of iterations demonstrated
the importance of an incremental approach: the tran-
sition pathways initially pass through high free-energy
regions and then converge to low free-energy regions as
new data are added (Fig. S2). In total, about 500 reactive
configurations were collected in this exploratory phase,
demonstrating that our approach enables systematic and
efficient sampling of reaction pathways under operando
conditions, even when multiple ones are available.

Uniform accuracy along reactive paths through GNNs and
GP-based active learning

Having collected a first dataset of reactive structures,
we moved on to the second phase of our approach, aim-
ing to converge the accuracy along the reactive paths.
For this purpose, we used equivariant graph neural net-
works (GNNs)12 to represent the potential energy surface.
These architectures are more flexible than GPs53 and have
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Figure 4. Convergence stage: uniformly accurate potentials along the reactive path. We illustrate the GP-based
active learning of the MACE structures for the N recombination and dissociation process. a) Distribution of the maximum
uncertainty on the forces σ

(MACE)
max (calculated from a committee model) on the simulation performed with MACE before active

learning. The grey dotted line at 90 meV/Å represents the chosen threshold for the query-by-committee selection. b) Left
axis: average uncertainty σ

(MACE)
max as a function of the collective variable dN,N (orange line). On the right axis: number of

configurations sampled (light blue bars) and the subset selected with the query-by-committee criterion (dark blue bars). c)
Distribution of the DFT single point performed with our on-the-fly GP-based selection scheme (large red bars), compared with
standard query-by-committee selection (narrow blue bars). d) Uncertainty distribution of a new MD simulation performed with
the MACE model after the active learning procedure (red histogram), contrasted with the previous distribution from panel
a (blue histogram). e) Average uncertainty along the reaction coordinate dN,N for the configurations extracted from the MD
simulation performed with the old MACE model and evaluated with the old (yellow solid curve) and new (red dashed line)
model. The uncertainty calculated on the new trajectory generated with the new model is represented with a red solid line.

demonstrated remarkable data efficiency, enabling robust
simulations as early as hundreds/thousands of training
points54. In particular, we used MACE55, which inte-
grates the descriptors used in our previous approach (i.e.,
ACE) in a message-passing scheme. Resorting to neural
networks allowed us to consolidate all previously collected
data into a single potential, overcoming the limitations
imposed by having separate GPs for each intermediate.
In addition, this allowed us to conduct long (∼ns) en-
hanced sampling simulations instead of the many short
(∼ps) simulations of the exploratory phase. This way, we
sampled hundreds of different reactive events, providing
a more thorough sampling of reaction pathways under
dynamic conditions.

To enrich the training dataset further and improve the
accuracy of our model, we turned our attention to select-
ing additional structures from the new MD trajectories.
As before, we illustrate our method while focusing on
the nitrogen recombination and dissociation process. Our
first step is to examine the uncertainty of the MACE
model, evaluated using the maximum standard deviation

of a committee of models (see Fig. 4a). The distribu-
tion of the maximum uncertainty per configuration peaks
around 80 meV Å−1. We note that this value is high
due to the large magnitudes of the N forces involved in
the reaction: 90 percent of these forces have a relative
uncertainty of less than 20 percent, see Fig. S4. Using the
query-by-committee criterion17, we can select a subset of
structures whose uncertainty is above a given threshold.
This value is typically chosen to be slightly above the
uncertainty peak to target configurations which are not
already well described32,35(in this case it was chosen to
be equal to 90 meV Å−1). To assess the quality of the
potential in describing the reactive event, it was revealing
to analyze the average uncertainty as a function of the
collective variable describing the progress of the reaction
(Fig. 4b). Indeed, this quantity showed a strongly nonuni-
form behavior, with significantly higher uncertainty in
the region between the reactant and product states (i.e.,
1.5 < dN,N < 2.3). Furthermore, by comparing the mean
uncertainty with the distribution of the selected configu-
rations (Fig. 4b) we realized that the query-by-committee
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Figure 5. Free energy profile of dehydrogenation steps projected along the maximum distance between N and H atoms
max(dN,H) (top), and on the 2D plane defined by max(dN,H) and CN,Co (bottom). The uncertainties on the 1D free energy
profiles (shadow region, 0̃.01 eV) are calculated with a weighted block average43.

criterion would lead to an imbalance between the region of
the space which is most sampled (2.3 < dN,N < 2.7), but
whose configurations are only slightly above the threshold,
and the one that really needs to be improved. In previ-
ous works, it was necessary to manually select multiple
configurations with high uncertainty35 or from a specific
region in CV space32 to accurately model reactive events.

Our objective is to avoid these issues and systematically
achieve uniform accuracy along the entire reaction path
with a minimal number of DFT calculations. To achieve
this goal, we employed Gaussian processes once again,
this time as a tool to screen configurations generated by
MACE. We estimated the local uncertainty given by the
GP on the structures collected by MACE (and selected
via query-by-committee criterion) and performed a DFT
calculation only when this exceeded a chosen threshold.
By updating on-the-fly the uncertainty estimate after each
single-point calculation, we selected a set of nonredundant
configurations. This is made possible by the correlation
between the standard deviation of the MACE force pre-
dictions and the local GP uncertainty (Fig. S3). This
approach allowed us to perform only ∼ 100 DFT calcu-
lations, which correspond to about 5% of those selected
by the query-by-committee criterion (Fig. 4c). Moreover,
this percentage varies significantly as a function of CV,
ranging from 2-3% in the most sampled region to 12-25%
in the TS region, demonstrating how our algorithm can
automatically target the relevant reactive configurations.
Adding these selected configurations to the MACE model
effectively lowered the uncertainty of the entire previous

MD simulation under the threshold (Fig. 4e). However,
a more rigorous test involved running a new MD simula-
tion with the updated potential (Fig. 4e). Remarkably,
after one active learning cycle, the average uncertainty of
this new simulation was uniformly below the threshold
(Fig. 4e), indicating that we have achieved the desired ro-
bustness and quality for describing the reaction progress.
Otherwise, we would have performed another cycle with
the same protocol.

We then applied this approach to the dehydrogenation
steps, achieving uniform accuracy along the whole reactive
pathways, see Fig. S5. In total, 450 DFT calculations
were selected from the reactive region. Furthermore, we
added a selection of structures of the products using the
query-by-committee criterion, since, unlike the nitrogen
recombination case, they had not been sampled in the
preliminary simulations.

In summary, we constructed a uniformly accurate po-
tential along all reaction paths while requiring a minimum
number of DFT calculations. The root mean square er-
ror (RMSE) of the final model on the validation dataset
was 0.4 meV/atom for energies and 17 meV/Å for forces
(corresponding to a relative error of less than 3 percent).
Furthermore, to confirm the accuracy and reliability of
our potential in the production simulations, we built a
test dataset by performing additional single-point DFT
calculations extracted from the dehydrogenation simu-
lations, where we obtained similar RMSE values of 0.2
meV/atom for energies and 14 meV/Å for forces. Fig.
S6 reports also the accuracy of force predictions divided
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per chemical species. Regarding the training set size,
if we focus on nitrogen dissociation/recombination, our
approach produced a robust potential with less than 1k
configurations (958). Considering the entire catalytic cy-
cle, which consists of 6 different intermediates, a total
of 5k DFT calculations were used (see Table S1 for the
detailed composition). Compared to the number of config-
urations used in previous studies11,23 on Fe surfaces (30k
for N2 dissociation23 and 110k for ammonia decomposi-
tion11), we obtained a more than 20-fold improvement
in data efficiency. This was possible not only because of
data-efficient architectures but, more importantly, due to
an efficient protocol for sampling reactive configurations
and selecting the most relevant ones.

Unraveling the free energy landscape and dehydrogenation
mechanism

Thanks to the potential we have constructed, we can
study the mechanism of ammonia decomposition on FeCo
alloys in detail. As a representative example, we focus on
the dehydrogenation steps of ammonia to atomic nitrogen;
showing how the same set of simulations used to construct
the potential also allowed us to reconstruct the free energy
profiles and unravel the reaction mechanism.

We first performed a set of 25 ns-long OPES simulations,
which allowed us to calculate the free energy profiles of the
three dehydrogenation steps (as depicted in Fig. 5). The
resulting free energy barriers exhibited varying heights,
with NH2 →NH+H being the lowest (0.7 eV), followed by
NH3 →NH2+H (1 eV), and finally NH→N+H (1.2 eV).
The free energies are accurately reconstructed, with a sam-
pling error smaller than 20 meV. Analyzing the 2D free
energy surface as a function of the maximum distance be-
tween N and H atoms, max (dN,H), and the coordination
number between N and Co atoms, CN,Co, revealed further
insights on the reaction mechanism. Multiple pathways
are clearly present in all three reaction steps, as already
observed in the exploration phase. Notably, these paths
exhibit very similar barrier heights but distinct geometric
configurations, underscoring the necessity of considering
all possible routes. In the case of NH3 dehydrogenation,
we observed two predominant paths characterized by the
nitrogen-cobalt coordinations being around 0.5 or 1, with
a preference for the latter. Similarly, for NH2, the reac-
tion occurred at either coordination 1 or 2, albeit with a
slight favor towards the former. Finally, for NH, there was
substantial parity between the two paths at coordination
values 1 and 2. If we look instead from the perspective
of hydrogen, its total coordination with the surface in
the TS region is always around 1, but the reaction occurs
preferentially when the reactive hydrogen is in contact
with cobalt atoms (Fig. S7).

To gain a deeper understanding of the reaction paths,
we conducted a new set of flooding simulations, yielding
an ensemble of 100 reactive trajectories per step (Fig. 6)
. From the distributions reported on the right of the

Figure 6. Reactive path analysis for the dehydrogena-
tion steps. An ensemble of 100 trajectories is calculated with
the OPES-flooding scheme and visualized in the 2D plane
defined by max(dN,H) and CH,Co. Only the 40 fs around
the reactive event (determined by max(dN,H) crossing 1.45 Å,
denoted by a vertical line) are reported for each trajectory.
For convenience, we report in the background the free energy
surface projected on the same coordinates obtained from the
OPES simulations (Fig. S7). On the right axis, we projected
the distribution of the coordination number CH,Co when cross-
ing the line at max(dN,H) = 1.45 Å(black dashes).

figure, we can learn a qualitatively different behavior
between NH3 and NH2/NH. Notably, NH3 trajectories
exhibited a broadened distribution in the coordination
between H and Co, CH,Co, reacting uniformly in contact
with either iron (CH,Co = 0) and cobalt (CH,Co = 1).
Conversely, NH2/NH trajectories displayed a greater flux
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over higher coordination values, indicating a propensity
for dehydrogenation when hydrogen is cobalt-coordinated.
See also Fig. S8 for a detailed analysis of TS configurations
in terms of N and H coordination. This comprehensive
analysis underscores the multiplicity of reaction pathways
facilitated by high-temperature dynamic conditions. It
also demonstrates the effectiveness of our approach, not
only in parsimoniously constructing the potential but also
in investigating the process under operative conditions
with the same simulations, thus elucidating the reaction
mechanism and reconstructing the free energy profile of
the different catalytic steps.

CONCLUSIONS

The development of methods that require few QM
calculations is essential to enable widespread use of ML-
based potentials. In this manuscript, we introduced a
data-efficient scheme for constructing reactive potentials.
Applied to the study of ammonia decomposition on iron-
cobalt alloy catalysts, our protocol effectively captured
complex reaction mechanisms composed of multiple chan-
nels without prior knowledge of the adsorption sites or
the transition states. Remarkably, the number of needed
training points (approximately one thousand DFT cal-
culations for each catalytic step) is at least one order of
magnitude less than previous work11,23. These advances
can facilitate the simulation of more realistic systems,
both in complexity and underlying level of theory. Our
approach achieved this result by relying on both data-
efficient architectures and a well-designed protocol for
sampling and selecting relevant configurations. Because
we do not know in advance which configurations are rel-
evant, especially at high temperatures, we divided the
protocol into two phases: first exploring reactive pathways
and then obtaining uniform accuracy along them.

The exploratory phase is carried out using flooding
simulations that push the system out of the reactants, re-
quiring only collective variables that distinguish reactants
and products. To avoid extrapolating into non-physical
regions, we performed uncertainty-aware MD based on
GPs, which are optimized on-the-fly whenever a new local
environment is found. This provided an initial set of
reactive structures, most of which lie on the minimum
free energy pathways. In the convergence step, we used
graph neural networks to extensively sample the reactions
with reversible enhanced sampling simulations. Since
the query-by-committee criterion was found to under-
sample the transition state region, we proposed a novel
active learning strategy based on the local environment
uncertainty provided by GPs. This way, we extracted
a small set of nonredundant configurations from those
sampled by the GNN. The result is a uniformly accurate
potential along the entire reaction path, achieved with a
parsimonious number of DFT calculations.

It is worth noting that these features make our ap-
proach general, applicable not only to catalytic processes

but also to the broader field of chemical reactions and
materials. In addition, ML-based methods could be used
to design collective variables56, thereby reducing the need
to identify process-specific CVs. Similarly, path sam-
pling methods could be integrated into the active learning
scheme to investigate the mechanism in a more unbiased
way33. For all these reasons, we believe that our scheme
can be effectively used to construct reactive potentials
for a wide variety of processes occurring under dynamic
conditions, gaining insights into their workings at the
atomistic level.

METHODS

Machine learning frameworks

Here we briefly describe the two main architectures that
we used in the different stages of our approach to represent
the potential energy surface: Gaussian Processes (GPs)
and graph neural networks (GNNs).

Gaussian Processes. GPs are kernel-based methods that
can be used for regression and probabilistic classification
tasks. Starting with the Gaussian Approximation Poten-
tial (GAP) method57, GPs have been successfully used
for representing the potential energy surface of extended
systems. Here we used the sparse GP implementation of
FLARE (Fast Learning of Atomistic Rare Events)49,58,
where the energy is modeled as a sum over atomic contri-
butions that depend on atom-centered local environments:
E =

∑
i ϵi. These environments are characterized by a

set of descriptors based on the atomic cluster expansion
(ACE)50. What distinguishes GPs from other ML meth-
ods is their ability to provide confidence intervals on the
predictions. Because of the energy decomposition, we can
also measure the variance associated with each atomic
contribution ϵi, obtaining a measure of the uncertainty
of local environments, i.e., how different they are with
respect to the training ones. In particular, per each con-
figuration we monitor the maximum local uncertainty
defined as:

σ(GP )
max = max

i
σ̃ϵi .

where σ̃ϵi is the variance on the local environment rescaled
by the kernel hyperparameter to obtain a dimensionless
quantity that ranges between 0 and 1 (see Ref.49 for the
details). The uncertainty estimate can be used to guide
the active learning process by selecting the new configu-
rations to be labeled with DFT single point calculations.
In particular, this can be done on-the-fly by running
“uncertainty-aware” MD simulations, in which the GP
model is used to perform the next MD step only if the
uncertainty is low; otherwise, a DFT calculation is run
and the GP is updated58. The same property can be used
to screen an existing dataset of configurations, using the
uncertainty estimate to monitor the presence of new local
environments against those in the training set. Again,
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the new configuration is computed at the DFT level and
added to the GP model. On the other hand, GPs scale
unfavorably with the number of points in the training
dataset, making them feasible only for small datasets (<∼
thousands of atomic configurations).

Graph Neural Networks. Compared with kernel-based
methods, the parameterization of the potential energy
surface by neural networks allows for greater expressive-
ness53 and eliminates the scaling with the number of
training data points. In the special case of GNNs, the
description of local environments (the "message") is prop-
agated across neighbors, resulting in a larger effective
receptive field than with kernel methods or standard neu-
ral networks. In particular, we used MACE55, one of the
state-of-the-art architectures, excelling in both in-domain
and out-domain predictions and demonstrating remark-
able data efficiency59. MACE accomplishes this through a
higher-order equivariant message passing scheme related
to ACE, which enables accurate modeling of complex
atomic interactions while maintaining efficiency. On the
other hand, GNNs do not have a direct estimate of the
uncertainty; this can be approximated by the standard de-
viation of the predictions of a committee of models trained
on different partitions of the training dataset. In particu-
lar, we focus on the standard deviation of the components
α of the forces acting on the i-th atom over a committee of

N different models: σi,α =

√∑
k(fi,α−f̄i,α)2

N and monitor
the maximum value per each atomic configuration:

σ(MACE)
max = max

i,α
σi,α.

Enhanced sampling simulations

Even with machine learning potentials, many processes,
such as chemical reactions, occur on time scales too long to
be simulated with standard MD. For this reason, several
enhanced sampling methods60 have been developed. In
particular, a widely used family is based on the identifica-
tion of selected collective variables (CVs), which describe
the most important degrees of freedom involved in the
process. Introducing an external potential as a function
of these CVs enhances their fluctuations and accelerates
the sampling of the transition. Notable examples are
Umbrella Sampling61 and Metadynamics24.

On-the-fly Probability Enhanced Sampling (OPES)43 is a
recent evolution of Metadynamics, which converges faster
and requires fewer hyperparameters. Given a collective
variable s, OPES first reconstructs its probability dis-
tribution at equilibrium P (s), using a Kernel Density
Estimate (KDE). Then, it introduces a potential to guide
the system to sample a given target distribution ptg(s):

V (s) = − 1

β
log

ptg(s)

P (s)

A typical choice of the target distribution is the well-
tempered one: ptg(s) ∝ P (s)

1
γ , which lowers the free

energy barriers by a factor γ, and correspond to the same
distribution sampled in Well-Tempered Metadynamics62.
Since the target is not known a priori, the probability and
thus the bias are constructed iteratively during the simu-
lation. Furthermore, a useful feature is the ability to limit
the amount of bias deposited. In case one does not know
the height of the barrier to be overcome, an exploratory
variant is also available63, which can be used to quickly
explore the free energy landscape. When the OPES bias is
converged to a quasi-static value, the free energy along the
biased CV or any other variables can be recovered from a
simple Umbrella Sampling-like reweighting scheme43.

OPES flooding. OPES-flooding is a variant of the OPES
method, in which the potential is applied only in the
reactant basin. In OPES this can be ensured with the
barrier hyperparameter that sets the maximum amount
of deposited bias. In addition, this can be enforced by
restricting the application of the potential within a certain
region of the CV space that bounds the reactants51. In
this way, free energy paths that are sampled are more
likely to be close to the lowest free energy ones. Once
the system has overcome the free energy barrier and
reached the product basin, the simulation is terminated.
By performing a set of flooding simulations we can also
obtain statistics on the reactive pathways and characterize
them.

Construction of the reactive ML potential

Here we describe the protocol used for the collection
of the configurations for training the reactive potential,
focusing on the active learning policies used in the different
stages to select the relevant samples.

Preliminary reactants configurations. We ran uncertainty-
aware MD through the on-the-fly code implemented in
FLARE64, using LAMMPS65 as MD engine. For each
intermediate (NH3, NH2, NH, N/N2, H), we trained a
different GP model. These models were used in parallel to
perform a series of simulations starting with the adsorbate
in different initial conditions to study the interaction of the
intermediates with the surface. The criterion for selecting
the configurations is based on the maximum uncertainty
over the local environments predicted by FLARE. When-
ever this exceeds a given threshold, a DFT calculation
is performed and a (sparse) set of local environments is
added to the training dataset. In the initial phase, a
small threshold of 0.02 was used to avoid extrapolating
into unphysical regions. We ran about 10 iterations for
each reactant until the simulations proceeded for about 1
ps without DFT calculations. Furthermore, to achieve a
more extensive sampling, we performed OPES simulations
to sample the different adsorption sites, by enhancing the
coordination of nitrogen with the surface, and the diffu-
sion on the surface, by biasing the x,y coordinates of the
center of mass; see below for the definition of the CVs.

Pathways discovery with GPs. For the reactive pathway
discovery step, we performed a set of OPES flooding-like
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simulations with uncertainty-aware MD, biasing collec-
tive variables capable of distinguishing reactants from
products (e.g., N-N distance for N2 dissociation; see be-
low). For each reaction step (N2 →2N, NH3 →NH2+H,
NH2 →NH+H, NH→N+H), we performed 30 iterations,
stopping the simulation each time the molecule reacted
and starting again to sample a new reactive event. As a
threshold for the maximum local uncertainty, we used a
value of 0.1 for the first 20 iterations, then lowered it to
0.075 for the remaining ones in order to continue labeling
a few structures from each path.

Uniform accuracy with GNNs. For the second step, we
trained a single model with MACE66 using all the configu-
rations collected earlier. With this model we ran long MD
simulations (3 ns) for each reaction step, sampling tens
of reactive events within each. We then calculated the
uncertainty of the predictions σ

(MACE)
max through a com-

mittee of 4 models, which we used to select a subset of
configurations whose uncertainty was above a given thresh-
old ("query-by-committee" selection). The threshold was
chosen based on the peak of the maximum uncertainty
distribution, equal to 90 meV Å−1 for N2 → 2N and
50 meV Å−1 for NHx →NHx−1+H. We also calculated
the uncertainty as a function of the CV by dividing its
interval into 10 bins and taking the mean of σ

(MACE)
max

within each. To pick the configurations (from those se-
lected with the query-by-committee approach) on which
to actually perform a DFT calculation, we evaluated the
maximum uncertainty on the local environments σ

(GP )
max

from the GP models built in the previous step. We then
performed QM calculations for those configurations whose
GP uncertainty exceeded a certain threshold (0.1), thus
selecting only structurally different environments. By
proceeding incrementally and adding new points to the
GP model before evaluating the uncertainty on the next
structure, we were able to filter redundant configurations.
In addition, to target especially the worst-described con-
figurations, we fed the GP model the structures divided
per bin of the CV, ordered by decreasing mean σ

(MACE)
max .

For the dehydrogenation reactions, in addition to the
reactive configurations we also performed calculations of
the products with the query-by-committee criterion and
the threshold specified above, since they were not sampled
in the preliminary dataset.

Computational details

DFT calculations. All DFT calculations used to build
the reference database were performed using the PWscf
code of Quantum ESPRESSO67–69. Exchange-correlation
effects were treated using the generalized-gradient approx-
imation with the Perdew-Burke-Ernzerhof (PBE) func-
tional70. We employed ultrasoft pseudopotentials selected
from the SSSP PBE Precision v1.3.0 library71 with 1, 5,
16, and 17 valence electrons for H, N, Fe, and Co, respec-
tively. The wave function and the charge density cutoff
were set at 90 and 1080 Ry. The Marzari-Vanderbilt

cold smearing technique72 with a Gaussian spreading of
0.04 Ry was used to treat the collinear spin-polarised
electronic occupations. Initial spin polarizations were set
to 0.6 for Fe|Co. To ensure the consistency of the dataset,
spurious high-energy non-ferromagnetic configurations
were removed from the dataset. A vacuum layer of at
least 12 Åwas included in the z-direction of all the slab
models to prevent self-interaction effects. The Brillouin
zone was sampled using a Monkhorst-Pack k-point grid73

with a maximum k-spacing of 0.25 Å−1, and the SCF
convergence threshold was set to 10−6 Ry.

FLARE. The local environments are described through
the ACE B2 descriptors, using a basis expansion with
Nmax = 8, and lmax = 3. We used a cutoff equal to 5.5
Å for Fe and Co and 4 Å for the interaction with the other
species. The kernel used to compare the environments
was a normalized dot product, squared.

MACE. All the GNN models in this work were con-
structed using MACE version 0.3.066. The models em-
ployed a cutoff radius of 6 Å for the atomic environments
with 256 channels and L=0, finding a balance between
accuracy and computational efficiency. The dataset was
split into training/validation subsets with a ratio of 95:5,
and the model was optimized with AMSGrad using a learn-
ing rate of 0.01 and a batch size of 4. The performance
was evaluated on energy and forces with a weighted root
mean square error (RMSE) loss function. The weights
of the energy and forces were initially set to 1 and 100,
respectively. In the last 2̃5% epochs, the weight of energy
has been increased by a factor of 10 three times. The op-
timization was interrupted via an early stopping criterion
with a patience of 200 epochs.

Molecular dynamics. MD simulations were performed
using the Large-scale Atomic/Molecular Massively Par-
allel Simulator (LAMMPS) software65, supplemented by
FLARE74, MACE v0.3.066, and PLUMED v2.975. The
canonical sampling through velocity rescaling thermo-
stat76 with a coupling constant of 50 fs was employed to
control the temperature in all the simulations. During the
construction of the preliminary reactants potentials, we
simulated FeCo slabs cut along the 110 surface containing
60 (3x4x5) and 144 (4x6x6) atoms. A vacuum region
of at least 12 Åwas added in all configurations to avoid
self-interaction effects. The slab was simulated in both
bulk-terminated (by fixing the two bottom layers) and
double-interface (by fixing a central layer) conditions. In
the latter, adsorbate molecules were placed on both sides.
The surface dynamics was simulated at 700K and then
800K, while the interaction with the different reaction in-
termediates (NH3, NH2, NH, N/N2, H) was simulated at
700 K. At this stage, atomic interactions were described
by FLARE, and the timestep was set to 1 fs. In the re-
action discovery stage, as well as during the GNN active
learning and the final simulations, we simulated 120 atoms
(4x6x5) bulk-terminated (2-fixed layers) FeCo(110) slabs
at T = 700 K. For the final simulations, we repeated the
simulations with a larger system (800 atoms) to rule out
possible finite-size effects. Periodic boundary conditions
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were applied in the x and y directions, while a reflecting
wall was implemented over the surface in the z-direction.

Enhanced sampling. Here, we first describe the different
CVs used and, later, the details of the OPES simula-
tions employed in the different stages. In addition to
the distance between different atoms, we focused on the
coordination numbers to measure both the interaction
between the adsorbate and the substrate atoms and to
distinguish the different NHx species. The coordination
is defined in a continuous and differentiable way as:

CX,Y =
∑
i∈X

∑
j∈Y

s(rij) , s(rij) =
1− (

rij−d0

r0
)n

1− (
rij−d0

r0
)m

where rij is the distance between the i-th atoms of species
X and the j-th atoms of species Y, and r0, d0, n, and m,
are tunable parameters. For the coordination between N
and Fe, Co, and Fe|Co, we set the parameters d0 = 1 Å
and r0 = 1.5 Å n = 6, m = 12, while for the coordination
between H and Fe, Co, and Fe|Co, we used d0 = 0.8 År0 =
1.0 Å. Finally, for the coordination between N and H, we
used d0 = 0.7 Å r0 = 0.8 Å n = 5, m = 7.

In the preliminary step, we used OPES to enhance a)
the exploration of the different adsorption states by using
as CV the coordination between N and Fe/Co atoms and
b) the diffusion of the adsorbed molecule by using the x
and y components of its center of mass.

In the exploratory stage, we iteratively performed
OPES-flooding simulations to harvest an ensemble of
reactive pathways. For N2 dissociation, we used the dis-
tance between the two N atoms dN,N and the coordination
CN,Fe|Co as CVs, while for the hydrogenation steps, we
used the inverse of the planar distance between N and
one H atom. The probability estimate was updated every
50 steps, and the the barrier was chosen to be 50 kJ−1,
in order to apply the bias only in the reactant region.
Simulations were interrupted after the occurrence of the
reaction, namely when dN,N exceeded 2.5 Å or when the
coordination CN,H was decreased by 1 with respect to
the equilibrium value.

During the active learning stage with MACE and the
final production simulations, we used OPES with the
standard well-tempered target distribution. To study ni-
trogen recombination, we use the distance dN,N as CVs.
The barrier parameter was set to 200 kJ mol−1, and the
bias was updated every 200 steps. For the first dehydro-
genation step (NH3 →NH2+H), we biased the simula-
tion along three CVs: CN−H , CN,Fe|Co, and the angular
variable Θ defined in Ref.11. For the second reaction
(NH2 →NH+H), we used CN,H and CN,Fe|Co, while for
the last step (NH→N+H), we employed the distance
dN,H and CN,Fe|Co. The barrier parameters were set
equal to 80, 60, and 100 kJ mol−1, respectively, and the
bias was updated every 200 steps. Harmonic restraints
were applied in all reactions to facilitate reversible sam-
pling. For the 2N→N2 process, the restraint was applied
if dN,N ≤ 1.2 or dN,N ≥ 3.2 Å, while for the dehydro-

genation steps if dN,H ≤ 2.5Å , with an elastic constant
of 5000 kJ mol−1Å−2.

Finally, to study in detail the reactive pathways, we
perform a set of 100 OPES flooding simulations for each
dehydrogenation step. The CV used for all the steps was
the coordination CN,H . To avoid biasing the TS region,
we exclude from bias deposition the regions where CN,H

is lower than 2.82, 1.85, and 0.9 for the three hydrogena-
tion steps, using an OPES barrier parameter equal to
70, 30, and 80 kJ mol−1, respectively. All simulations
were stopped once the reaction occurred, terminating the
simulation when the maximum NH distance exceeded
1.9 Å.
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