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ABSTRACT: A photoredox catalyzed [3+2] dipolar cycloaddition between acyclic carbonyl ylides generated from 𝛼𝛼-cyano epoxides 
and dipolarophiles is described. This method, influenced by anionic charge localization and temperature control, enabled the 
synthesis of regioselective functionalized cyclic ethers. By leveraging different dipolarophiles, Lewis acid mediated activation 
afforded either furan or hydroxy-dihydronaphthalene scaffolds. A direct synthesis of lignan natural products isodiphyllin and 
diphyllin is achieved by exploiting the nitrile’s reactivity as a directing handle for the desired regioisomer.

Selective [3+2] dipolar cycloaddition of acyclic carbonyl 
ylides with dipolarophiles is a highly useful approach to 
synthesize five membered oxygen heterocycles with complex 
saturation and substituent variation.1 Such cyclic ethers 
(tetrahydro-, dihydro-, and furan) are an important structural 
motif found in numerous bioactive natural products and 
pharmaceuticals.2 Unfortunately, while [3+2] cycloadditions 
remain a viable approach to the aforementioned products, 1,3-
dipolar carbonyl ylides have been underutilized amongst the 
chemical community due to either expensive catalysts or the 
inability to generate ylide intermediates effectively under mild 
conditions.3 To address these shortcomings, our group has 
developed an organo-photoredox protocol to generate 
carbonyl ylides from diaryl epoxides, which produces cyclic 
ethers upon cyclization with dipolarophiles. These cyclic ethers 
were then used enroute to classical lignan natural product 
total syntheses (Scheme 1).4 While our methods were broad in 
scope and effectively provided a unified approach to this lignan 
natural product subclass, achieving regioselectivity during 
cycloaddition through this method was unrealized.  

The synthesis of aryl- and dihydro-naphthalene lignan 
derivatives, with diverse functional group reactivities, would 
be a powerful solution to optimizing biological activity and 
chemical/metabolic stability of this important class of natural 
products.4b However, unsymmetrical reaction partners in our  

Scheme 1. Previous work on photoredox catalyzed [3+2] 
dipolar cycloadditions of carbonyl ylides and proposed 
strategy to improve the regioselectivity 
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key cycloaddition were largely unexplored due to the inability 
to control regioselectivity. To address these limitations, we 
investigated a directing group which could (1) localize anionic 
charge on the ylide intermediate and (2) act as a handle for 
downstream reactions. 

Historically, cycloadditions of cyclic 1,3-dipolar carbonyl 
ylide intermediates have enabled complex transformations 
enroute to natural products bearing oxy-cyclic backbones.1a 
The most notable reaction generates cyclic carbonyl ylides 
through rhodium catalysis of 𝛼𝛼-diazo ketones with an adjacent 
carbonyl group which participates in intramolecular 
cyclizations.5 In contrast, acyclic carbonyl ylides commonly 
generated from epoxides via thermal, photochemical, and 
recently, chiral Lewis acid catalyzed means, participate in 
intermolecular cycloadditions with unsaturated C-C 
dipolarophiles.6 Additionally, efforts to achieve regioselective 
reactions from acyclic carbonyl ylides have previously used 
epoxides bearing substituted aryl groups (p-CN or p-OMe) or 
𝛼𝛼-electron-withdrawing groups (EWG), to localize the anionic 
charge of the ylide.7 Inspired by these findings, we sought to 
gain regioselectivity using 𝛼𝛼-cyano diaryl epoxides under our 
photoredox process. We hypothesized that the cyano group 
would localize the anionic charge adjacent to the 𝛼𝛼-EWG 
(HOMO), thereby promoting regioselective addition to the 
unsymmetrical dipolarophile (LUMO).  

Herein, we examine the factors influencing selectivity of 
photoredox generated carbonyl ylides using previously 
unexplored unsymmetrical epoxides (Scheme 1). We further 
investigate the regioselectivity achieved using these epoxides 
by analyzing the resulting cycloaddition products. Moreover, 
installation of the nitrile group successfully served as a 
directing handle in downstream reactions which enabled the 
total synthesis of lignan natural products isodiphyllin and 
diphyllin in 5 steps and unnatural derivatives as single 
products. 

Scheme 2. Initial regioselective study of unsubstituted vs 𝛼𝛼-
cyano substituted diaryl epoxides 
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We began the investigation by synthesizing epoxide 2a via a 

one-pot Johnson-Corey-Chaykovsky reaction, and 𝛼𝛼-cyano-
substituted epoxide 2b through a Darzens condensation.8 

These epoxides were then evaluated in cycloaddition reactions 
using photoredox catalysts 2,6-ditert- butylanthracene-9,10-
dicarbonitrile (DTAC, 1) (λmax = 431 nm, [DTAC*/DTAC•−] = 
+1.81 V vs SCE) under blue LED irradiation with unsymmetrical 
dipolarophile 3 (Scheme 2).4b Epoxide 2a afforded an equal 
mixture of regioisomers, 5a (rr = 1:1), upon oxidation with 
DDQ. In contrast, starting with epoxide 2b, the presence of the 
cyano group notably influenced regioselectivity providing 5b 
(rr = 4:1), after Lewis acid-mediated cyanide elimination and 
subsequent aromatization.  

With a focus on the photoredox generated carbonyl ylides 
from both 2a and 2b, we were interested in understanding the 
energy difference in the most stable conformer that produced 
the major product in the reaction sequence. There are four 
possible products with dipolarophile 3 using 𝛼𝛼-cyano epoxide 
2b, the major product 4b is expected to arise from the more 
stable carbonyl ylide conformer (iii) wherein trapping with 
dipolarophile 3 should result in the cyano group being opposite 
to the methyl ester. DFT calculations show that the cyano-
substituted carbonyl ylide (iii) from 2b is in fact 3.2 kcal/mol 
more stable than for carbonyl ylide (ii) from 2a (Supporting 
Information).9 These calculations support our hypothesis that 
the acyclic 𝛼𝛼-cyano carbonyl ylide does indeed induce 
selectivity over diaryl unsubstituted epoxides under 
photoredox catalysis.    
Scheme 3. Scope of unsymmetrical furans from 𝛼𝛼-cyano 
epoxides and methyl propiolate  
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Next, we systematically screened the cycloaddition reaction 
conditions and evaluated the regioselectivity over 2 steps. 
Assessment of solvent and temperature revealed that 
chloroform provided the highest yield and regioselectivity. 
Remarkably, an optimal regioselectivity ratio of 6 (16:1) was 
achieved at -40 °C, albeit with a low yield (43%) (Supporting 
Information).  This observation underscores the role of 𝛼𝛼-
cyano epoxides in augmenting the regioselectivity of 
photoredox-catalyzed dipolar cycloadditions involving 
carbonyl ylides. Additionally, temperature control was found 
to further enhance the regioselectivity of the reaction. 

With the optimized conditions in hand, we investigated the 
substrate scope in Scheme 3 using various 𝛼𝛼-cyano epoxides in 
the reaction. To streamline the efficiency of these reactions 
bearing different substituents, chloroform at room 
temperature was used to prioritize higher yields for a range of 
compounds. Polyoxygenated furan scaffolds (5b, 6, and 9) 
bearing methoxy groups at both the para- and meta- positions 
were obtained in high yields with moderate to good 
regioselectivity. Their electron and oxygen rich environments 
mimic many biologically active lignan natural product 
derivatives. Heterocyclic derivatives (7 and 10) 1,3-dioxolane, 
benzothiophene and 1,4-dioxolane were also obtained in good 
yields and with good regioselectivity and represent diverse 
building blocks for unnatural derivatives. Fluorinated 
substitution, known to stabilize lignans in vivo, was displayed 
and tolerated in the reaction as compound 8 albeit in low 
yield.10 Unfortunately, these conditions failed to activate aryl 
groups lacking strong electron-donating substitutions. 
Moreover, benzyloxy substituents were not tolerated as they 
were easily cleaved by BF3•OEt2 in the reaction.  

To demonstrate the applicability of these furan building 
blocks, we pursued the synthesis of talaumidin analogue 12 
(Scheme 3).11 Using furan 6, LiAlH4 reduction to alcohol 11 
enabled direct hydrogenated with Pd/C to yield 12 (42%) with 
good regioselectivity (r.r. = 11:1). These results highlight the 
potential of unsymmetrical epoxides as carbonyl ylide 

precursors under photoredox catalysis, paving the way for 
their application in synthesis and medicinal chemistry. 

We then explored the versatility of the nitrile group as a 
handle for downstream regioselective control enroute to 
lignan natural products. To start, 𝛼𝛼-cyano epoxide 13 (Scheme 
4) was subjected to the previous photoredox conditions and 
engaged in a [3+2] dipolar cycloaddition with dipolarophile 
dimethyl fumarate (DMF) 14 to afford the resulting cyano-
substituted tetrahydrofuran 15. Subsequent incubation with 
BF3•OEt2 led to formation of the dihydronaphthol derivative 
through an intramolecular Friedel-Crafts arylation and 
successive cyanide elimination.4b As expected, the presence of 
the cyano group directs the rearrangement wherein the aryl 
group adjacent to the cyano becomes part of the naphthol. 
Upon workup of the Lewis acid-mediated reaction, the 
cyanohydrin collapses to reveal the enol 16, and the crude 
mixture was then triflated to converge the isomeric mixture to 
a single product.12 Triflated product 17 underwent further 
elaboration, with a specific focus on lignan analog synthesis to 
18-22 as multi-functionalized dihydronaphthalenes via Pd-
catalyzed hydrogenations and Suzuki-Miyaura couplings in 
good yields over 4 steps.13 Notably, dihydronaphthalenes 20 
and 21 were previously unattainable as a single product via our 
previous method.4 Thus, the newly integrated cyano group 
now provides straightforward access to lignan derivatives as a 
single regioisomer.   

Lastly, we targeted two natural products that are aryl group 
regioisomers, isodiphyllin (24) and diphyllin (25), both of which 
possess potent antiviral activities.14  Deprotection of the 
triflated dihydronaphthalene 17 by tetrabutylammonium 
hydroxide afforded the saturated hydroxy arylnaphthalene 23, 
a key scaffold intermediate that can be readily mapped to 
several known natural products.15 Subsequent regioselective 
reduction and lactonization of the most accessible ester using 
borane dimethyl sulfide yielded 24 and 25 respectively (49, 
53%).16 To the best of our knowledge, this is the first example 
of the rearrangement of cyano-tetrahydrofurans to selective 
dihydronaphthol derivatives.

Scheme 4. Synthesis of Diphyllin, Isodiphyllin, and dihydronaphthalenes from 𝛼𝛼-cyano epoxides and dimethyl fumarate 
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In summary, we have advanced photoredox 
methodologies through the strategic utilization of 𝛼𝛼-cyano 
epoxides and an exploration of their reactivity in [3+2] 
cycloaddition via organo-photoredox. The investigations 
reveal that temperature variations and anionic charge 
localization influence the regioselectivity of photoredox 
generated carbonyl ylides. Leveraging 𝛼𝛼-cyano epoxides has 
enabled us to access complex lignan natural products 
isodiphyllin and diphyllin as single products, along with the 
synthesis of functionalized furans. The development of these 
scaffolds stands as a crucial step towards expanding the 
repertoire of synthetic analogs, holding great promise for 
drug discovery and therapeutic interventions. 
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