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Abstract: The prediction of reaction selectivity is a challenging
task for computational chemistry, not only because many
molecules adopt multiple conformations, but also due to
the exponential relationship between effective activation
energies and rate constants. To account for molecular
flexibility, an increasing number of methods exist that generate
conformational ensembles of transition state (TS) structures.
Typically, these TS ensembles are Boltzmann weighted
and used to compute selectivity assuming Curtin-Hammett
conditions. This strategy, however, can lead to erroneous
predictions if appropriate filtering of the conformer ensembles
is not conducted. Here, we demonstrate how any possible
selectivity can be obtained by processing the same sets of TS
ensembles for a model reaction. To address the burdensome
filtering task in a consistent and automated way, we introduce
marc, a tool for the modular analysis of representative
conformers that aids in avoiding human errors while minimizing
the number of reoptimization computations needed to obtain
correct reaction selectivity.

Relying on computational methods, such as density
functional theory (DFT), to accurately predict reaction
selectivity remains a key challenge for in silico catalyst
design.1–5 Small errors in computed transition state (TS)
energies, even those below chemical accuracy (1 kcal/mol),
can result in a reversal of predicted selectivity6 due to
the exponential relationship between effective activation
energies and rate constants.7–11 Dealing with these accuracy
issues can further be complicated when large and flexible
functional groups used to impart asymmetry through
non-covalent interactions are present,12–14 as these larger
systems are likely to adopt multiple TS conformations.

Computational approaches for estimating selectivity
often resort to choosing one (or a handful) of relevant
conformations derived either from “chemical intuition”
or discerned from experimental evidence. The relative
free energies of the presumed reaction pathways are then
computed and the resulting selectivity estimated.15–17

While this computationally inexpensive approach may work
for simple systems, it becomes increasingly tricky for
larger species and cannot be generalized to large pools of
catalysts.18–22 On the other extreme, (ab initio) molecular
dynamics combined with enhanced sampling techniques
such as metadynamics23 or replica exchange (REMD)24–27

(which may be powered by machine learning potentials27–31)
can provide full conformational landscapes that would yield
accurate selectivity predictions. In practice, however, such
approaches are generally too computationally demanding,

either in terms of directly modeling the system over long
time frames, or in generating the amount of training data
needed to create ML models, and are thus limited to smaller
systems.29,31–33

One pragmatic approach for determining selectivity
from DFT data is to assume a system operates
under Curtin-Hammett conditions.34 In such cases,
full conformational sampling of TS structures can be
undertaken, and the resulting energies weighted to
obtain final product ratios.16,17,35–40 The popularity of
this “Curtin-Hammett Conformational Sampling” (CHCS)
method has fostered an increasing number of tools that rely
on rotamer libraries,41–44 inexpensive potentials combined
with enhanced sampling techniques45–47 as popularized
by the CREST program48–52 or distance geometry
methods53–58 to generate conformational ensembles of a
molecule. These approaches provide more complete pictures
of selectivity, but also require additional computations. As
an example of the importance of conformational degrees
of freedom, we recently demonstrated how on–the–fly
conformational sampling can be used to accurately model
enantioselectivity for a diverse set of catalysts with reduced
human intervention.58–60

When using any of the aforementioned approaches for
conformer sampling, particularly the automated variants,
inadequate handling of the TS ensembles can lead to
significant errors in selectivity estimations. This arises
primarily due to two situations: (1) the counting of
multiple equivalent transition states (Repeated conformers,
Figure 1) and (2) not distinguishing interconvertible
and non-interconvertible pathways (Non-interconvertible
conformers, Figure 1). Here, we highlight potential
pitfalls of using the CHCS strategy by demonstrating
how processing the same ensemble of computed TS
conformers in various ways leads to virtually any selectivity
prediction, even for a simple organic reaction. We
then introduce marc, a tool for the modular analysis
of representative conformers which improves selectivity
predictions by untangling conformational ensembles through
automated conformer classification and filtering.

Concealed Error Sources in Transition State
Conformer Weighting. “Repeated conformer” errors
arise when the same (or fundamentally identical) TSs
present within an ensemble are counted multiple times. Such
errors have different effects depending on how selectivity
is determined. In Boltzmann weighting, for instance, a
repeated high energy TS can artificially raise the TS barrier
height toward that product. On the other hand, if selectivity
is assessed directly from rate constants, then a repeated
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Figure 1. Schematic representation of the two concealed error
sources in transition state conformer weighting.

low energy TS can artificially lower the barrier toward
that product. In theory, such errors are easily avoided by
manually filtering redundant species. Automation, however,
introduces its own set of problems as small numerical
discrepancies in bond lengths/angles and/or energies, causes
symmetry related structures to not be recognized by the
program. The equivalence associated with atom indexing
(such as that which occurs in rotations of t-butyl or
phenyl groups) can also lead to the persistence of repeated
conformers, even after filtering.

“Interconversion error”, the error associated with not
distinguishing and properly treating interconvertible and
non-interconvertible structures, is subtler and trickier to
process. In the potential energy surface, interconvertibility
between TSs (1st order saddle points) is governed by
temperature-dependent barrier heights (2nd order saddle
points), which are hard to characterize.61 Clearly, two
TSs differing only by, for instance, a small rotation of
a C−Ph single bond (i.e., rotamers) are connected by a
negligibly small energetic barrier, making these species easily
interconvertible as they readily adopt the most energetically
favorable structure to bypass the TS. On the other hand,
conformationally locked structures, such as C 2-symmetric
biaryl moieties (Figure 1), cannot intercovert due to a
high barrier associated with significant steric repulsion.
Conformer generation tools are not necessarily bound by
realistic kinetics, which results in the presence of different TS
conformers within an ensemble that may not be accessible
from one another. In principle, non-interconvertible TSs
should be treated as separate reaction pathways, with the
rate constants associated with each pathway leading to
the same product being summed. On the other hand,
interconvertible TSs should be treated as a single pathway.
Improper treatment resulting in “double counting” in this
setting would lead to an artificial lowering of the effective
activation energy.

To illustrate how these error sources quantitatively impact
selectivity predictions, we examine the N -methylation of a
tropane (1) with isotopically labeled 14CH3I (Figure 2).

62–65

Two conformations of the system (1a and 1b) exist in
equilibrium through a pyramidal inversion of the bridging
nitrogen (TSi). An SN2 reaction with 14CH3I leads to
two methylated isotopomers (2a and 2b) formed through
TSa and TSb, respectively. As the activation energies
associated with the SN2 reaction are significantly larger
(> 12 kcal/mol) than that of the pyramidal N-inversion
(< 5 kcal/mol through TSi), the system operates under
Curtin-Hammett conditions and the product distribution
exclusively depends on the free energy barriers of TSa
and TSb. Using this system as an illustrative model,

Figure 2. Free energy profile of the N -methylation reaction
of 3-(benzoyloxy)-8-methyl-8-azabicyclo[3.2.1]octane with
isotopically labeled 14CH3I via SN2 transition states TSa and
TSb.

we calculate selectivity (expressed as an isotopomer ratio)
employing different strategies to account for repeated and
(non)interconvetible conformer issues.

Selectivity Prediction without Conformational
Sampling. As a first approximation, we identified
structures for TSa and TSb which were optimized at
the ωB97XD/def2-TZVP//ωB97XD/def2-SVP level (see
Computational Details for additional information). These
computations showed TSa to be 2.21 kcal/mol lower in
energy than TSb (Figure 2). Taking

∆∆G‡ = (∆G‡
a −∆G‡

b) + ∆Go = ∆G‡
a,0 −∆G‡

b,0, (1)

where the 0 subscript indicates that both activation energies
are taken with respect to the lowest energy intermediate (i.e.
∆∆G‡ is expressed as the difference between the absolute
free energies of TSa and TSb). In this case, ∆∆G‡ = −2.21
kcal/mol and the major product at 298K is predicted to be
2a following

[2a]

[2b]
= e−∆∆G‡/RT = 41.547 ≈ 98 : 2 (2)

as seen in Figure 3a.

Figure 3. Isotopomer ratios calculated with different strategies.
a) Without any conformational sampling. b) Through Boltzmann
weighting of the 10 lowest TS conformers per pathway. c) As
before, but considering the 20 lowest conformers per pathway.
d) Through addition of the rate constants from TS conformers,
considering the 10 lowest TS conformers per pathway. e) As
before, but considering the 20 lowest conformers per pathway.
f) Calculated by manually examining and filtering the relevant
TS conformers. g) Calculated considering structures selected by
marc.
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Selectivity Prediction with Conformational
Sampling. Figure 2 shows that the energies of TSa and
TSb lie close to one another. Structurally, however, both
the freely rotating benzoyloxy group and the 8-membered
bicycle can adopt a multitude of orientations in the TS.
To refine the prediction of selectivity, we performed a
constrained conformational search of both TSa and TSb
using CREST version 2.11,49 (note that the method
program used for conformer generation is arbitrary66)
keeping the relevant I−CH3−N distances fixed to ensure
facile geometric convergence during subsequent ωB97XD
reoptimizations. The resulting TS ensembles contained
86 (TSa) and 146 (TSb) structures (see Figure 4a/b for
superimposed structures). We now examine selectivity
determined using Boltzmann weighting and summed rate
constant approaches.

Boltzmann Weighting of Transition State Conformers.
Boltzmann weighting treats TSs as ensembles in which
all conformers leading to a specific product are assumed
to be freely interconvertible. As a first assumption,
we took the NTS = 10 lowest energy TS structures
leading to each product (as predicted by their GFN2-xTB67

energies). The TS geometries were reoptimized at
the ωB97XD/def2-TZVP//ωB97XD/def2-SVP level (see
Computational Details for more information), during which
some GFN2-xTB conformers converged to identical TSs
(and some similar conformers diverged to different TSs, vide
infra). We use ∆G‡

j,0 to refer to the individual TS energies
(relative to 1b) and add a second subscript to differentiate
a from b when necessary. Boltzmann weighting68 the
ωB97XD TS energies of the 10 lowest energy TSa and
TSb conformers gives the ensemble energies (indicated by
the ens. superscript which is followed by the number of
transition states included, NTS) as

∆Gens.,NTS
0 =

NTS∑
j

pj∆G‡
j,0 (3)

where

pj =
e−∆G

‡
j,0/RT∑NTS

j e−∆G
‡
j,0/RT

(4)

are the Boltzmann weights. As per eq. 3, ∆Gens.
0 is always

higher than the lowest ∆Gj,0. The weighting process is
conducted separately for all TSa and TSb conformers.69

Substituting these values back into eq. 2 yields

∆∆G‡
ens.,10 = 1.80 kcal/mol (5)

and

[2a]

[2b]
=

e−∆G
ens.,10
a,0 /RT

e
−∆G

ens.,10
b,0

/RT
= e−∆∆G

‡
ens.,10/RT ≈ 4 : 96 (6)

as seen in Figure 3b. Thus, Boltzmann weighting reverses
selectivity from the single conformer result (98:2, Figure 3a).
Of course, using the lowest 10 energy TS conformers leading
to each product is arbitrary, as we do not know the “true”
number of unique pathways prior to conformer generation.
If we assume 20 conformers to be a better choice and repeat
the same process, ∆∆G‡

ens.,20 = 1.75 kcal/mol, giving a 5:95
product ratio (Figure 3d).

Recall that once the lowest energy TS is found, each
additional TS conformer identified increases selectivity

towards the opposite product. As an example, the highest
energy TSb conformer in our ensemble lies 17.5 kcal/mol
above 1b, which higher than all TSa conformers. If
duplicates of this high energy conformer are mistakenly
added to the ensemble, ∆Gens.

b,0 (which is normally lower than
∆Gens.

a,0 ) would slowly tend toward 17.5 kcal/mol, eventually
reversing the predicted preferred product. For this reason,
duplicate TSs can be problematic, leading to inaccurate
selectivity predictions.

Figure 4. Superimposition of transition state conformers based
on the RMSD of the tropane moiety. Full conformational
ensemble of a) TSa (86 structures), b) TSb (146 structures).
c) Twenty lowest energy conformers of TSa after DFT
reoptimization, where all conformers belong to the same (orange)
cluster. d) Twenty lowest energy conformers of TSb after
DFT reoptimization, where conformers belong to two clusters
(downward pointing C−−O, orange or upward pointing C−−O
(pink).

Summing Rate Constants of Transition State Conformers.
Boltzmann weighting assumes free interconvertability of
all TSs leading to a specific product. However, if this
interconversion is precluded by a high energetic barrier, then
these TSs are best characterized as belonging to different
reaction valleys that proceed in parallel towards their
products. Assuming this is the case for all TS conformers,
the effective rate constant keff. is given as:

keff. ∝ e
−∆G

‡
eff.,NTS

/RT
=

NTS∑
j

e−∆G
‡
j,0/RT (7)

where the mole fraction of the reference state (1b) is
neglected for simplicity38 and −∆Geff is the effective
activation energy towards the product. In other words, the
effective kinetic rate constant is now the sum of all individual
rate constants for all pathways leading to a specific product.
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In this case, the product distribution is the ratio of the total
rate constants in each direction, given by

[2a]

[2b]
=

[Na
TS∑
j

e−∆G
‡
j,a,0/RT

]
/
[Nb

TS∑
j

e
−∆G

‡
j,b,0

/RT
]

(8)

which is analogous to eqs. 1 and 2 with effective activation
energies. TakingNa

TS = Nb
TS = 10 and substituting in eq. 8,

we obtain ∆∆G‡
eff.,10 = 0.48 kcal/mol and a product ratio

[2a]/[2b] = 0.44, slightly selective towards 2b (31:69, Figure
3d). Using Na

TS = Nb
TS = 20 gives ∆∆G‡

eff.,20 = 0.07
kcal/mol, corresponding to no selectivity (49:51, Figure 3e).

Here, additional low energy conformers significantly
accelerate the reaction rate by providing multiple parallel
pathways toward the product, while higher energy
conformers do not influence the rate. Thus, “double
counting” of low energy conformers in this setting lowers
the effective activation energy in Equation 7 by adding
extra terms. In an extreme case, double counting of
the lowest energy TS will give a RTln(2) lower barrier.
Importantly, this treatment fundamentally differs from
Boltzmann weighting, where high energy conformers would
decelerate the reaction.

From the same sets of TS ensembles, we have obtained
selectivity predictions ranging from highly selective for 2a
to highly selective for 2b, solely by post-processing the same
results in different ways. To obtain unbiased selectivity
predictions, conformer ensemble sorting and selection are
required to differentiate interconvertible and parallel TS
structures, which obtaining accurate results.

The Right Answer for the Right Reasons. As
highlighted above, we lack information about the ability
of the different TS conformers in our ensemble to
freely interconvert because they are generated without
relying on any energetic criterion. For the exemplary
case studied here, however, it is possible to manually
sort the conformers to arrive at the correct selectivity.
Inspecting the DFT-reoptimized TSa ensemble reveals only
a single conformer family in which all structures are freely
interconvertible. This family has a ∆G‡

a,0,down ≈ 15.3
kcal/mol above 1b and is characterized most notably by
a downward pointing C−−O bond (Figure 4c). In contrast,
the TSb ensemble consists of two distinct conformer families
characterized by either upward or downward pointing C−−O
bonds (Figure 4d), having values of ∆G‡

b,0,up ≈ 17.5

kcal/mol and ∆G‡
b,0,down = 13.4 kcal/mol, respectively.70

Moving between these two clusters requires overcoming
second order saddle points with non-negligible barriers of
over 8 kcal/mol above the TSs. As a result, all TSs can
be grouped into one of three clusters, either TSa with
a downward pointing C−−O bond, TSb with a downward
pointing C−−O bond, or TSb with an upward pointing C−−O
bond. Using equation 3 we obtain the ensemble energies
for each cluster, which can then be separately added, as in
Equation 7, to calculate the final selectivity using equation
8. Doing so gives a [2a]/[2b] ≈ 4:96 (Figure 3f). In the end,
only three (of the initial 212) TS conformers actually dictate
the selectivity of the reaction.

marc: An Automated Clustering Tool to Avoid
Errors. Manually curating structures is time-consuming
and unsuitable for all but the simplest systems. To automate
this process, we developed marc (modular analysis of

representative conformers) as a simple command line
tool to process conformational ensembles. For a given
ensemble, independent of its origin, marc uses a mix of
geometric (both symmetry-informed heavy-atom RMDSs
and dihedral angles) and energetic information (if available)
to perform clustering designed to obtain an optimal number
of structures needed to completely cover the conformational
space. The general workflow of marc is shown in Figure 5.

Figure 5. Workflow of marc. From a conformer ensemble, marc
computes pairwise distances using different metrics (heavy atom
RMSDs, relative energies, and dihedral angles) to construct a
compound distance matrix, finds the optimal number of clusters,
and samples the lowest energy structures belonging to each
cluster.

Applying marc (using the default settings) to the (Na
TS =

20) DFT-refined ensembles gives a single cluster containing
all conformers. The largest heavy-atom RMSD between two
structures is a non-negligible 0.87Å, which is sufficiently
large to be considered as unique structures based on
simple RMSD filtering using predefined thresholds. On the
other hand, the maximum energy difference is only 0.01
kcal/mol. By combining energetic and structural criteria,
marc successfully identifies that all TSa conformers as being
interconvertible. In contrast, For the (Nb

TS = 20) ensemble
is found to have two clusters. The first contains only a
single structure with a downwards pointing C−−O bond while
the second contains the 19 other structures having upward
pointing C−−O bonds. Here, the maximum heavy-atom
RMSD amongst the conformers is slightly larger (1.32Å vs.
0.87Å) while the maximum energy difference is 3.2 kcal/mol
with the lowest energy conformer belonging to the first
cluster and 19 higher energy conformers belonging to the
second. As marc selects the same conformers found using
manual inspection in the previous section, we once again
obtain an isotopomer ratio of 4 : 96 (Figure 3g).

The above results were obtained by processing the 20
lowest energy conformers for both TSa and TSb optimized
at the DFT level. This raises an important question: could
the 40 DFT re-optimizations have been completely avoided
and the same results obtained? Running marc directly on
the full CREST-generated ensembles dramatically reduces
the number of computations needed. For the original 86
structure TSa ensemble, three clusters populated by 1, 1,
and 84 structures are identified. The largest corresponds to
the downward pointing C−−O bond species discussed earlier,
while two others contain species with upward pointing C−−O
bonds that are significantly higher in energy (such that they
were not included in the 20 lowest energy structures selected
for DFT refinement).71 For the 146 structureTSb ensemble,
two clusters characterized by downward (101 structures)
and upward pointing C−−O bonds (45 structures) are found.
If just five total TS structures (one structure from each
of the three TSa and two TSb clusters) are reoptimized
using DFT, a 6:94 product ratio is found. This closely
matches the 4:96 product ratio obtained by processing the 20
lowest energy DFT reoptimized conformers from TSa/TSb,
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at ∼1/8 of the computational cost.72 In short, marc also
simplifies the post-processing of conformational ensembles
that have not yet been refined with DFT, reducing large
ensembles to a handful of representative structures thereby,
reducing computational expense. Such savings become
increasingly important when the CHCS protocol in applied
to large species and/or in high-throughput settings.

In conclusion, using the N -methylation of tropane with
isotopically labeled 14CH3I leading to two isotopomers as a
model reaction, we have shown how an ensemble of the same
TS conformers can be processed in different ways to obtain
any possible selectivity prediction under Curtin-Hammett
conditions. These different selectivity predictions arise from
errors associated with the presence of “repeated conformer”
and “interconversion” errors associated with distinguishing
when various TSs are freely able to interconvert amongst
themselves. We then introduced marc, a simple command
line tool designed to analyze conformational ensembles and
select the most representative structures. Using marc,
accurate predictions of selectivity can be obtained with
significantly reduced computational cost.

Computational Details. Conformer ensemble generation
was performed with CREST48,49,67 version 2.11 using the
default settings except doubling the default metadynamics
runtime and setting a 0.5 a.u. harmonic constraint
placed on the I−CH3−N atoms involved in the SN2
transition state. Selected geometries were optimized at
the ωB97XD73/def2-SVP74 level of theory as implemented
in Gaussian 16.75 Vibrational frequency analysis was
used to confirm that stationary points were either
minima (no imaginary frequencies), transition states
(one imaginary frequency), or 2nd order saddle points
(two imaginary frequencies) on the potential energy
surface. Refined energy estimates were obtained by single
point computations at the ωB97XD/def2-TZVP level on
ωB97XD/def2-SVP geometries. Free energy corrections
were taken from the ωB97XD/def2-SVP computations using
the GoodVibes program.37 Solvent effects were included in
the single point computations using the SMD76 implicit
solvation model (for acetonitrile). Reported free energies
include the solvation-corrected ωB97XD/def2-TZVP
electronic energies, and the ωB97XD/def2-SVP free
energy corrections. All structures and computed
energies are available in the “examples” directory of
https://github.com/lcmd-epfl/marc.

marc and user instructions can be found at https:

//github.com/lcmd-epfl/marc. Clustering is performed
using the kmeans algorithm, with a multidimensional
scaling of the averaged dissimilarity matrices as input,
as implemented in the scikit-learn python library.77 The
silhouette score method is used to assess the number
of clusters. RMSDs are computed considering all
isomorphisms between the molecular graphs, which accounts
for molecular symmetry.78 marc also allows users to use
other clustering algorithms and dissimilarity matrix types,
including agglomerative methods and dihedral angles as
pioneered by the CENSO program.68
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