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Enantioselective synthesis of cyclopentenes by (2 + 3) cycloaddition 
via a 2-carbon phosphonium.** 
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Abstract: Herein we report a catalytic enantioselective (2 + 3) 
cycloaddition in which a vinyl phosphonium intermediate serves as 
the 2-carbon component. The reaction involves an a-umpolung 
b-umpolung coupling sequence enabled by b-haloacrylates and 
chiral enantioenriched phosphepine catalysts. The reaction shows 
good generality providing access to an array of cyclopentenes, with 
mechanistic studies supporting stereospecific formation of the vinyl 
phosphonium intermediate which then undergoes annulation with 
turn over limiting catalyst elimination. Beyond defining a new 
approach to cyclopentenes these studies demonstrate that 
b-haloacrylates can replace ynoates in reaction designs that require 
exclusive umpolung coupling at the a- and b-positions. 
 
Cycloadditions define some of the most important synthetic 
approaches to cyclic structures. In the last three or so decades 
organophosphines have emerged as flexible cycloaddition catalysts 
allowing a broad, and often stereoselective, array of reactions.1,2 
Arguably the most recognizable are the (3 + n) cycloadditions 
between allenoates (i.e. 1) and polarized p-systems (i.e. 2) discovered 
by Lu.3 Central to these reactions is phosphonium 3 which engages as 
a C3-synthon to give various cyclic adducts (Fig. 1A).4  While related 
annulations of other C3-, C4-, and higher synthons have received 
attention,5-7 C2-phosphonium 4 has been largely overlooked. Most 
commonly this species is accessed from ynoate 5 and allows 
a-umpolung couplings8 or Michael additions9,10 with to the best of 
our knowledge, cycloadditions only reported on two occasions (Fig. 
1B). Specifically, in 2005 Yamamoto communicated the synthesis of 
pyrrole 7,11a while more recently Sasai reported the preparation of 
racemic hydropyrrole 8,11b along with a single low yielding 
enantioselective example. The paucity of (2 + n) cycloadditions is 
potentially attributable to the reactivity of ynoate 5, the precursor to 
phosphonium 4, which is both a potent Michael-acceptor12a and an 
acid12b (vide infra). Thus making a selective cycloaddition 
challenging. 

 
    

   
Figure 1. A) Phosphine catalyzed cycloadditions with allenoates. B) Proposed 
and previous studies on (2 + 3) cycloadditions via phosphonium 4. C) Studies 
reported herein 

As part of our interest in new enantioselective cycloadditions13 
we considered the potential for vinyl phosphonium 4 to enable a dual 
umpolung (2 + 3) cycloaddition approach to cyclopentenes (i.e. 11). 
In addition to synthetic novelty such a process would provide a new 
approach to cyclopentenes with potential value in target synthesis. 
Herein we report the realization of this design with an 
enantioselective (2 + 3) cycloaddition between haloacrylates (i.e. 9a) 
and bifunctional 1,3-dicarbonyls (i.e. 10a) (Fig. 1C). Pivotal to the 
viability of this transformation is the use of haloacrylates (i.e. 9a) 
rather than ynoate 5 as the vinyl phosphonium 4a precursor. This 
avoids Michael additions,9 allowing exclusive dual umpolung 
cycloaddition to occur. This design we believe has the potential to 
unlock the use of vinyl phosphoniums as a novel 2C-synthon for an 
array of cycloadditions.  

Our studies commenced by examining whether the proposed (2 
+ 3) annulation was indeed viable using ynoate 5b and malonate 10b 
(Fig. 2A). While successful, the reaction suffers from low yield and 
formation of the undesired Michael adduct 12b.9c Mechanistically the 
intended reaction occurs by phosphine addition to ynoate 5b to 
provide a ketenolate which then generates the targeted coupling 
partners 4b and 13b (Fig. 2B). Unfortunately, in addition to their 
desired a-umpolung coupling, Michael addition of enolate 13b to 
ynoate 5b can provide 12b.9c Additionally the basicity of the 
ketenolate potentially allows undesired deprotonations thereby 
triggering decomposition and low yield.  
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Figure 2. A) phosphine catalyzed (2 + 3) cycloaddition with ynoates and surrogates. B) Rationale behind ynoate surrogacy strategy. C) Selected optimization for the 
enantioselective synthesis of cyclopentene 11b. 

To address these shortcomings in the reaction design, we 
considered replacing the ynoate with an enoate bearing an a- or 
b-leaving group (Fig. 2A, 9a-d). While b-haloenoates are 
unknown in phosphine organocatalysis they have been 
stoichiometrically coupled with triphenyl phosphine to give vinyl 
phosphonium species analogous to 4.14 We postulated that the 
haloenoates (i.e. 9) should be both less electrophilic (particularly 
when b-substituted) and less acidic than ynoate 5b thereby 
addressing the limitations previously identified (Fig. 2B). 
Pleasingly after screening a-, and b-haloenoates 9a-d we found 
that b-iodo, chloro and bromoenoates (9a-c) all gave a high yield 
of cycloadduct 11b (62 to 84%), with good selectivity for the 
cycloaddition over Michael addition (6:1 to 50:1) (Fig. 2A).  

Studies into the enantioselective15 (2 + 3) cycloaddition 
commenced by screening phosphepine catalysts C1-C5 using 
malonate 10b and b-bromoacrylate 9c, a halide more easily 
handled than the preferred iodide. While most gave the expected 
product (Fig 2c, entries 1-5) only tBu phosphepine C5 gave the 
cyclopentene with significant enantioselectivity (85:15 er), 
although in low yield, and with low selectivity over the Michael 
adduct (Fig. 2C, entry 5). Changing the solvent to toluene 
increased the enantioselectivity slightly, while SITCP (C8) was 
viable (but not stereoselective), and endo-Kwon C9 was not viable 
(Fig. 2C, entries 6-8). Raising the temperature improved the 
enantioselectivity and yield, while returning to b-iodoenoate 9a, 
and extending the reaction time (48h), allowed an excellent yield 
of cyclopentene 11b with good enantioselectivity (89:11 er) and 
only a trace of the b-coupled product 12b (Fig. 2C, entry 11). Use 
of less encumbered catalysts (i.e. cyclohexyl C6 and ipropyl C7) 
gave similar yields but the enantioselectivity was diminished.  

In general these conditions were compatible with a range of 
substrates giving cyclopentenes 11a-v in good yield (>60%) and 

around 90:10 er (Fig. 3). All products were non-crystalline, thus 
absolute stereochemistry was determined by measured and 
computed CD spectra for cyclopentene 11b (see SI). Specifically, 
scope studies commenced by examining alternate b-iodo 
a,b-unsaturated carbonyls (Fig. 3A). Increasing, or decreasing the 
bulk of the ester (i.e. 11c or 11d) had little impact on the reaction 
outcome, however the stereochemistry of the iodoenoate had a 
significant impact with cis iodoenoate cis-9e decreasing the 
enantiopurity of cyclopentene 11e (75:25 cf 85:15 er from trans-
9e) (vide infra). Ketone containing substrates were tolerated, with 
phenyl ketone 11e formed in 52% yield and 87:13 er, although this 
required a slight elevation of reaction temperature and use of a 
bromoenone. The 1,3-dicarbonyl component of the 3-carbon 
coupling partner could be varied using symmetrical and non-
symmetrical partners (Fig. 3B). Thus, the dibenzyl and diallyl 
malonate containing cyclopentenes 11f and 11g were prepared in 
97 and 59% yield, and with 87:13 and 88:12 er respectively. In 
addition b-ketoester containing substrates provided cyclopentenes 
11h, a and i (87:13-91:9 er) and with ≥10:1diasteroselectivity. 
The coupling to provide 11h was repeated on a 1.2 mmol scale 
without impacting the outcome. Finally, modifications to the 
Michael acceptor within 10 (Fig 3C) were examined starting with 
alternate esters, which gave cyclopentenes 11j and 11k with very 
similar yield and selectivity to the ethyl version. a,b-Unsaturated 
amides were well suited to the reaction with cyclopentenes 11l-p 
formed with good enantioselectivity (87:13-93:7 er) and yield 
(61-92%). In contrast nitrile and phenyl sulfone substrates coupled 
well (to give 11q and r) but selectivity was decreased (77:23 and 
76:24 er respectively). Aryl ketones and styrenyl ketone substrates 
were smoothly reacted to give cyclopentenes (11s-v) in good yield 
and enantioselectivity (all >87:13 er). 
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Figure 3. Scope of enantioselective (2 + 3) cycloaddition. A) Variation of haloacrylate 9. B) Variation of 1,3-dicarbonyl in 10. C) Variation of conjugate acceptor in 10. 

Derivatisations focused on addressing the 1,3-dicarbonyl 
functionality and the conjugate acceptor within the cyclopentene 
product 11 (Fig 4). To that end allylester 11i was subjected to 
decarboxylative allylation to yield cyclopentene 14i. While viable 
with dppe, and both enantiomers of Phox ligand,16 the best 
diastereoselectivity, although low, was obtained using S-tBuPhox 
giving a quantitative yield of 14i as a 2:1 mix of diastereoisomers 
with 94:6 and 82:18 er. Starting with cyclopentene 11b conjugate 
addition17 of nitromethane gave a 6:1 ratio of cyclopentanes 15b in 
good yield and with no erosion in enantiopurity. 
 

 
Figure 4. Derivatizations studies with cyclopentenes 11i and 11b. 

The reaction mechanism was examined initially by considering 
whether the normal polarity coupling, as observed during 
optimization, occurs via vinyl phosphonium 4 or is a background 
reaction of iodide 9a. This was examined through control experiments, 
with the absence of catalyst exclusively providing the normal polarity 
b-coupled product 12b thereby demonstrating the viability of a 
background coupling pathway. Next we subjected deuterium labelled 
malonate D-10b to the (2 + 3) annulation providing cyclopentene D-
11b with a slight decrease in yield and enantioselectivity compared 
to the protero version. Deuterium incorporation was found at 
positions correlating to the acidic C-H bonds a- to the ethyl ester 
and a putative phosphonium intermediate. While the former was 
expected the later suggests that the a-umpolung coupling leads to a 
long-lived species from which deuteration can occur (vide infra). 

Finally, NMR monitoring experiments were conducted using 
both the cis and trans iodoenoates (cis-9a and trans-9a). When trans-
9a was exposed to catalyst C5 in d8-toluene the phosphine catalyst 
peak (at 29.1 ppm in the 31P-NMR) gradually disappeared with no 
new signals observed, although an insoluble material formed which 
was isolated in 50% yield. This material, when dissolved in CDCl3 
was assigned as trans-4a with a 31P-NMR signal at 57.6 ppm,18a and 
phosphorous decoupled 1H-NMR spectroscopy revealing a coupling 
about the indicated hydrogens of 17.4 Hz.18b This material when 
resuspended in toluene and subjected to the standard reaction 
conditions provided cyclopentene 11b in 93% yield and with good 
enantiopurity. When related experiments were performed with cis-9a 
a new signal was observed by 31P-NMR (at 58.3 ppm in toluene). 
Switching to CDCl3 revealed a 3:7 mixture of the previously 
characterized trans-4a (57.6 ppm) and the new phosphonium 
molecule (58.5 ppm). Incomplete conversion made analysis more 
challenging but from phosphorous decoupled 1H-NMR analysis this 
species has a coupling of 8.5 Hz and was assigned as cis-4a. This 
species, albeit unpurified, was found to also give the cyclopentene 
11b although with decreased enantiopurity. 

Taken together a plausible reaction mechanism commences with 
addition of phosphine C5 to b-iodoacrylate 9a to give enolate 16, 
which following elimination gives trans-4a. This process is 
stereoretentive from the trans-iodide, but yields a cis:trans mixture 
using cis-iodoacrylates. Concurrent deprotonation of the malonate 
gives enolate 13b, which undergoes a-umpolung coupling to 
establish the first new C-C bond and a stereogenic elements that is 
subsequently ablated. Intermediate 17 then undergoes b-umpolung 
cyclization to provide 18 before elimination of the catalyst delivers 
the cyclopentene 11b. Based on deuteration studies, and the facile 
nature of 5-exo-trig cyclizations, we propose that catalyst elimination 
is likely turn-over limiting allowing the observed deuteration via 
phosphonium 18. 
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Figure 5. A) b-coupling is via iodide 9a. B) Annulation of deuterated substrate 
D-10b. C) Monitoring studies. D) Plausible reaction mechanism  

 Enantioselective cycloadditions as catalyzed by phosphines have 
provided valuable new approaches to cyclic structures1 and 
introduced new reactive intermediates to the community. Herein we 
report a new use for vinyl phosphoniums (i.e. 4) allowing an 
enantioselective approach to cyclopentenes. Specifically, this was 
possible by using b-haloenoates (i.e. 9) rather than ynoates (i.e. 5). 
These substrates provide the vinyl phosphonium, while avoiding 
Michael additions. This has enabled the preparation of cyclopentenes 
bearing unusual substitution patterns due to the polarity inverted 
nature of both C-C bond forming events. Beyond providing a new 
enantioselective approach to cyclopentenes these studies pave the 
way for the discovery of other (2 + n) cycloadditions by using 
alternate bifunctional coupling partners 

Keywords: Enantioselective catalysis • Organophosphines • (2 + 3) 
cycloaddition • umpolung • cyclopentenes •   
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