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Abstract: Numerous reactions within metabolic pathways have been reported to occur nonenzymatically, 

supporting the hypothesis that life began from a primitive nonenzymatic precursor to metabolism. However, most 

of those studies reproduce individual transformations or segments of pathways without providing a common set of 

conditions for classes of reactions that span multiple pathways. In this study, we search across pathways for 

common nonenzymatic conditions for a recurring chemical transformation in metabolism: alkene hydration. The 

mild conditions that we identify (Fe oxides such as green rust) apply to all hydration reactions of the rTCA cycle 

and gluconeogenesis, including the hydration of phosphoenolpyruvate (PEP) to 2-phosphoglycerate (2PGA), which 

had not previously been reported under nonenzymatic conditions. Mechanistic insights were obtained by studying 

analogous substrates and through anoxic and radical trapping experiments. Searching for nonenzymatic conditions 

across pathways provides a complementary strategy to triangulate conditions conducive to the nonenzymatic 

emergence of a protometabolism. 
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Main Text: Life is a complex chemical system and identifying the processes leading to its emergence is one of 

the most challenging problems in science. Self-organized complex systems are created when a specific group of 

repeating mechanisms interact with each other. The “metabolism-first hypothesis” is an approach to understanding 

the origin of life1–10 that suggests that the initial stage of life’s development involved a complex network of self-

organized chemical reactions made up of repeating chemical mechanisms that were driven by geological processes 

on the early Earth. Indeed, biological metabolism features a repeating set of chemical mechanisms, consistent with 

this idea. As the number of mechanisms found in the core of metabolism is restrained, and since many other 

downstream functions depend on their continuous operation, the extent to which the core of metabolism might 

change appears to be highly limited. Indeed, comparing modern autotrophic microbial metabolisms with those 

inferred to be operating in the last universal common ancestor (LUCA) indicates very little change to the structure 

and mechanisms of metabolism over roughly 4 billion years.10 For the same reasons, the main chemical mechanisms 

and reactions found in the core of metabolism may bear strong similarities to those in the original prebiotic network.  

Towards the goal of recreating the origin of life in the lab within the metabolism-first framework, our group 

is attempting to infer the environment under which self-organized chemistry began by systematically searching for 

conditions under which the most conserved parts of the anabolic network occur in the absence of enzymes. Over 

the past decade, we and others have reported numerous reactions within metabolic pathways that occur in the 

presence of inorganic promoters.11–26 However, most of these studies reproduce individual transformations or 

reaction segments within a single pathway without providing a common set of conditions for classes of reactions 

that span multiple pathways. Searching across metabolic pathways for conditions that enable a recurring chemical 

mechanism would offer a complementary search strategy that could help pinpoint conditions of broader relevance 

to the origins of metabolism.  

Alkene hydration (and its mechanistic reverse, alcohol dehydration) is a reaction mechanism that occurs 

three times within the rTCA cycle (known as the reverse Krebs cycle),27 an autocatalytic pathway that produces 

life’s universal organic building blocks for biosynthesis28 (Fig. 1A). Within this cycle, fumarate is hydrated to 

malate whereas aconitate undergoes hydration to citrate or to isocitrate. The hydration reactions converting 

fumarate (1b) to malate (3a) and, aconitate (1c) to citrate (4a) and isocitrate (4b) are thermodynamically favorable 

(-3.57, -8.49, and -2.38 kJ/mol, respectively29) and involve an iron-sulfur cluster as a co-factor.30,31 The mechanism 

proceeds through the anti-addition of a water molecule across the double bond of fumarate or aconitate by fumarase 

or aconitase, respectively.32 Alkene hydration also occurs once within gluconeogenesis, the pathway that life uses 

to build the sugar-phosphate backbone that becomes incorporated into nucleic acids. The alkene within the enol 

moiety of phosphoenolpyruvate (PEP, 1a) undergoes hydration to form 2-phosphoglycerate (2PGA, 2a).33 Unlike 

the hydration reactions in the rTCA cycle, the biological hydration of PEP to 2PGA is not thermodynamically 

favorable (+2.8 kJ/mol34) and does not involve a Lewis acid Fe-S cluster; instead, Mg2+ catalysis is used.33,35 
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Figure 1. (A) Hydration reactions in core metabolism and the different reports of this nonenzymatic transformation, notably 

lacking the hydration of PEP to 2PGA. (B) This work, in which a common set of mild aqueous conditions is suitable for the 

hydration of all core metabolites in the figure. 

Some of the metabolic hydration reactions described above have been reported to occur under nonenzymatic 

conditions, albeit under quite different ones, whereas the hydration of PEP to 2PGA has not yet been reported (Fig. 

1A). For example, the hydration of fumarate to malate was found to occur in acidic conditions (pH 1-6) at elevated 

temperatures (125-200 °C) without metal catalysts.15,36,37 The conversion of aconitate to isocitrate was promoted 

by Zn2+ ions in highly acidic conditions (1 M HCl) at elevated temperature (140 °C)15 or in concentrated and acidic 

conditions (0.5 M substrate, pH 5) at 80 °C.38 Similarly, the conversion of aconitate to citrate was shown to proceed 

in highly acidic conditions (1 M HCl) under Cr3+ catalysis at elevated temperatures (140 °C).15 Alternatively, 

aqueous microdroplets generated under high-pressure nebulization were found to hydrate fumarate to malate and 

to hydrate aconitate to a mixture of isocitrate and citrate at the air-water interface,39 which was found to be highly 

acidic.40 However, highly acidic conditions, especially those rich in metal ions, are not compatible with the 

hydration of PEP to 2PGA since PEP readily hydrolyses to pyruvate under those conditions.41–43 Here, we search 

across pathways for common nonenzymatic conditions for alkene hydration and identify mild, unified conditions 

that apply to all hydration reactions of the rTCA cycle and gluconeogenesis (Fig. 1B), including, for the first time, 

the hydration of PEP to 2PGA. Interestingly, the conditions empirically identified through a broad screen are 

environments previously predicted to be of high interest for the origin of metabolism (mildly alkaline aqueous 
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conditions containing Fe oxides such as green rust).3,44 These results help constrain the search for conditions for 

the emergence of a nonenzymatic metabolism-like reaction network. 

Results and Discussion 

Nonenzymatic hydration of PEP to 2PGA 

We began our investigation by screening for conditions that allowed for the nonenzymatic hydration of PEP 

to 2PGA. PEP (1a) hydrolyzes to pyruvate (2c) under acidic conditions (pH 1-7),41 and thus alkaline pH values 

were expected to be more suitable. We screened a series of metals using NaHCO3 to buffer the reaction at pH 8-9 

under air for 24 h at 60 °C (for details see Table S1 and Fig. S10), quenching the reaction by precipitating metals 

with a thiolate/phosphate solution prior to 1H NMR analysis. Of the 15 combinations of metals in various oxidation 

states that were screened, characteristic signals of 2PGA (2a) were observed in trace amounts only when iron metal 

or ferrous iron salts were used (Fig. S12). Notably, Cr3+ or Zn2+, which are known to catalyze nonenzymatic 

hydration reactions under acidic conditions,15,38,45,46 or Fe3+ were ineffective. We next evaluated the influence of 

organic and inorganic ligands on the iron metal (Fe0) or iron (II) chloride (Fe2+) promoted reaction, screening at 

75 °C for 16 h (Fig. 2A-B, for details, see Table S2). Polyphosphates significantly improved the formation of 2a 

(Fig. 2B). Most notably, starting the reaction with Fe0 (1 equiv.) and pyrophosphate (2 equiv.), 2a was formed in 

16% yield, as determined by quantitative 1H NMR (for details, see Table S2). No reaction was observed when 

pyrophosphate was used in the absence of Fe0. When starting the reaction from Fe2+ (1 equiv.) and pyrophosphate 

(2 equiv.), 2a was formed in 8% yield.  Without polyphosphates or in the presence of any other organic or inorganic 

ligands, yields <2% were obtained (Fig. 2B, left) and significant amounts of precipitated iron salts were observed 

at the end of the reaction (Table S2). Phosphate ligands possess a high affinity for iron ions47,48 and polyphosphates 

are known to prevent iron precipitation,49–51 for example by ligating iron ions released from the oxidation of Fe0.49 

We noticed that the conditions that promoted the hydration reaction were very similar to those needed for the 

formation of green rust. In NaHCO3 solutions, green rust can be formed from metallic iron (Fe0) in a deep-green 

homogeneous layer that covers the metallic surface.52 A chloride green rust sample was therefore independently 

prepared from a mixture of Fe2+ and Fe3+ and tested in our standard conditions (under air, 75 °C, 16 h) to verify 

that the reaction could occur in the presence of such naturally abundant minerals. In this case, the formation of 2a 

was detected in up to 10% yield in the presence of pyrophosphate (for details, see Table S8 entry 7-8). Further 

experiments related to green rust are described in the next section. 

For subsequent optimization, conditions starting from Fe0 were employed since these gave the best yields of 

2a. By decreasing the temperature to 60 °C, 40 °C, or 25 °C after a reaction time of 16 h, 2a was observed in 15%, 

11%, and 4% yields, respectively (Fig. 2B, right, for details, see Table S4). By increasing the reaction time to 6 

days, the yield obtained of 2a did not significantly change when the reaction was run at 40 °C and 60 °C but slightly 

increased at 25 °C and 75 °C to 11% and 21% yields, respectively. Subsequent experiments were therefore 

performed at 75 °C. 
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Figure 2. (A) Reference reaction. (B) Additives, time, and temperature screening. (C) Reaction network and the associated 

quantitative evolution of the main species in the reaction (for details, see Table S7). Concentration variations with the 

quantification of the main species, including 1a (blue), 2a (orange), 2b (grey), and 2c (green) in the reaction with unaccounted 

mass balance given in black with the component varied: (D) Fe, (E) NaHCO3 and (F) Na4O7P2. 

To gain further insight into the mass balance and mechanism, a series of identical reactions were quenched at 

different times by precipitating metals using a thiolate/phosphate solution and examined by 1H and 31P NMR (for 

details, see Table S7). Three main products were identified after quenching the reaction: 2a, glycolate (2b), and 

pyruvate (2c) (Fig. 2C). During the first hour of the reaction, mostly 2b is formed (13% yield). After a 1 h induction 

period, 2a starts to form over 16 h, accompanied by a corresponding decrease in the concentration of 1a (50% of 

1a recovered, Fig. 2C). Along with these two main pathways, we identified the formation of a few additional minor 

species like α-ketoglutarate (2d), acetate (2e), and formate (2f) (Fig. 2C, for details, see Table S7). To understand 

the mechanism of formation of these side products, we resubjected 2a, 2b, and 2c to the standard conditions (i.e., 

Fe0 (1 equiv.), Na4P2O7 (2 equiv.), and NaHCO3 (5 equiv.)). Starting from either of these three compounds, only 
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trace amounts of 2e and 2f were detected (Fig. S17-19). When the reaction was started from 2b, it was found to 

partially oxidize to glyoxylate (Fig. 2C, see also Fig. S18). 2d was recently reported to form through a reductive 

aldol condensation between 2c and glyoxylate.15,53,54 Therefore, the formation of 2d is explained by the in situ 

formation of glyoxylate and 2c from 2b and 1a, respectively (Fig. S20). 

We next investigated how the different reaction parameters could influence the formation of the main products 

(Fig. 2D-F, for details, see Table S5). The quantification of the main species, including 1a (blue), 2a (orange), 2b 

(grey), and 2c (green), is represented in Fig. 2D-F, with unaccounted mass balance given in black. When the 

concentration of Fe0 was doubled from 1 to 2 equiv., the yield of 2a increased from 16% to 25% but without a 

further notable improvement when 5 equiv. of Fe0 was used (Fig. 2D). Notably, increasing the equiv. of Fe0 

increased the yield of 2a but not of 2b or 2c. However, when the amount of Fe0 was decreased to 0.5 equiv., the 

yield of 2a was also decreased to 10%. The formation of 2a appears linked to the equiv. of Fe0, whereas 2b and 2c 

are not. Increasing the concentration of NaHCO3 did not significantly affect the reaction whereas decreasing the 

amount of NaHCO3 from 5 to 2 to 0 equiv. considerably increased the yields of side products 2c (increasing from 

3-4% to 16%) and 2b (increasing from 12% to 25%) while decreasing the yield of 2a (decreasing from 16% down 

to 8%) (Fig. 2E). We evaluated the importance of the Na4O7P2 concentration (Fig. 2F). As previously mentioned, 

by removing Na4O7P2 from the reaction conditions, the yield of 2a was decreased to trace amounts as well as lower 

yields of 2b. However, decreasing the equivalents of Na4O7P2 from 2 to 1 or increasing from 2 to 5 had little 

influence on the outcome. We note that in Figs. 2D-F, the missing mass balance (10-37%) is accounted for by the 

other side products in Fig. 2C and by the unavoidable loss of metabolites within precipitates or on surfaces (for 

details, see Table S7). 

Next, the influence of the pH in buffer solutions was investigated. The reaction is pH dependent, requiring a 

pH ≥ 6; otherwise, the hydrolysis pathway is favored (60% yield of 2c, Table S6). Finally, the concentration of 1a 

was decreased from 48 mM to 10 mM without changing the concentration of the other parameters of the reaction 

(i.e., Fe0 (48 mM), NaHCO3 (240 mM) and Na4O7P2 (96 mM)). In that case, 2a was formed in 21% yield while 2b 

and 2c were observed in 27% and 3% yields, respectively (Table S5 entry 11). 

Investigation of the promoter of the reaction 

The observations that 1) 2b is immediately formed in the reaction, 2) 2a only begins to be formed after an 

induction period of 1 h, and 3) 2a and 2b are not derived from each other suggests that their formation from 1a 

follows two independent mechanisms. As all reactions were thus far carried out under air, we wondered whether 

O2 reduction might be involved in the formation of one of both products. Indeed, in the presence of iron species, 

O2 can be reduced to H2O2 forming iron oxides in solution which can further form hydroxyl radicals via the Fenton 

reaction.55–58 Since the formation of 2b was previously reported from the degradation of 1a under a variety of 

oxidative conditions,59 we first tried mixing 1a with H2O2 (1 equiv.) in the absence of metal under our standard 

conditions and indeed observed the formation of 2b but not 2a (Fig. 3, see also Fig. S21). Given reports of 

epoxidation of alkenes by H2O2 in NaHCO3 solution,60 we propose that epoxidation of 1a is followed by hydrolysis 

of the epoxide61 and subsequent elimination of phosphate to form hydroxypyruvate, which undergoes oxidative 
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decarboxylation to give 2b (Fig. S22B). To verify this hypothesis, hydroxypyruvate was subjected to the oxidative 

reaction conditions and the standard conditions using Fe0. In both cases, 2b was formed after 2 h at 75 °C (Fig. 3, 

for details, see Fig. S22A). Product 2b therefore appears to be a direct result of O2 reduction under the reaction 

conditions. 

 

Figure 3. Investigation of the formation of glycolate (2b). Two control experiments were performed in which 2b is formed. 

To get more insights and define key parameters regarding the formation of 2a, additional experiments were 

performed. In the lab, green rust can be produced from the oxidation of metallic iron, by the oxidation of Fe(II) 

species, or by mixing Fe(II) and Fe(III) salts. Carbonate green rust oxidizes into α-FeO(OH) (goethite) or 

transforms into Fe3O4 (magnetite) when left in solution.62,63 We tested the influence of α-FeO(OH) or Fe3O4 on the 

reaction but did not observe the formation of 2a in either case (Table S8, entries 9-10). Starting the reaction with 

Fe3+ was ineffective, whereas the addition of a reducing agent such as Zn0 in the same mixture promoted the 

formation of 2a in 5% yield (Table S8, entry 2), highlighting the need for iron oxides of mixed oxidation state 

generated under air. 

To investigate whether O2 is involved in the formation of the active promoter, the reaction was carried out 

starting from Fe0, from Fe2+, or from preformed green rust in an anaerobic environment (Fig. 4A, see Table S9). In 

the case of Fe0 or Fe2+, the experiments only produced 2a and 2b in trace amounts while no product was observed 

in the case of green rust. To investigate whether radical species (e.g., derived from the Fenton reaction) are involved 

in the formation of 2a, we performed the reaction under air in the presence of the radical scavenger 2,2,6,6-

tetramethylpiperidinyloxy (TEMPO, 1 equiv.). In this case, only trace amounts of 2a was detected while 2b was 

still formed in 8% yield (Fig. 4B, see Table S10). This experiment suggests that an open-shell species is involved 

in the formation of 2a. Considering that 2b forms immediately in the presence of H2O2 even without Fe whereas 

2a forms only in the presence of Fe after a 1 h induction period, the formation of 2a likely depends not only on the 

presence of a radical (possibly hydroxyl radical), but also on the slow formation of a reactive iron species. 
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Figure 4. (A) Investigating the formation of the active promoter of the reaction under an inert nitrogen atmosphere. (B) Radical 

trapping experiments using TEMPO. Quantification of the products by 1H qNMR (for details, see Table S10). 

Hydration of other metabolites 

The hydration conditions were applied to other common metabolites found in core metabolism (Fig. 5). Unlike 

1a, most of the other hydration reactions in core metabolism do not act on a terminal alkene. Fumarate (1b), a 

symmetric alkene, underwent hydration to malate (3a) in 20% and 19% yields after 16 h at 40 °C or 75 °C, 

respectively (Table S11). Next, we studied the hydration of aconitate (1c), whose alkene is not symmetric and thus 

presents two potential sites of hydration. By quenching a series of identical reactions at different times, we observed 

the formation of citrate (4a) by 1H NMR along with a mixture of diastereoisomers of isocitrate (4b), the three 

potential hydration products of 1c, again forming only after a 1 h induction period (Fig. S26). After a reaction time 

of 16 h at 40 °C, 22% of hydrated products were obtained with 4b as the major product (19%, mixture of 

diastereoisomers, Table S12) and 4a as the minor product (3% yield). The hydrated products 3a, 4a and 4b could 

also be observed at 25 °C, but lower yields were obtained in that case (Table S11-S12). From the hydration of 1c, 

side products 2c (3% yield, Table S12, entry 3) and 2e were also observed, which could be formed through the 

retro-aldol reaction of 4a to 2e and oxaloacetate, which decarboxylates to 2c (Fig. 6). Indeed, when 4a was 

subjected to our standard conditions, 2c and 2e were detected, whereas this was not the case when starting from 4b 

(Table S13, see also Fig. S28A-B). To support the intermediacy of oxaloacetate in this process, we set out to trap 

it using Zn0 by reducing it to malate (3a) prior to decarboxylation to 2c. When 4a was subjected to standard 

conditions at 40 °C in the presence of 5 equiv. of Zn0, 3a was observed in 1% yield in addition to 2c, and 2e (Table 

S13, see also Fig. S28C). This result is notable as it shows that these conditions are compatible not only with all 

the hydration reactions in the rTCA cycle and gluconeogenesis but also with the retro-aldol reaction in the rTCA 

cycle, a nonenzymatic reaction that had been previously observed only in aqueous microdroplets generated under 

high pressure.39  
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Figure 5. Scope of the reaction. Quantification of the product by 1H qNMR (for details, see Table S11-S16). 

The regioselectivity of hydration was investigated. Itaconate (1d), which features a terminal alkene, and 

mesaconate (1e), were used as model substrates in our standard conditions (Fig. 5). In the hydration of 1d, like that 

of 1a, we observed an exclusive oxa-Michael hydration with formation of 5a in 20% yield (for details, see Table 

S14). Moreover, we identified the formation of a dihydroxylation side product (5b, Fig. S29) in 15% yield (after 

16 h at 40 °C), which might, like 2b, have been formed from epoxidation followed by hydrative ring-opening. 

Subjecting 1e to our standard conditions gave a mixture of hydration regioisomers 6a and 6b in 14% combined 

yield in a 9:5 ratio, favoring hydration at the least substituted site (for details, see Table S15 and Fig. S30). The 

influence of the position of the carboxylate group relative to the alkene was evaluated. Attempts to hydrate diacid 

1f were unsuccessful, emphasizing the importance of conjugation between alkene and carboxylate (Fig. 5, for 

details, see Table S16). 
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Figure 6. Hydration of aconitate and retro-aldol of citrate under a common set of conditions. The products were quantified by 
1H qNMR (for details, see Table S13). Oxaloacetate is not stable under the standard conditions but can be trapped using Zn0 

as a reducing agent (blue arrow), in which case malate 3a was observed when starting from citrate 4a. 

Finally, we tested the ability of the various hydration reactions to occur in the same environment, and their 

potential competition (Fig. 7). When a mixture of 1a, 1b, and 1c at similar concentrations was subjected to our 

standard conditions (48 mM, 1 equiv. of Fe0), we observed the formation of 2a-2e, 3a and 4a-4b by 1H NMR (Fig. 

S32). The hydrated products were obtained in 5% yield each for 2a, 3a, and 4b while 4a was formed in 1% yield 

for a total of 16% yield of hydrated products (Table S17, entry 1). Moreover, when we increased the equivalents 

of Fe0 from 1 to 3, the ratio between the different hydrated products did not change significantly. In this case, 2a, 

3a, and 4a were formed in 8%, 11%, and 9% yields while 4b was formed in 2% yield; 30% overall yield (Table 

S17, entry 2). These experiments demonstrate the existence of a continuous (in the sense of happening at the same 

time in a one-pot manner64) reaction network involving several different classes of transformations, including 

hydration (formation of 2a; 3a, 4a, and 4b), dehydration (formoyl formate to fumaroyl formate), aldol (glyoxylate 

and 2c to formoyl formate) and retro-aldol (4a to oxaloacetate and 2e), oxidation (2b to glyoxylate) and reduction 

(fumaroyl formate to 2d and oxaloacetate to 3a), hydrolysis (1a to 2c), and decarboxylation (2c to 2e). 
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Figure 7. The non-enzymatic reaction network is generated from the hydration of key metabolites (i.e., PEP, aconitate, and 

fumarate). 1a; 1b, and 1c were added simultaneously in a one-pot manner and products 2a-2e, 3a and 4a-4b were detected by 
1H qNMR (for details, see Table S17). Products in dashed grey boxes were not detected directly by 1H NMR within the reaction 

network but observed via control experiments (for details, see Fig. S18, S20 and S28C).  

Prebiotic relevance of this study 

Our study shows that all hydration reactions found in the rTCA cycle and gluconeogenesis can occur under a 

common set of mild nonenzymatic conditions (25-75 °C in aqueous bicarbonate solution). The reaction works 

under oxidative conditions in the presence of  a reduced iron source (either Fe0, Fe2+, or green rust) and 

pyrophosphate, components that can be found on early Earth. 

Although the steady state concentration of O2 in the prebiotic atmosphere is thought to have been very low, 

several studies now show that O2 was locally produced continuously on the Archean earth by mechanochemical 

water splitting due to turbulent water flow over minerals,65,66 or due to radiolysis of water by ionizing radiation of 

40K isotopes.67 All of these studies also report the formation of reactive oxygen species (ROS) such as H2O2 and 

hydroxyl radicals, prior to the formation of O2. Among the various ways to form ROS, for instance by photolysis 
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of atmospheric water vapor68,69 or by harnessing the properties of the water-air interface of aqueous 

microdroplet,70,71 the ones reported at mineral-water interfaces are of particular interest. Indeed, several studies 

demonstrated that ROS could be formed on natural abundant sulfide minerals72 such as pyrite,73–76 which is 

proposed as a mineral of prime interest for the origin of life.3,77–79 Interestingly, these studies showed the formation 

of ROS in anaerobic environment using abundant minerals containing iron73–76 and silicates65,66 naturally found in 

hydrothermal vents.3,80–82 Such environments present basic pH82 and a temperature range of 25 to 125 °C,81,83 both 

compatible with the conditions reported in this study for alkene hydration. 

Another key element of the reported conditions is pyrophosphate. Polyphosphates such as pyrophosphate are 

thought to have been produced by geochemical processes on the early Earth.84–87 Interestingly, it was reported that 

pyrophosphate could be formed through the oxidation of reduced phosphorous (HPO3
2- or H2PO2

-) in the presence 

of H2O2.
84 In this study, pyrophosphate was used as a chelating agent for iron species, also under oxidative 

conditions, potentially preventing the formation of iron precipitates in solution,49  and allowing the nonenzymatic 

hydration of core metabolites. 

Lastly, the key promoter of the reaction is an iron-based species. Iron is of particular interest because it is one 

of the most abundant metals on Earth,88 plays fundamental roles in biology,30 and has been shown to be among the 

most efficient in promoting nonenzymatic metabolic reactions.11,15,16,20,89–95 Notably, iron can be naturally found in 

the form of green rust, a mixture of Fe(II)/Fe(III) hydroxy salts. In this study, green rust was found to be a suitable 

source of iron for the reaction. Of particular interest is that the reported conditions are closely related to those that 

form carbonate green rust, which is thought to have covered the surface of the primitive ocean,44 and has been 

proposed as an “organizing seed” for the emergence of life.44,96 

Conclusion 

We report mild nonenzymatic conditions (25-75 °C in aqueous bicarbonate solution) for all hydration reactions 

in the rTCA cycle, gluconeogenesis, and on metabolites from other pathways. Notably, the nonenzymatic hydration 

of PEP to 2PGA was reported for the first time. The conditions also enable a nonenzymatic version of the retro-

aldol reaction of citrate found in the rTCA cycle, which was so far only reported in aqueous microdroplets. The 

conditions rely on a combination of a reduced iron source (either Fe0, Fe2+, or green rust), pyrophosphate, 

bicarbonate, and oxygen. 

Preliminary mechanistic insights indicate that the reaction depends on at least one open-shell species and the 

slow formation of an active iron species. The hydration occurs exclusively on α,β-unsaturated carboxylate groups, 

and does so with a mild preference for the formation of the C-O bond at the least substituted carbon. The hydration 

reactions of the rTCA cycle and gluconeogenesis were found to all occur simultaneously with dehydration, 

(retro)aldol, oxidation/reduction, hydrolysis, and decarboxylation in the same pot under a common set of mild 

nonenzymatic conditions.  

The present results are part of a larger effort to triangulate the conditions under which chemistry might self-

organize into a complex chemical reaction network (i.e. a protometabolism). In contrast to previous efforts to search 
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for conditions relevant to reactions within a single metabolic pathway, here we took a complementary approach by 

screening for nonenzymatic conditions for reaction classes that transcend pathways. Future efforts to investigate 

by reaction class, rather than pathway, should continue to narrow the search. 
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