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Abstract. This work proposes a multi-objective optimization
(MOO) approach for reverse engineering of vinyl acetate polymer-
ization processes. Our method leverages machine learning (ML)
models trained on data from kinetic Monte Carlo (kMC) simulations
to replace expensive laboratory experiments. We employ a genetic
algorithm (GA) as the MOO optimizer, considering reaction time,
monomer conversion, and molar mass distribution (MMD) similarity
as objectives. The trained ML models assist the optimization process
and predict key polymer properties for candidate recipes generated
by the GA, enabling rapid fitness function evaluation.

The proposed framework involves: (1) training ML models for
monomer concentration and MMD prediction using kMC simula-
tion data; (2) performing GA-based MOO to identify optimal recipes
(Pareto front) for a target MMD (3) selecting the most suitable recipe
based on user priorities from the resulting Pareto front, considering
user-defined weights for each objective (reaction time, conversion,
MMD).

Our experiments demonstrate that the GA, coupled with
simulation-supported ML, efficiently identifies optimal recipes with
high accuracy. Notably, the ML models achieve good performance
even with limited training data. This approach offers a rapid and
cost-effective solution for reverse engineering of vinyl acetate poly-
merization processes.

1 Introduction
Polymerization processes play a crucial role in material science,
but their intricate mechanisms and the resulting statistical variations
within polymers pose significant challenges for design and predic-
tion. These variations significantly impact the final product’s proper-
ties, making customized polymer development a resource-intensive
endeavor.

Traditional laboratory testing, while valuable, can be time-
consuming and expensive. Thankfully, computational modeling of-
fers powerful alternative techniques like kinetic Monte-Carlo (kMC)
simulations [10], differential equations [28], and machine learning
(ML) models [14] have emerged as valuable tools for modeling poly-
mer behavior.
∗ Corresponding Author. Email: jelena.fiosina@tu-clausthal.de
∗∗ Corresponding Author. Email: sabine.beuermann@tu-clausthal.de

The ability to predict polymer characteristics opens doors to
tackling complex problems like polymerization reverse engineering
(PRE) (Figure 1).
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Figure 1. Polymerization reverse engineering

PRE aims to identify a polymerization process that yields a poly-
mer with desired properties. Traditionally, the "trial and error" ap-
proach is impractical due to the sheer number of potential processes.
kMC simulations, while valuable, cannot perform simulations back-
ward and require extensive experimentation.

This work proposes a novel approach that formulates PRE as
a ML-assisted multi-objective optimization (MOO) problem [15].
We couple MOO with data-driven machine learning (ML) methods
trained on a limited amount of data from kMC simulations to accel-
erate the optimization process.

ML methods have gained widespread popularity in recent years,
demonstrating effectiveness across diverse domains [34]. However,
applying ML to polymerization processes has been limited due to
the typically small data sets available compared to other fields with
readily available large data sets. To address this challenge, we lever-
age powerful ML techniques like random forest and kernel density
regression, particularly well-suited for tasks with limited data [13];
[14]; [23].

MOO [33] is a powerful optimization technique for maximizing
or minimizing multiple objectives simultaneously while considering
constraints. It has applications in various scientific fields, including
engineering [19], economics [9], and logistics [20], where optimal
decision-making requires balancing trade-offs between conflicting
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objectives. Among various optimization methods, we employ a ge-
netic algorithm (GA) for its effectiveness in both single-objective and
MOO problems [22].

In this study, we leverage MOO to solve the PRE problem. Our
objective is to find a "recipe" (polymerization process) that produces
a polymer with a target molar mass distribution (MMD). We consider
three optimization objectives: maximizing the similarity between the
predicted MMD and the target MMD, minimizing reaction time, and
maximizing monomer and initiator conversion.

Our proposed approach, combining ML and MOO, offers several
advantages. First, it provides multiple potential polymerization pro-
cedures to achieve the desired polymer properties. Second, ML mod-
els trained on a limited amount of kMC simulation data enable effi-
cient prediction and optimization.

The proposed framework consists of three key steps:
Train ML models for predicting monomer concentration and

MMD using kMC simulation data [14]. Perform GA-based MOO to
identify optimal recipes (Pareto front) for a target MMD. Select the
most suitable recipe from the Pareto front based on user priorities and
user-defined weights for each objective (reaction time, conversion,
MMD). We demonstrate the effectiveness of our method through its
application to the vinyl acetate (VAc) polymerization system.

2 Related work

Early in the new millennium, a few supervised learning data-driven
techniques to polymerization process modeling (PPM) begin to
emerge [6]; [11]; [39].

Subsequently, an ML model based on deep learning and an offline
kMC simulator was developed by Mohammadi et al [30]. It was pro-
posed to obtain more training data combining kMC simulation with
ML models. Other more accurate predictions for PPM were obtained
with deep learning models in [26]. Ensemble-learning methods (in-
cluding random forest and XGBoost) were evaluated for prediction
of polymer and process properties such as conversion and MMD [7];
[8]; [17]; [26]; [38], [40].

In [15] we used ML methods to train models with data from the
kMC simulator. However, here the ML approach is universal, which
allows to model the polymerization processes not only based on the
simulated results, but also on laboratory experiments. We success-
fully predicted polymer and process properties such as monomer
concentration, molar mass averages, reaction time, MMD, using ML
decision tree ensemble methods such as random forest, XGBoost,
and CatBoost. These results can be successfully used in this study
for the PRE problem.

One of the major challenges in constructing PRE models is the
existence of multiple valid solutions for a given set of desired out-
puts. Unlike traditional models with a one-to-one link between poly-
merization variables and microstructural properties, PRE models can
yield various possibilities due to the dependence of polymer and pro-
cess properties on the specific reaction pathway taken, even with
the same input variables [30]. Traditional PPMs excel at predicting
properties from input variables. However, identifying the ideal input
conditions to achieve specific pre-defined outputs (e.g., conversion,
yield) is more complex and requires optimization techniques. For
systems with intricate reaction mechanisms, intelligently exploring
the vast search space of possible reaction conditions becomes crucial
[29]. Evolutionary algorithms like GAs have proven successful for
optimization in various domains [1], [30]. Machine Learning (ML)
based optimization techniques have also been explored for PRE mod-
els [16].

Our approach ensures continuous improvement by employing ML
models for real-time result evaluation during optimization. This of-
fers a significant speed advantage compared to traditional methods
that rely on computationally expensive Kinetic Monte Carlo (kMC)
simulations. Additionally, our ML-based approach has the potential
to handle more complex output structures. While Mohammadi et al.
[30] proposed a GA-based optimizer that generates random recipes
and feeds them to a kMC simulator, our approach leverages the speed
and flexibility of ML for faster and potentially more adaptable opti-
mization in PRE.

We already used a random forest ML method formulated as a mul-
tivariate and multi-target regression problem [37] for PRE [14]. The
model took a targeted MMD and produced multiple responses as
parts of the required procedure, giving the initial conditions to pro-
duce the polymer with the targeted properties. The optimization fo-
cused solely on minimizing variations in polymerization procedure
parameters.

MOO has become increasingly popular in chemical engineering.
Fiandaca and Fraga [18] employed multi-objective GAs to optimize a
pressure swing adsorption process, maximizing both nitrogen recov-
ery and purity. This demonstrates MOO’s ability to handle problems
with conflicting objectives. Similarly, Ganesan et al. [16] used MOO
for the combined reforming and partial-oxidation of methane, op-
timizing methane conversion, carbon monoxide selectivity, and the
hydrogen-to-carbon monoxide ratio. MOO’s applications extend to
diverse areas like chemical extraction [2] and bioethanol production
[32]. Even in advanced material design, Kim et al. [24] applied GA-
based MOO to create polymers with both high bandgap and high
glass transition temperature. These examples showcase the growing
importance and versatility of MOO in chemical engineering.

In our previous paper, we solved PRE problem for the VAc poly-
merization system, using a kMC simulated search space [15]. PRE
was formulated as a MOO problem and we compared direct and
MMD clustering based optimization approaches for finding the most
relevant recipes for a target MMD. The importance of each objective
was estimated using weights and the problem was translated to single
objective optimization. Our approach allowed to find multiple recipe
candidates with given targeted properties and objective weights.

3 Proposed approach
This section details our proposed approach for solving the PRE prob-
lem: an MOO framework that leverages both ML and GAs.

The approach takes two key inputs:

• Target MMD defines the desired properties of the final polymer.
• Data set for training ML models is generated by a kMC simulator

and used in the optimization process.

Then, the MOO framework processes these inputs and gener-
ates the desired output as multiple optimal candidate recipes. These
recipes represent potential polymerization processes that can achieve
the target MMD in the most efficient way possible. "Efficiency" in
this context can be considered as a combination of factors depend-
ing on user priorities, such as minimizing reaction time, maximizing
monomer conversion, or achieving the closest possible match to the
target MMD.

3.1 PRE problem formulation as MOO

This subsection details the formulation of the MOO problem for
PRE, based on the work presented in [15]. Here, we aim to identify a
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polymerization recipe that optimizes multiple objectives simultane-
ously.

The recipe for the polymerization process is defined as a vector
of polymerization variables r = [cm,0, cini,0, t], where cm,0 is the
initial concentration of monomer, cini,0 is the initial concentration of
initiator, and t is reaction time.

The lower and upper bounds for each variable are established
based on the data obtained from the kMC simulations. For this study,
in contrast to [15], the simulated values of cm(r) and MMD(r)
were predicted with the corresponding ML models [14].

The MOO framework considers three primary objectives:

1. Minimizing mean squared error (MSE): This objective aims to
achieve the closest possible match between the predicted and tar-
get MMD. The ML models trained on the kMC simulation data
are used for this prediction (as described in [14]):

min
r

fMSE(r) = min
r

MSE(MMDtarget,MMD(r)), (1)

where MMD(r) is predicted by the corresponding ML model;
2. minimizing relative monomer concentration: This objective prior-

itizes minimizing the concentration of monomer:

min
r

fcm(r) = min
r

cm(r)

cm,0
, (2)

where cm(r) is predicted with the corresponding ML model. Al-
ternatively, the monomer conversion function can be expressed as
fconv(r) = 1− fcm(r) and then maximized.

3. minimizing reaction time: This objective focuses on achieving the
desired polymer properties in the shortest possible reaction time:

min
r

ft(r) = min
r

t, (3)

where t is directly obtained from r.

It is important to note that the number of objectives can be ex-
tended to incorporate additional user-defined priorities.

To facilitate the optimization process, we utilize the weighted
sum method [27]; [25] to convert the final Pareto front of the MOO
problem into a single-objective result. This method assigns specific
weights (wi) to each normalized objective function (fi). The MOO
function is represented as a single-objective one:

min
r

f = min
r

∑
i

wifi(r), (4)

∑
i

wi = 1, i ∈ {MSE, cm, t}.

Function f is calculated for each candidate recipe. The recipe with
the smallest value of function f is then selected as the optimal solu-
tion based on the user-defined weights assigned to each objective.

3.2 Coupling MOO and ML

Figures 2 illustrates the key steps of our proposed algorithm and Fig-
ure 3 the interaction between ML models and genetic algorithms.

1. ML model training: We begin by constructing and training ML
models using data generated by the kMC simulator. These mod-
els enable the prediction of crucial polymerization properties like
MMD and monomer concentration, essential for the subsequent
optimization stage.
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Figure 2. ML assisted GA-based MOO approach for reverse engineering
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2. Optimization process: First, the user defines a target MMD repre-
senting the desired polymer properties. Then, the algorithm seeks
to identify the optimal recipe that achieves this target. This op-
timization is an iterative process. During each iteration each ob-
jective is calculated for candidate recipes generated by an GA ac-
cording equations (1-3). The GA dynamically communicated with
the ML models, allowing for the prediction of polymer properties
(MMD and monomer concentration) for each candidate recipe.
By calculating these objectives (considered as "fitness functions"
in the context of the GA), we establish a Pareto optimal search
space for the MOO process. This front represents a set of optimal
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solutions that offer trade-offs between the defined objectives.The
GA iterates through a series of steps, progressively refining the
candidate recipes. At the next step, the GAs methods reproduc-
tion/crossover, and mutation mechanisms are utilized, which re-
sults in the new population of recipes.

3. Identifying optimal recipes: Once the optimal solutions remain
stable (no further improvement), the algorithm provides the user
with a set of optimal candidate recipes based on user-defined ob-
jective weights according to equation 4.

3.3 Data acquisition

Here we describe the process of generating and preparing the data
used to train the ML models. An in-house developed kMC simulator,
mcPolymer, was utilized to generate the training data. This simula-
tor employs a comprehensive kinetic model for vinyl acetate radical
polymerization, encompassing all essential elemental reactions [12].
A grid search approach was employed to explore a meaningful range
of chemical reaction conditions, including vinyl acetate and initiator
concentration.

The simulated data serves as the foundation for training the ML
models used within our optimization framework. These models pre-
dict crucial polymer properties like MMD and monomer concentra-
tion for candidate recipes generated by the genetic algorithm during
the optimization stage.

3.4 ML models

This section discusses the selection and optimization of ML mod-
els used for property prediction within our framework. We build
upon the initial exploration presented in [14], where various meth-
ods were compared for predicting diverse polymer and process prop-
erties. Our framework utilizes two primary ML models for prediction
both monomer concentration and MMD:

1. Random forest (RF) regression [3]: This model offers a
good balance between performance and computational efficiency.
While other ensemble methods like XGBoost and CatBoost exhib-
ited similar performance, the random forest’s faster training time
made it the preferred choice for our application. RF regression
supports multiple outputs, required for the multi-target regression
used for MMD prediction.

2. Kernel density (KD) regression [21]: This non-parametric
method demonstrated superior performance compared to tree-
based ensemble methods, particularly for data points outside the
training grid. KD regression is known for its versatility across var-
ious tasks and domains [13]. Although its training can be time-
consuming, especially for multivariate data sets, the relatively
small size of our data sets (3 features and 225 experiments) made
it computationally feasible in this case. KD regression does not
support multiple outputs, thus an ensemble of single-target KD
regressions was applied.

The proposed ML approach had the following challenges:

• selection of optimal parameters for KD regression: Due to the
high dimensionality of the MMD output (100 intervals), standard
cross-validation techniques were not applicable for finding opti-
mal bandwidth parameters for the KD regression model. To ad-
dress this, we employed Scott’s rule [36] to obtain approximate
values.

• generalization through time integration: Compared to the mod-
els discussed in [14], we introduce a key modification to en-
hance generalization. Time is included as an input variable for
the monomer concentration prediction model. This eliminates the
need for multi-target regression for prediction of monomer con-
version and allows for flexibility in predicting values across a
broader range of input parameters, including time.

The proposed approach provides the following benefits for the appli-
cation of ML to generate the search space:

• reduced gap size: Leveraging ML predictions the search space is
refined by filling the gaps between kMC simulation data points,
which leads to a more precise optimization solution.

• computational efficiency: ML model predictions are significantly
faster (seconds) compared to kMC simulations, which can require
hours of computation. This efficiency is a key advantage for the
overall optimization process.

4 Experimental results
4.1 Generation of training data and experimental

design of ML models

The kMC simulations investigated radical polymerizations of vinyl
acetate (VAc) as monomer, tert-butyl peroxypivalate as initiator, and
methanol as solvent. A comprehensive kinetic model for VAc radi-
cal polymerization, encompassing all elemental reactions, was used
for the simulations. This validated model has been shown to accu-
rately describe a large set of experimental data [12]. The simulations
were conducted under the following conditions: constant tempera-
ture of 60 °C, cini,0 ranging from 1.0 to 20.0 mmol·L−1, and cm,0

ranging from 2.0 to 5.0 mol·L−1. A total of 200 simulations were
performed using uniformly and randomly chosen parameters within
these concentration ranges. This random selection strategy, along
with a planned random selection of test data, ensures a well-balanced
distribution for training and testing data sets.

The simulations captured property data every 20 minutes for 6
hours, resulting in a comprehensive data set (3600 data points) that
covers various reaction conditions. Thus, the data set contained 3600
different MMDs, which were selected in a way that the relevant tech-
nical reaction conditions are sufficiently covered. The number of data
is reasonable in view of the simulation time. The simulations took 9 h
with 128 CPU cores (2 AMD EPYC 7H12) and 2 TB of RAM. More-
over, this number of 3600 MMDs allowed for the construction of ML
models for reverse engineering and MMD prediction with good per-
formance [14]. The data set is available as Supplementary Material.

This data was used to train ML models for polymer reaction engi-
neering. The data was first split into training (80%) and testing (20%)
sets. R-squared metric and cross-validation were used to evaluate the
performance of the trained models. Grid search was employed to op-
timize the models’ hyperparameters.

Two types of ML models were used: RF for predicting both
monomer concentration cm and MMD, and KD regression models
for both cm and MMD prediction. For the RF model of cm, the num-
ber of trees in the forest is equal to 100 and the maximum depth of
the tree is equal to 30. For the RF model of the MMD, the values are
50 and 20, respectively.

The values for the bandwidth or smoothing parameters for multi-
variable KD regression are selected for each variable and for both
cm and MMD models equal to [0.195, 0.0012, 1310.56] for cm,0 in
mmol·L−1, cini,0 in mol·L−1 and time t in seconds, respectively.
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Smoothing parameters scale the width of the kernel. This means
placing a smooth function at the location of each data point and then
summing up the results. We use Gaussian kernels, and the initial val-
ues for smoothing parameters are selected according to the Scott’s
rule [35].

We considered the explainability of the ML methods. For RF
we applied a model-specific built-in feature explainability method,
which is based on ”mean decrease in impurity” [4]. For KD regres-
sion, as it is a black-box ML method, there is no build-in explainabil-
ity functions, and therefore, a model-agnostic explainability method
“permutation importance” [31] was applied. The method was se-
lected, because of its simplicity and previous experience [14], where
the model explainability results were similar compared to “Shapley
values” [5], another popular explainability method.

4.2 Prediction of monomer concentration and MMD

The analysis focused on three key questions for each property pre-
diction using machine learning models:

• Best Model Selection: Which ML model provides the most ac-
curate predictions for a specific property?

• Impact of Training Data: How does the model’s accuracy de-
crease as the training data size shrinks? How much data is needed
for reliable predictions?

• Explainability and Chemistry: How do polymerization parame-
ters influence the model’s predictions? Are the explanations from
the chosen methods chemically sound?

Figure 4 shows the predictions for the variation of cm with time
(A-C) and MMD (D-E) obtained with the RF and KD ML models.
Figure 4A,D illustrate a typical prediction for one specific experi-
ment. The simulated (ground truth) black line trajectory is compared
with predicted trajectories of the ML models. For this particular ex-
ample, the models provide good predictions for both properties. KD
regression performs best with an almost perfect overlap of the pre-
dicted and the kMC simulation-derived cm and MMD. This finding
is also generalized for the full test set by the performance metric R2,
whose results are shown in Figure 4B,E. Thus, for the 100 % train-
ing set and cm, both KD and RF regression are associated with the
best R2 score of 0.995. However, for the MMD prediction and for
100 % training set size, KD regression outperforms the RF model,
which is demonstrated with R2 values of 0.996 and 0.964, respec-
tively. The average performance of each model with different sizes
of the training set is evaluated. As expected, the performance reduces
with decreasing size of the training set as shown in Figure 4B,E. Re-
markably, even with only 10 % of the training data the KD model is
associated with a value of R2 = 0.965 for cm prediction and of R2

= 0.954 for MMD prediction. Thus, the number of training data can
be significantly reduced and ML models can be trained with only 10
% of training data as an optimal trade-off between the performance
and scalability. Investigations into the explainability of the consid-
ered models are given in Figure 4C,F. It is seen that for cm prediction,
time t is the most decisive input parameter, accounting for around 80
% of the result. The importance of cini is lower with a contribution of
around 16 % followed by cm,0 with a contribution of around 4 %. In
contrast to this, for MMD prediction, cm,0 is the most decisive input
parameter for each model, accounting for around 74 % and 42 % of
the RF and KD result, respectively. The importance of time is lower
with a contribution of around 23 % and 37 % for RF and KD regres-
sion, respectively followed by cini,0 with a contribution of around 3
% and 20 % for RF and KD models, respectively. The explainability

results for MMD differs for RF and KD models, however the order of
the feature importance remains the same. The differing importances
for the prediction of cm and MMDs is chemically reasonable: The
monomer concentration decreases throughout the reaction with time,
thus time is the most decisive factor. On the contrary, the MMD is
strongly dependent on cm,0 and does not change to large degree with
time during radical polymerizations.
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Figure 4. RF and KD prediction models for cm (A-C) and MMD (D-E):
example predictions for cm (A) and MMD (D), where cm,0=3.832 mol

·L−1; cini,0=1.824 mmol·L−1; model performance for a reduced training
set sizes for cm (B) and MMD (E), where original data set size: 200

(simulations)· 18(time points)=3600; feature importance of the RF model for
cm(C) and for MMD (F)

4.3 Optimization

We employed ML models constructed in Section 4.2 within a Genetic
Algorithm Multi-Objective Optimization (GA MOO) framework to
identify candidate recipes for achieving a target MMD. The perfor-
mance of our GA MOO approach was compared to a direct optimiza-
tion approach, utilizing only simulated data as in [15].

A grid search was conducted to identify optimal hyperparameters
for the GA, including population size, number of generations, as well
as crossover and mutation rates (Table 2). Convergence analysis (Fig-
ure 5A) indicated that 15 generations were sufficient training time
with our chosen hyperparameters, as evidenced by the stabilization
of the number of Pareto points.
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Three distinct optimization focuses were explored, reflected by
varying weights assigned to the objective functions (Equation 4, Ta-
ble 1). A high weight (90 %) was maintained for MSE in case of con-
version and time focuses due to the inherent importance of achieving
the target MMD shape. Figures 5B-D illustrate the consistent im-
provement/decreasing of scores for each focus with increasing gen-
erations within the GA MOO approach (blue points), outperforming
the direct solution (orange line) across all focuses.

Table 1. User defined objective focuses

description wMSE wcm wt

equal focus 1/3 1/3 1/3
conversion focus 0.9 0.08 0.02
time focus 0.9 0.02 0.08

Table 2. GA hyperparameters

parameter value
population size 400
crossover rate 0.2
mutation rate 0.2
local search rate 0.3
coordinate displacement during local search [0.02 0.004, 1000]
number of iterations 20

Figure 6A depicts the Pareto front for a specific target MMD,
showcasing the trade-offs between objectives based on user-defined
weights (colors). This allows researchers to select the optimal solu-
tion from the available options within the Pareto space. Figure 6B
displays the significantly smaller Pareto front obtained from the di-

rect approach for the same target MMD. Both figures highlight opti-
mal solutions for each focus.

Pareto space for GA MOO

Pareto space for direct MOO

Figure 6. Pareto space for GA and direct MOO with different highlighted
focuses, for a specific target MMD: cm,0 = 2.995 mol ·L−1; cini,0 = 17.84

mmol·L−1, t = 260 min , 10 % training data

Figure 7 presents the best candidate recipes identified by the GA
MOO approach (blue points). Only solutions exceeding the perfor-
mance of the best direct solution are included. The original recipe of
the target MMD (green point) and the best direct solution (red point)
are also shown for reference. Notably, the GA MOO approach offers
a wider range of recipes to achieve the target MMD. Furthermore,
several predicted recipes exhibit shorter reaction times compared to
the recipe of the target MMD.

Figure 8 compares the MMDs of candidate solutions with the tar-
get MMD. Due to the multi-objective nature (where MSE is not the
sole focus), perfect similarity is not always achieved, particularly in
the equal focus case, where MSE, conversion, and time have equal
weight. However, for other focuses with a significant MSE contribu-
tion, the predicted MMDs closely resemble the original MMD.
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Figure 7. Recipe candidates for each focus, for a specific target MMD:
cm,0 = 2.995 mol ·L−1; cini,0 = 17.84 mmol·L−1, t = 260 min , 10 %

training data

On average, the optimization procedure identified approximately
18 candidate recipes for each MMD within the test set, across all
focus configurations. The GA MOO approach outperforms the di-
rect approach in roughly 80 % of cases, providing a superior set of
candidate solutions. However, in the remaining 20 % of cases, the
direct approach might yield a better solution. Interestingly, combin-
ing both approaches can potentially capture the best candidates from
each method for every target MMD in the test set.
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Figure 8. MMDs of the best recipe candidates for each focus, for a specific
target MMD: cm,0 = 2.995 mol ·L−1; cini,0 = 17.84 mmol·L−1, t = 260

min , 10 % training data

5 Conclusion
This article presents a novel multi-objective optimization approach
using a genetic algorithm to optimize recipes for reverse engineering
polymerization processes. This method effectively balances multiple
objectives, includes achieving a target molar mass distribution, min-
imizing reaction time, and maximizing monomer conversion. The
integration of pre-trained machine learning models significantly re-
duces the number of required experiments while maintaining high ac-
curacy. The MOO approach offers a set of strong candidate recipes,
allowing researchers to select the most suitable option based on their
specific priorities. Furthermore, the generalizability of this frame-
work paves the way for its application in optimizing various poly-
merization processes for different types of polymers. Future work
will focus on validating this approach with other polymer systems.

Acknowledgements
This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – <466601458> – within the
Priority Programme “SPP 2331: Machine Learning in Chemical En-
gineering”.

https://doi.org/10.26434/chemrxiv-2024-kq3wd ORCID: https://orcid.org/0000-0002-4438-7580 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-kq3wd
https://orcid.org/0000-0002-4438-7580
https://creativecommons.org/licenses/by-nc/4.0/


References

[1] H. Afanasyeva, ‘Fuzzy learning classifiers systems for classification
task’, Transport and Telecommunication, 3(3), 43–51, (2002).

[2] V. Bhaskar, Santosh Gupta, and Ajay Ray, ‘Applications of multiobjec-
tive optimization in chemical engineering’, Reviews in Chemical Engi-
neering, 16, (01 2000).

[3] L. Breiman, ‘Random forests’, Machine Learning, 45(1), 5–32, (Oct
2001).

[4] L. Breiman, Jerome H. Friedman, Richard A. Olshen, and C. J. Stone,
‘Classification and regression trees’, Biometrics, 40, 874, (1984).

[5] Javier Castro, Daniel Gómez, and Juan Tejada, ‘Polynomial calcula-
tion of the shapley value based on sampling’, Computers & Operations
Research, 36(5), 1726–1730, (2009).

[6] Silvia Curteanu, ‘Direct and inverse neural network modeling in free
radical polymerization’, Open Chemistry, 2(1), 113–140, (2004).

[7] Silvia Curteanu, Florin Leon, Andra-Maria Mircea-Vicoveanu, and
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