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Abstract 

Herein we report a virtual library of 1E+60 members, a common estimate for the total size of the 

drug-like chemical space. The library is obtained from 100 commercially available peptide and 

peptoid building blocks assembled into linear or cyclic oligomers of up to 30 units, forming molecules 

within the size range of peptide drugs and accessible by solid-phase synthesis. We demonstrate 

ligand-based virtual screening (LBVS) using the peptide design genetic algorithm (PDGA), which 

evolves a population of 50 members to resemble a given target molecule using molecular fingerprint 

similarity as fitness function. Target molecules are reached in less than 10,000 generations. Like in 

many journeys, the value of the chemical space journey using PDGA lies not in reaching the target 

but in the journey itself, here by encountering molecules otherwise difficult to design. We also show 

that PDGA can be used to generate median molecules and analogs of non-peptide target molecules.  
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Introduction 

Since the advent of combinatorial chemistry in the early 1990’s, which was triggered by the invention 

of the split-and-mix method yielding one-bead-one-compound libraries of millions of peptide and 

peptide-like oligomers in a few tens of synthetic operations,1–3 drug discovery has been fascinated 

and partly driven by large numbers.4–6 Approaches ranged from the “needle in a haystack” method of 

high-throughput screening typical for genetically encoded display libraries7,8 and DNA-encoded 

libraries,9,10 to the concept of chemical space guiding the design of focused libraries of small drug-

like molecules,11–13 fragments14,15 and peptides.16–18  Many projects are currently exploiting  “make-

on-demand” virtual libraries of a few billion members obtained by using various coupling chemistries 

to combine two to four building blocks, each being taken from a pool of thousands of building blocks, 

to form linear, branched or cyclic oligomers.19–22 Despite of being rather constrained, this oligomer 

chemical space has proven amenable to virtual screening and sufficiently diverse to solve most drug 

discovery problems,23–25 probably because biomolecules are themselves oligomers and their binding 

sites are usually suitable for partly flexible, pearl-string like molecules.26–28  

Following up on our interest for exhaustive enumeration of chemical space,29–31 here we aimed 

to extend the oligomer chemical space to reach up to a virtual library size of 1E+60, a common 

estimate for the total size of the drug-like chemical space.6,32 We also aimed to demonstrate virtual 

screening at that library size focusing on ligand-based virtual screening (LBVS).33,34 LBVS consists 

in identifying analogs of a reference bioactive compound by scoring the virtual library using 

molecular similarity measures such as molecular fingerprints,35–37 or shape-based comparisons.38–42 

As discussed below, we achieved our goals for the case of mixed peptide-peptoids accessible by solid-

phase peptide synthesis (SPPS),43 moving up to 30-mers with 100 different building blocks to reach 

the required library size. To demonstrate LBVS, we modified our recently reported peptide design 

genetic algorithm (PDGA),44 which evolves analogs of any target molecule by searching a 

topologically diverse oligomer space using molecular fingerprint similarity as fitness function, and 
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can be used to design new analogs of known peptides as recently demonstrated experimentally for 

antimicrobial peptide dendrimers.45 Specifically, we computed the fitness function using the 

macromolecule extended atom pair fingerprint (MXFP)46,47 and the chiral MinHashed atom pair 

fingerprint (MAP4C),48,49 both designed for large molecules.   

Methods 

Building Blocks 

Our set of 100 building blocks includes the 20 proteinogenic amino acids, their D-enantiomers, 12 

further amino acids, 46 peptoids (N-substituted glycines)50 as well as GABA and β-alanine, all 

available commercially or easily accessible in protected form for Fmoc-SPPS or for the submonomer 

synthesis method for peptoids (Figure S1).51,52 To further augment diversity, we allowed 11 different 

acyl group to cap the N-termini, and allowed a single cyclization either via a cystine bridge or by 

amide bond formation between the C-terminus and the N-terminus or a primary amine side chain (at 

lysine and related diamino acids). All building blocks are encoded in SMILES notation, ensuring that 

their concatenation always leads to a valid molecule. Additionally, sequences are represented in linear 

format to facilitate mutation and cross-over operations within the genetic algorithm. In this format, 

"BBXXX" denotes a building block containing an amine and carboxylic acid, "bXXX" a diamino 

acid for sequence branching, "c" a C-to-N cyclization, “s” a cysteine for disulfide bridges, and 

"TXXX" an N-terminal cap. Both, the enhanced sequence format, and the corresponding SMILES, 

are stored in the results files. 

Genetic Algorithm 

We modified our previously reported PDGA44 by computing fitness functions either as the Jaccard 

distance (dJ) to the target molecule computed using the molecular fingerprint MAP4C,49 saving all 

generated molecules at each generation as trajectory molecules, or as the City Block Distance (dCBD) 

to the target molecule computed using the most recent version of MXFP,47 here saving only molecule 
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with dCBD  300 as trajectory molecules. Each PDGA run was started either from 50 random linear 

sequences generated using the 100 available building blocks, or from 50 repetitions of a selected 

starting sequence and stopped either when the target was found or after 10,000 generations. For all 

runs, a mutation rate of 0.5, population size of 50 and free topology exploration were employed during 

the genetic optimization process. In each iteration, the 15 sequences nearest to the query are chosen 

as parents and mutated to create 35 new sequences, which are then added to the population. Mutation 

types include point mutations, deletions, insertions and cross-over. A second set of topology-

changing mutations were added to the pool of possible mutations in the PDGA. These include forming 

and breaking of C-to-N-cyclizations, forming and breaking of branching points using diamino acids 

as well as forming and breaking of disulfide bridges by insertion of two cysteines.   

 
Results and Discussion 

A 1E+60 combinatorial library from 100 building blocks up to 30-mers  

Due to its size, a chemical space of 1E+60 cannot be explicitly enumerated, leaving a formal 

combinatorial enumeration as the only viable option. Assembling N building blocks to form an 

oligomer of length M results in NM possibilities, hence 1E+60 is readily reached in a 60-mer peptide 

using only 10 different amino acids, in line with the well-known combinatorial explosion of 

possibilities in peptide and protein sequences. However, reducing length M in the direction of small 

molecules requires an exponentially increasing number of building blocks N, for instance including 

all 20 proteinogenic amino acids would still require a 46-mer to reach 1E+60, and reducing oligomer 

length to a tetramer assembly typical of small molecules would require 1E+15 building blocks, well 

beyond the known small molecule chemical space (Table 1, 2nd column).  

Here we settled for 100 building blocks, reaching 1E+60 with a 30-mer, which lies within the 

size range of peptide drugs such as the HIV membrane fusion inhibitor enfuvirtide (34 residues)53 or 

the diabetes/obesity drug semaglutide (31 residues).54 To reach N = 100, we considered the 20 
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proteinogenic amino acids in L- and D- enantiomeric forms, together with simple non-proteinogenic 

amino acids as well as peptoids (N-alkylated glycine),50 which can be easily assembled by SPPS with 

the sub-monomer approach.55 All 100 building blocks selected were commercially available or easily 

accessible in a protected from suitable for peptide and/or peptoid submonomer SPPS (Figure S1).  

Table 1. Influence of oligomer length M and number of building blocks N on virtual library size. 

oligomer length (M) 
Number of building blocks (N) required 

to reach NM = 1E+60 

Library size at 

length M with  

N = 100 

60 10 1E+120 

46 20 1E+92 

30 100 1E+60 

29 117 1E+58 

15 10,000 1E+30 

8 31,622,777 1E+16 

4 1E+15 100,000,000 

 

With these 100 building blocks at hand, a virtual combinatorial enumeration of 1E+60 sequences was 

possible. To increase diversity, we allowed for eleven different N-terminal carboxylic acids, in 

particular fatty acids as found in peptide antibiotics such as polymyxin56 and which favor cellular 

uptake in natural products57 and extend peptide circulation times via albumin binding.58 We also 

added several options for cyclization (see methods for details). While these additional variations 

enlarged library size, it should be noted that library size depended primarily on oligomer length. For 

instance, reducing length by one unit to 29-mers reduced library size by 100-fold, implying that 99% 

of the library resided with 30-mers. Nevertheless, with 100 building blocks the virtual library still 

contained 100 million members for tetramers, well in the size range of the public archive PubChem 

(Table 1, 3rd column).59  

Ligand-based virtual screening by genetic algorithm guided navigation 

Virtual screening consists in computationally evaluating a dataset to select a restricted number of 

molecules for closer inspection. Here we used LBVS aiming to select analogs of a target compound 
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by using a genetic algorithm approach with PDGA (Figure 1).44 Genetic algorithms evolve a 

population for fitness by rounds of mutations and selection. In the context of our 1E+60 chemical 

space, this approach corresponds to a targeted navigation guided by the fitness function, which 

circumvents the need for evaluating every library member. We set out to test whether our PDGA 

would find its way through our 1E+60 virtual library, drawing from the selected set of 100 

peptide/peptoid building blocks rather than only 20 amino acids to generate mutants.  

 
Figure 1. Design of PDGA. PDGA uses a list of input building blocks to generate a set of random linear 

sequences. The sequences are encoded using either the MAP4C or MXFP fingerprints. The fingerprints are 

used to determine the fitness of the sequences by calculating the distance towards a specified query molecule. 

Sequences with distances below a set threshold are stored in an analogs database. The 15 fittest sequences 

undergo rounds of mutations and crossovers in which building blocks and topology are changed to add 35 new 

sequences to the population. This process iterates until either the query is found or the PDGA reaches 10,000 

generations. 

 

We challenged PDGA to identify analogs of six known bioactive linear and cyclic peptides of various 

length in our 1E+60 library. The test cases were polymyxin B2 (1, 10 residues, antimicrobial),56 

gramicidin S (2, 10 residues, antimicrobial),60,61 the mixed peptide/peptoid hybrid EB9 (3, 11 

residues, antibacterial),43 oncocin (4, 19 residues, antimicrobial),62 cathelicidin BF (5, 30 residues, 
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immunomodulatory peptide),63 and circulin D (6, 30 residues, anti-HIV)64(Figure S2). In each case, 

we performed three PDGA runs of maximum 10,000 generations starting from 50 random sequences 

using the chiral fingerprint MAP4C, which encodes pairs of circular substructures with high precision 

including chirality.48,49  

PDGA identified the target molecule in less than 10,000 generation in at least one of the three 

runs for each of these six peptides, including the two 30-mer peptides 5 and 6, which required 

exploration of the full 1E+60 chemical space (Table 2). Since each generation only amounted to 35 

new molecules, which were evaluated against the 15 best scoring molecules of the previous 

generation used as parents, the cumulative number of molecules generated in each trajectory only 

amounted to a few thousands, which is remarkably low considering the size of the explored chemical 

space. Note that the number of molecules per trajectory was approximately 30% lower when 

excluding stereoisomers. The presence of stereoisomers in the trajectory resulted from the presence 

of D- and L- residues in the building block set and the ability of MAP4C to rank each stereoisomer 

differently. Among the generated structures, PDGA delivered thousands of virtual screening hits 

characterized by a high similarity (Jaccard distance dJ < 0.5) to the target peptide.  

The evolution of the best score (dJ to target) per generation as function of generation number 

illustrated how PDGA reached each target (Figure 2 and S3, upper row). After an initial round of 

approximately 10 generations, the best score started to decrease, indicating that the algorithm had 

found a way towards the target. After approximately 1,000 generations, the score had either decreased 

to zero and the target had been found, or the algorithm was stuck at an intermediate score. In terms 

of the cumulative number of new molecules generated, the increase per generation was approximately 

steady until the target had been found (Figure 2 and S3, lower row). When the target was not found 

however, the algorithm was unable to generate any new structures, indicating that the same 15 top 

scoring molecules kept being selected as parent in each round and that none of their mutants led to 

any improvement in the score, implying that a local minimum had been reached.  
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Table 2: Results of three parallel PDGA runs for queries 1-6.  

Query length Structurea) # generations to queryb) # unique structures 

(% with dJ < 0.5) 

# unique structures not counting 

diastereomers 
(% with dJ < 0.5) 

   Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 

Polymyxin B2 (1) 10 cyclic peptide 894 1,371 >10k 6,934 (67) 6,362 (74) 7,877 (24) 5,123 (57) 4,792 (67) 4,851 (13) 

Gramicidin S (2) 10 cyclic peptide 512 736 >10k 4,119 (69) 5,438 (80) 4,142 (13) 3,384 (63) 4,505 (76) 2,958 (9) 

EB9 (3) 11 peptoid 2,485 2,295 >10 k 20,998 (36) 20,377 (44) 7,160 (32) 16,705 (32) 16,333 (41) 5,720 (28) 

Oncocin (4) 19 linear peptide 5,350 5,629 >10k 46,591 (80) 39,835 (77) 55,462 (67) 22,023 (65) 27,829 (70) 32,698 (52) 

Cathelicidin BF (5) 30 linear peptide 9,355 8,521 >10k 88,738 (86) 86,265 (87) 31,301 (86) 57,367 (81) 63,374 (83) 20,831 (80) 

Circulin D (6) 30 Cyclotidec) 8,133 >10 k >10 k 73,535 (73) 37,526 (74) 33,738 (61) 43,550 (58) 23,368 (61) 26,092 (53) 

a) see supporting information Figure S2 for structural formulae. b) number of generations used by PDGA to reach the query molecule. >10k indicates 

that the target was not found within 10k generations. c) PDGA was run on the linear sequence lacking the cystine bridges.  
 
 

 

Figure 2. Analysis of three parallel PDGA runs starting from 50 random sequences towards selected queries. 

Top plots show the overall best score throughout the trajectory; the bottom plots show the cumulative number 

of unique new molecules generated throughout the trajectory for a) polymyxin B2, b) EB9, and c) cathelicidin 

BF. 

 

To get a closer insight into the analogs generated by PDGA, we focused on the case of polymyxin B2 

(Figure 3). We compared the three PDGA runs with an additional self-run, starting PDGA from 

polymyxin B2 and letting the algorithm complete 10,000 generation independent of target 

identification. This self-run quickly exhausted itself and produced 1,906 unique analogs, significantly 

less than the approximately seven thousand analogs obtained for each PDGA run. Interestingly, each 

c)a) b)Polymyxin B2 (1) EB9 (3) Cathelicidin BF (5)
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of the three runs produced a different set of analogs (Figure 3a). While it is not surprising that all 

7,877 molecules in the failed run were unique to this run since it failed to converge on the target, the 

two successful runs only shared three common molecules and less than 100 with the self-run, although 

all molecules in these runs were highly similar to polymyxin B2, with an average Jaccard distance 

below 0.35 (Figure 3b). Note that analogs of the successful runs were on average three mutations 

away from the target, while the self-run only produced point mutants and molecules from the failed 

run remained approximately 9 mutations away from polymyxin B2 (Figure 3c).  

A closer analysis of the successful runs revealed that many analogs combined multiple 

mutations with a high similarity to the target, as exemplified with analog 7 (Figure 3d). Such analogs 

are particularly interesting since they would be difficult to identify without PDGA compared to single 

point mutant from the self-run, which do not require an algorithm for design. When displayed on a 

tree-map (TMAP)65 computed using MAP4C similarities, molecules from the two successful runs 

and the self-run were intermixed, indicating that they occupied a similar chemical space. Note 

however that two clusters of molecules from Run 1 (blue) or Run 2 (yellow) were visible, which 

contained early generation molecules with high Jaccard distance. Molecules from Run 3, which did 

not reach the target, also remained at high Jaccard distance and occupied a separate area of the map, 

reflecting their very different structural type, which featured a large, unbranched macrocycle 

exemplified by analog 8 (Figure 3d). 
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Figure 3. Analysis of polymyxin B2 runs starting from 50 random linear sequences (Run 1-3) or from 

polymyxin B2 without stopping condition (Self). a) Heatmap indicating the number of generated compounds 

with dJ < 0.5 to polymyxin B2 for each trajectory, along with the number of overlapping compounds. b) Bar 

plot showing the mean and standard deviation of the dJ calculated using MAP4C fingerprints for generated 

compounds with dJ < 0.5 to polymyxin B2. c) Bar plot showing the mean and standard deviation of the 

Levenshtein distance (dL; proxy for number of mutations) to polymyxin B2 for generated compounds with dJ 

< 0.5 to polymyxin B2. d) Structure of a selected polymyxin B2 analog featuring a high dL and low dJ (7) and 

the closest analog generated in the failed run (8). e) TMAP displaying the generated compounds in a 2D space. 

Interactive TMAP: https://tm.gdb.tools/map4/10E60/polymyxin_randself_tmap.html.  
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Traversing chemical space to find median molecules 

We next tested whether PDGA might be used to generate traversal trajectories in chemical space, 

starting from molecule A to reach a target molecule B, potentially travelling by a region of chemical 

space containing median molecules, a goal realized by small molecule generation algorithms,66,67 but 

not demonstrated for the case of peptides or peptide-like oligomers. PDGA was indeed able to 

generate such traversal trajectories between pairs of linear or cyclic peptides as illustrated with the 

pair of cyclic peptide natural products polymyxin B2 (1) and gramicidin S (2), the peptide/peptoid 

pair EB9 (3) and oncocin (4) and the pairs of linear 30-mers cathelicidin BF (5) and circulin D (6). 

Although reaching their targets, these trajectories rapidly diverged from the starting molecules and 

generated mostly close analogs to the target, without spending significant time at intermediate 

similarities (blue and red points in Figure 4a and S4).  

 To obtain median molecules between A and B, we ran PDGA with a modified fitness function 

minimizing the sum of three terms, namely the Jaccard distances to A and B and their absolute 

difference. This fitness function guided the algorithm to produce molecules with the smallest possible 

but equal distance to A and B. Indeed, the population of molecules generated using this modified 

fitness function were close to the diagonal of the 2D-jaccard distance plot (yellow points in Figure 

4a and S4). A TMAP analysis of the set of molecules generated for the Polymyxin B2 (1) to 

gramicidin S (2) trajectories showed that each trajectory generated structurally distinct classes of 

molecules corresponding to different areas of the chemical space around these molecules, with 

interesting hybrid molecules such as 9 and 10 combining features from both compounds (Figure 

4b/c).  
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Figure 4. Visualization of traversal trajectories and median molecules between polymyxin B2 and gramicidin 

S. a) Jaccard distance of molecules selected from the different trajectories towards polymyxin B2 and 

gramicidin S. The trajectory from polymyxin B2 to gramicidin S is displayed in blue, the reverse trajectory is 

displayed in red, and the combined structure trajectory is displayed in yellow. b) MAP4C TMAP of selected 

molecules colored by their trajectory of origin. The trajectories populate separate chemical subspaces. c) 

Structures of the two queries polymyxin B2 and gramicidin S and two selected molecules from the median 

trajectory (yellow). Interactive TMAP: https://tm.gdb.tools/map4/10E60/polymyxin_gramicidin_tmap.html. 

https://doi.org/10.26434/chemrxiv-2024-bqd8c ORCID: https://orcid.org/0000-0003-2724-2942 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://tm.gdb.tools/map4/10E60/polymyxin_gramicidin_tmap.html
https://doi.org/10.26434/chemrxiv-2024-bqd8c
https://orcid.org/0000-0003-2724-2942
https://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

Traveling towards non-peptide molecules 

We next used PDGA to identify analogs of targets not obtainable for the 100 selected building blocks, 

described here as “non-peptide”, by minimizing the distance to target and stopping after 10,000 

iterations. We tested this approach for diverse macrocycles containing building blocks and linkages 

not available in our library (11-17, Figure S5). For these non-peptide targets, driving PDGA with the 

shape and pharmacophore fingerprint MXFP delivered somewhat more convincing results than with 

MAP4C.  

Specifically, the molecules generated using the MXFP fitness function matched the overall 

shape of the target molecules better than those generated using the MAP4C fitness function (Figure 

5 and S6). For instance, in the case of cyclosporin (11), which contains several N-methylated amide 

bonds essential for its membrane permeability, and for valinomycin (13), where half of the linkages 

are ester instead of amide bonds, MAP4C generated macrocycles preserved more standard amide 

bonds, while those generated by MXFP guided PDGA to use the peptoid units available in our set of 

100 building blocks, in order to mask the amide H-bond donor group. Furthermore, MAP4C 

sometimes selected acyclic analogs as best fits due to its emphasis on substructures, while MXFP 

always selected macrocycles matching the overall shape and polarity of the target molecule. 
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Figure 5. Non-peptide macrocycles, the overall best score throughout the trajectories and the corresponding 

best scoring MXFP analog from three combined runs for a) cyclosporin and b) valinomycin. The MXFP 

dCBD is reported for each analog. See also Figure S6 for further details.  

 

Conclusion 
 

In the conversations around chemical space, 1E+60 has established itself as a symbolic and 

fascinating boundary. Here we explicitly created a virtual library of 1E+60 molecules by combining 

100 peptide and peptoid buildings blocks to form up to 30-mer linear or cyclic oligomers, all 

accessible by standard solid-phase synthesis. We demonstrated LBVS of this 1E+60 chemical space 

using a simple genetic algorithm, which succeeded in identifying virtual hits, defined either as analogs 

of specific molecules or as median molecules, by surveying only a few thousand sequences.  

Although our PDGA sometimes failed to converge on a target molecule by getting stuck in 

local minima, the computational expense to correct this problem by introducing a duplicate molecule 

check at every iteration is far too large, and one is much better served by running the algorithm several 
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times. It should be noted that, like in many journeys, the value of the chemical space journey using 

PDGA lies not in reaching the target but in the journey itself, here by encountering interesting 

molecules which would be otherwise difficult to design. Whether these molecules might translate into 

useful bioactives requires experimental evaluation of specific series. Ongoing studies along these 

lines will be reported separately.  
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Figure S1: Structures of the building blocks used by the PDGA.    
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Figure S2: Structures of the selected queries for the PDGA runs using the MAP4C similarity as fitness 

function.   

 

 

 
 
Figure S3: Analysis of three parallel PDGA runs starting from 50 random sequences towards selected 

queries. Top plots show the overall best score throughout the trajectory; the bottom plots show the 

cumulative number of unique new molecules generated throughout the trajectory for a) gramicidin S, b) 

oncocin, and c) circulin D. 
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Figure S4: Jaccard distance of molecules selected from the different traversal trajectories towards a) oncocin 

and EB9 and b) circulin D and cathelicidin BF. 

 

 

 
 
Figure S5: Structures of the non-peptide macrocycle queries for the PDGA runs using the MXFP similarity 

as fitness function.   
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Figure S6: TMAPs of top 1000 molecules generated in each of three parallel MAP4C and MXFP 

trajectories of selected non-peptide queries. Interactive TMAPs: 
https://tm.gdb.tools/map4/10E60/epothilone_tmap.html  
https://tm.gdb.tools/map4/10E60/cyclodextrin_tmap.html  

https://tm.gdb.tools/map4/10E60/cyclosporin_tmap.html   

https://tm.gdb.tools/map4/10E60/nonactin_tmap.html   
https://tm.gdb.tools/map4/10E60/onchidin_tmap.html   
https://tm.gdb.tools/map4/10E60/valinomycin_tmap.html   
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