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Abstract: 

30 Seconds to success! – The Wittig reaction, a fundamental and extensively utilized reaction in organic 
chemistry, enables the efficient conversion of carbonyl compounds to olefins using phosphonium salts. 
Traditionally, meticulous reaction setup, including the pre-formation of a reactive ylide species via 
deprotonation of a phosphonium salt, is crucial for achieving high-yielding reactions under classical 
solution-based conditions. In this report, we present an unprecedented protocol for an ultra-fast 
mechanochemically driven Wittig reaction under solvent-free and ambient conditions, eliminating the 
need for tedious ylide pre-formation under strict air and moisture exclusion. A range of aldehydes and 
ketones were reacted with diverse phosphonium salts under high-speed ball milling conditions, giving 
access to the respective olefins in only 30 seconds. 

 

Introduction: 

Seventy years ago, Georg Wittig reported a ground-breaking reaction that revolutionized synthetic 
organic chemistry: the Wittig olefination.1-3 This reaction, which converts carbonyl compounds into their 
unsaturated analogues via a [2+2] pericyclic mechanism, remains one of the most fundamental and 
extensively utilized transformations for the synthesis of functional alkenes.3-6 Despite numerous 
adaptations, the classical Wittig reaction continues to be crucial in modern synthetic chemistry, with 
applications ranging from polymer chemistry7-9 and material sciences10,11 to drug and natural product 
synthesis.12-17 Even on an industrial scale, the Wittig reaction is frequently pivotal; a prominent example 
is BASF's ton-scale synthesis of vitamin A and its derivatives.5,18-23 

In light of growing environmental concerns, there is an urgent need for more sustainable and greener 
modifications of this widely used reaction.23 Recent efforts have focused on developing catalytic versions 
of the Wittig reaction, using strategies to regenerate phosphine via chemical or electrochemical 
reduction of the resulting phosphine oxide.24-28 Although these methods can recycle by-products, they 
often generate wasteful by-products themselves, such as when using chemical reductants like phenyl 
silane (PhSiH3).24 Additionally, attempts to use water as a reaction medium have been made,29-34 but the 
energy-intensive process of treating aqueous chemical waste often mitigates any environmental and cost 
benefits.35,36 Thus, the development of more sustainable and environmentally benign olefination 
processes remains a significant challenge. 

Mechanochemistry has emerged as a transformative approach in this regard significantly advancing 
greener practices in academia and industry.37-40 This method uses mechanical force and friction to drive 
chemical reactions, often resulting in rapid reaction kinetics and either eliminating the need for solvents 
entirely or minimizing their use to a bare minimum—a strategy known as liquid-assisted grinding 
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(LAG).41-43 Mechanochemistry frequently enables reactions that are highly air and/or moisture sensitive 
in solution to proceed smoothly under ambient conditions.44-46 These features make mechanochemistry 
an attractive and suitable strategy for modern synthetic chemistry.47-50 

Despite its potential, solvent-free or LAG Wittig-type reactions are relatively underexplored in the 
literature (Figure 1). Most reports focus on stabilized phosphonium ylides in the Horner-Wadsworth-
Emmons (HWE) modification of the Wittig reaction51-56 or semi-stabilized ylides from benzyl 
phosphonium salts.57-60 While these reactions are conducted under neat conditions, some protocols still 
require external heating, such as conventional heating via an oil bath or microwave irradiation, to 
provide the necessary energy.51,53 Reports relying solely on mechanical force to drive the reaction are 
scarce.52,54,57-59,61 

In 2018, Mack explored the diastereoselectivity of the Wittig reaction on benzaldehyde under LAG using 
benzyltriphenylphosphonium bromide.57 And very recently Friščić reported a hexameric supramolecular 
cage assembly constructed from (dibromomethyl)triphenylphosphonium bromide units.61 This assembly 
can encapsulate small carbonyl compounds and, upon mechanical impact, yield the respective 
1,1-dibromoolefins via a base-activated host (PPh₃CHBr₂) - guest (aldehyde/ketone) directed Wittig 
olefination. 

In 2002, Balema and Pecharsky explored the mechanochemical generation of phosphonium ylides under 
a helium atmosphere using K₂CO₃ as a base.59 However, their study was limited, focusing on only three 
phosphonium salts reacted with three aromatic aldehydes. This investigation presented the exclusive 
example to date of a solvent-free methylenation reaction using a trimethylphenylphosphonium salt. 
Notably, employing 2-naphthyl aldehyde as a substrate, they obtained the respective vinyl derivative in 
a 73% yield after an extensive milling time of 20 hours.  

Figure 1. Typical reaction conditions for the Wittig reaction of 4-phenyl benzyldehyde with PPh3MeBr in solution (top, left), previous work 
on mechanochemical Wittig reactions by Balema, Mack, and Friscic (top, right), and our herein presented work with its advantages 
compared to reactions in solution (bottom, left) and selected examples thereof (bottom, right). 
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These findings led us to hypothesize that a Wittig reaction using non-stabilized phosphonium ylides 
under ball milling conditions is feasible. However, a general and broadly applicable protocol for a 
solvent-free mechanochemical Wittig reaction using non-stabilized phosphonium ylides and a diverse 
set of carbonyl compounds has not yet been established. This gap in the literature prompted us to 
further investigate conditions for fast and high-yielding mechanochemically driven aldehyde-to-olefin 
conversions. Our newly presented method is unprecedented and outstanding in terms of ease of 
reaction setup and reaction time, representing a significant advancement in the field of 
mechanochemical synthesis.  

 

Results & Discussion 

Optimization of Reaction Conditions 

Throughout our optimization studies, 4-phenyl benzaldehyde (I), methyltriphenylphosphonium bromide 
(a, PPh3MeBr), and a solid base were ball-milled in a 7 mL Teflon™ milling vessel containing one 12 mm 
stainless steel ball. The reactions were carried out at a defined frequency using an IST636 mixer mill (for 
detailed optimization data, see ESI). 

We commenced by testing two solid bases, K2CO3 (1.6 equiv.) and KOtBu (1.6 equiv.), which are 
frequently employed in Wittig reactions in solution, for the solvent-free methylenation of I (0.5 mmol) 
using PPh3MeBr (1.4 equiv.) with a milling time of 45 minutes at 30 Hz (Figure 2, entry B7 and A1). 
Although previous protocols demonstrated that K2CO3 enables ylide formation with prolonged milling 
times (20 hours), this base was ineffective with a 45-minutes milling time in our protocol (entry B7).59 
Gratifyingly, employing KOtBu as the base lead to full conversion of I, giving the desired vinyl 
derivative (1) in 70% isolated yield (entry A1). 

Further optimization showed that the milling time could be reduced to as short as 30 seconds, with the 
aldehyde (I) still showing full conversion (entry A6). Consequently, 30 seconds was selected as the 
preferred reaction time, despite giving a lower yield compared to the other data points (entry A2 - A5). 

Figure 2. Optimization of reaction conditions for the mechanochemical Wittig olefination. Reactions were performed on a 0.5 mmol scale 
under air in an IST636 mixer mill, using a Teflon™ milling jar (7 mL) and one stainless steel milling ball (12 mm). 4-Phenyl benzaldehyde (I) 
(96 mg, 0.5 mmol) was used as substrate, KOtBu as the base (b) (except for entry B7, where K2CO3 was used) and PPh3MeBr (a) as the 
olefinating agent. Isolated yields are shown. For details, see SI. [a] K2CO3 was used as a base with a milling time of 45 min. 
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At a shorter milling time of 10 seconds, unreacted aldehyde was still present in the reaction mixture 
(entry A7). Without mechanical impact (0 seconds) starting material could be quantitatively recovered 
(entry A8). This blank experiment confirms that the reaction is not taking place during workup 
procedures, but that the conversion of I to 1 is indeed mechanochemically induced.  

Careful finetuning of the phosphonium salt and base equivalents significantly improved the yield of the 
product (1) from 73% to 89% (entries B1 – B6). Additionally, variation in milling frequency showed that 
a threshold frequency of at least 30 Hz is necessary (entries C2 and C3); at lower frequencies, only 
minimal product formation was observed, with unreacted starting material being recovered (entry C1). 
Finally, we established a protocol that excels in ease of reaction setup and rapid reaction times 
(entry C3).  

An olefination in solution using the same substrates and achieving a similar yield of 90% is described in 
the literature (Figure 1, top, left).62 In this conventional method, the ylide from PPh₃MeBr is pre-formed 
at 0 °C in THF under an inert atmosphere, using an excess of the highly pyrophoric and oxygen-sensitive 
base n-BuLi. The resulting solution is stirred for 30 minutes at 0 °C. After the addition of aldehyde I, the 
reaction is allowed to reach room temperature and stirred for 12 hours until complete conversion.  

In contrast, our protocol involves combining all reactants  - the carbonyl compound, the phosphonium 
salt and solid, easy-to-handle base KOtBu  - in a Teflon™ milling vessel containing one milling ball, without 
the need for air or moisture exclusion (Figure 1, bottom, left). The vessel is closed, mounted in a mixer 
mill, and ground for only 30 seconds at a frequency of 36 Hz. Typically, no pre-formation of the 
phosphonium ylide or sequential aldehyde addition is necessary to ensure a high-yielding olefination 
reaction. However, for highly base-sensitive substrates, ylide pre-formation with lower base-to-
phosphonium amounts can be conducted. In this modified approach, KOtBu (1.2 equiv.) and PPh₃MeBr 
(1.4 equiv.) are ground for 1 minute at 36 Hz to form a yellow paste. The vessel is then opened, the 
carbonyl compound is added, and milling is continued until the reaction is complete.  

Notably, the progress of the reaction can be easily monitored by opening the reaction vessel multiple 
times to take small samples, without negatively affecting the reaction outcome. This flexibility and ease 
of monitoring further underscore the practicality and efficiency of our mechanochemical protocol. 

Substrate Scope 

With the optimized reaction conditions in hand, we evaluated the generality of this protocol by 
converting a diverse set of carbonyl compounds into their respective olefins (Scheme 1). Benzaldehyde 
derivatives (1 - 9, 11, and 13) consistently yielded good to excellent results, ranging from 50% to 95%, 
regardless of their substitution patterns. Electron-donating (2, 3, 7 – 9) and electron-withdrawing (5, 6, 
13) groups, as well as combinations thereof (4), were well tolerated on various positions on the aromatic 
ring. Interestingly, under standard conditions without ylide pre-formation, product 9 was isolated in a 
moderate yield of 58%, with 16% of a by-product resulting from CN-sidechain dealkylation. However, 
using the modified procedure with ylide pre-formation (1.2 equiv. of KOtBu and 1.4 equiv. of PPh₃MeBr), 
the reaction proceeded smoothly, yielding product 9 in 80% with no observable dealkylation. A pinacol 
boronate-substituted aldehyde, which is highly useful for subsequent Suzuki-Miyaura coupling, reacted 
more reluctantly. But, after a prolonged milling time of 1 hour, the desired product 11 was obtained in 
80% yield. This protocol is not limited to benzaldehyde derivatives; for example, 
4-methoxycinnamaldehyde reacted smoothly, even on an increased scale, yielding product 12 in 84% 
(0.5 mmol scale) and 80% (2 mmol scale). Garner’s aldehyde, a valuable chiral building block in natural 
product synthesis, underwent olefination readily, yielding 80% of its vinylated analogue 16.63 
Remarkably, highly conjugated all-trans-retinal was methylenated in 71% yield (product 17), 
underscoring the potential of this method for future industrial applications in carotenoid synthesis.23  
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Beyond aldehydes, ketones also performed exceptionally well under the optimized reaction conditions. 
Cyclohexanone-derived substrates yielded products 18 (92%) and 21 (93%). Notably, the latter is highly 
base-sensitive, necessitating ylide pre-formation to ensure high yields. A pyridinyl moiety was readily 
tolerated, and natural product (-)-menthone, along with an adamantane-derived substrate, were 
converted to the vinylated products 23 and 24 in 71% and 89% yield, respectively. Remarkably, the 
complex steroid epiandrosterone was successfully converted to product 25, with the newly formed 
double bond positioned at C-17. Additionally, we demonstrated the feasibility of this approach for the 
late-stage olefination of the atypical antidepressant and nicotine antagonist Bupropion, yielding product 
26 in 65%.64,65 This showcases the protocol's versatility and potential for application in the synthesis and 
late-stage functionalization of complex and bioactive molecules.  

Subsequently, we explored the versatility of various phosphonium salts with aldehydes and ketones 
(Scheme 2). We selected piperonal as a model aldehyde substrate due to the benzodioxole motif's 
frequent presence in pharmaceutically active compounds and promising drug candidates.66-68 Generally, 
reactions with non-stabilized and semi-stabilized ylides (yielding products 28-33, 37, 38) gave mixtures 
of isomers, as expected. Stabilized ylides (yielding products 34-36) exclusively gave the E-isomers in 
yields ranging from 68% to 92%. Some substrates required slightly longer milling times due to increased 
steric hindrance affecting reaction rates as the substitution on the Wittig reagent increased, but no 
reaction was conducted for longer than 1 hour. Deuteromethylenation using PPh₃CD₃I was feasible under 
the given reaction conditions, yielding deuterovinylated products 27 and 39 in 81% and 90%, 
respectively. Remarkably, this protocol allowed for the introduction of several valuable functional groups 

Scheme 1. Scope of the Wittig olefination of aldehydes and ketones using PPh3MeBr. Reactions were performed on a 0.5 mmol scale under 
air in an IST636 mixer mill, using a Teflon™ milling jar (7 mL) and one stainless steel milling ball (12 mm) at a milling frequency of 36 Hz. If 
not stated otherwise, milling was conducted for 30 seconds using KOtBu (0.7 mmol, 1.4 equiv.) and PPh3MeBr (0.6 mmol, 1.2 equiv.). 
Isolated yields are shown. [a] 2.4 equiv. KOtBu were used. [b] Ylide pre-formation was conducted milling KOtBu (1.2 equiv.) and PPh3MeBr 
(1.4 equiv.) for 1 minute before aldehyde/ketone addition (for details, see SI). [c] 1 hour milling time. [d] Reaction was performed on a 
2 mmol scale using two 12 mm stainless steel milling balls in a 25 mL Telfon™ milling jar. [e] 5 minutes milling time. [f] 1 minute milling 
time, [g] reaction was performed on a 0.2 mmol scale. 
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via the respective phosphonium salts: Weinreb amide (36 and 47), dioxolane (37), ester (35 and 46), and 
nitrile derivative (38). This versatility underscores the method's broad applicability and potential for 
generating a wide array of functionalized products. 

Conclusion 

The mechanochemical Wittig olefination protocol presented in this study offers a highly efficient and 
environmentally friendly alternative to conventional solution-phase methods. By eliminating the need 
for solvents and air- or moisture-sensitive conditions, this protocol significantly simplifies the reaction 
setup. The method is remarkably fast, achieving complete conversion in as little as 30 seconds, and 
avoids the use of highly pyrophoric bases such as n-BuLi. The ability to conduct the reaction without 
pre-forming the phosphonium ylide further underscores the practicality and efficiency of this approach. 

Our results demonstrate that this protocol is broadly applicable, converting a diverse array of carbonyl 
compounds into their corresponding olefins with high yields. The use of different phosphonium salts to 
introduce various functional groups highlights the method’s flexibility and potential for generating a 
wide array of structurally diverse products.  

The simplicity and effectiveness of this mechanochemical approach make it a promising tool for 
advancing greener synthetic practices in both academic and industrial settings. Its rapidity, efficiency, 
and environmentally friendly nature offer a distinct advantage over traditional methods, contributing to 
a more sustainable future in synthetic chemistry. 

 

Scheme 2. Scope of the Wittig olefination on aldehydes I and II, and ketone III using different phosphonium halides. Reactions were 
performed on a 0.5 mmol scale under air in an IST636 mixer mill, using a Teflon™ milling jar (7 mL) and one stainless steel milling ball 
(12 mm) at a milling frequency of 36 Hz. If not stated otherwise, milling was conducted for 30 seconds using KOtBu (0.7 mmol, 1.4 equiv.) 
and the respective phosphonium halide (0.6 mmol, 1.2 equiv.). Isolated yields are shown. [a] 5 minutes milling time. [b] Ylide pre-formation 
was conducted milling KOtBu (1.2 equiv.) and the phosphonium halide (1.4 equiv.) for 1 minute before aldehyde/ketone addition (for 
details, see SI). [c] 15 minutes milling time. [d] 30 minutes milling time. [e] 1 hour milling time. 

https://doi.org/10.26434/chemrxiv-2024-wpz3z ORCID: https://orcid.org/0000-0003-2946-9294 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-wpz3z
https://orcid.org/0000-0003-2946-9294
https://creativecommons.org/licenses/by/4.0/


7 
 

 

Methods 

General procedure for Wittig olefination without ylide pre-formation 

A 7 mL Teflon™ milling vessel equipped with one 12 mm stainless steel ball, was charged with the 
aldehyde/ketone substrate (0.5 mmol, 1 equiv.), the respective phosphonium halide (0.6 mmol, 1.2 
equiv.), and potassium tert-butoxide (0.7 mmol, 1.4 equiv.). The closed Telfon™ vessel was mounted into 
the holding station of an IST636 mixer mill and milling was conducted at a frequency of 36 Hz for 
30 seconds.  

After the milling process, the reaction was quenched by adding 6 mL of a sat. NH4Cl(aq.) solution directly 
to the milling vessel. Subsequently, ether was added, and the contents were transferred to a separation 
funnel. The product was extracted three times with ether and the combined organic phases were 
washed once with sat. NH4Cl(aq.) solution, dried over Na2SO4, filtered, and concentrated under reduced 
pressure. The crude product was further purified via column chromatography. 

General procedure for Wittig olefination with ylide pre-formation 

A 7 mL Teflon™ milling vessel equipped with one 12 mm stainless steel ball, was charged with the, the 
respective phosphonium halide (0.7 mmol, 1.4 equiv.), and potassium tert-butoxide (0.6 mmol, 1.2 
equiv.). The closed Telfon™ vessel was mounted into the holding station of an IST636 mixer mill and 
milling was conducted at a frequency of 36 Hz for 1 minute. Subsequently, the milling vessel was opened, 
and the aldehyde/ketone substrate (0.5 mmol, 1 equiv.) was added to vessel. The vessel was closed and 
mounted again into the mixer mill’s holding station and milling process was continued at 36 Hz for 
additional 30 seconds.  

After the milling process, the reaction was quenched by adding 6 mL of a sat. NH4Cl(aq.) solution directly 
to the milling vessel. Subsequently, ether was added, and the contents were transferred to a separation 
funnel. The product was extracted three times with ether and the combined organic phases were 
washed once with sat. NH4Cl(aq.) solution, dried over Na2SO4, filtered, and concentrated under reduced 
pressure. The crude product was further purified via column chromatography. 
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