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Abstract 
 
Therapeutic antibodies such as monoclonal antibodies (mAbs), bispecific and multispecific 
antibodies are pivotal in therapeutic protein development and have transformed disease 
treatments across various therapeutic areas. The integrity of therapeutic antibodies, however, is 
compromised by sequence liabilities, notably deamidation, where asparagine (N) and glutamine 
(Q) residues undergo chemical degradations. Deamidation negatively impacts the efficacy, 
stability, and safety of diverse classes of antibodies, thus necessitating the critical need for early 
and accurate identification of vulnerable sites. In this article, a comprehensive antibody 
deamidation-specific dataset (n = 2285) of varied modalities was created by using high-
throughput automated peptide mapping, followed by supervised machine learning to predict the 
deamidation propensities as well as extents throughout the entire antibody sequences. We 
propose a novel chimeric deep-learning model, integrating protein language model (pLM)-
derived embeddings with local sequence information for enhanced deamidation predictions. 
Remarkably, this model requires only sequence inputs, eliminating the need for laborious feature 
engineering. Our approach demonstrates state-of-the-art performance, offering a streamlined 
workflow for high-throughput automated peptide mapping and deamidation prediction, with 
potential of broader applicability to other antibody sequence liabilities.  
 
 
Introduction 
 
Monoclonal antibodies (mAbs) represent one of the predominant classes of therapeutic proteins; 
recently, more complex formats of antibodies such as bispecific and multispecific antibodies and 
fusion proteins have debuted to treat various diseases in multiple different therapeutic areas.1-4 
These therapeutic antibodies are engineered to bind selectively to their target antigens, 
modulating biological pathways to achieve therapeutic effects. However, during the 
development, manufacturing, and storage of therapeutic antibodies, various sequence liabilities 
may arise, potentially impacting their safety, efficacy, and stability. Antibody sequence liability 
refers to the specific antibody amino acid residues (namely, hot spots) undergoing chemical 
degradations, structural alterations, or enzymatic modifications.5,6 One of the most common, and 
putatively most concerning sequence liabilities of therapeutic antibodies is deamidation, a 
spontaneous chemical process particularly involving asparagine (N) and glutamine (Q) residues, 
converting them into negatively charged aspartate (D) and glutamate (E) residues, respectively, 
through several possible non-enzymatic pathways.7 Deamidation has been reported to 
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compromise both the in vivo and in vitro biological activities, structural integrity, 
pharmacokinetics, antigen-binding affinity, and even immunogenicity of diverse classes of 
antibodies.5,7,8 Therefore, identifying liable sites for deamidations has become a critical step.  
 
In particular during drug discovery phase, an early access to antibody deamidation liabilities is 
beneficial to de-risk drug candidate selection process and accelerate drug development. 
Typically, forced degradation by thermal and high pH stresses have been employed to enrich 
liable deamidated residues prior to experimental measurements.9 Nevertheless, measuring 
deamidation, in particular, assessing site-specific deamidation information, is challenging 
because (i) conventional reversed phase separation techniques or charge-based separation 
methods (e.g., ion exchange chromatography, capillary isoelectric focusing (cIEF)) lack the 
specificity to resolve interfering species that co-elute, or to localize deamidation at amino acid 
level,10,11  (ii) intact or reduced mass analysis cannot unambiguously detect deamidation owing 
to the small +0.98 Da mass shift that easily fall in the assay variability.12 The LC-MS/MS based 
peptide mapping method, which enzymatically dissociates the protein into smaller peptide 
pieces, spatially separates those peptides followed by high-resolution MS detection, on the other 
hand, can confidently detect, quantify, and localize the deamidations, providing site-specific 
deamidation information.13,14 Nevertheless, peptide mapping is intrinsically labor-intensive in 
both sample preparation and data processing. In addition, to accommodate for forced degradation 
followed by peptide mapping sample preparations, the amount of purified antibody to initiate this 
task can be quite high. However often in times especially at earlier stages, experimental 
assessment of deamidations via forced degradation and peptide mapping is constrained by both 
the low availability of purified antibody material, and the high demand of FTE/instrument 
resources. Given these limitations, computational tools have become increasingly common for 
early antibody deamidation profiling, as it eliminates the need for sample consumption, affords 
fast turnaround and potentially high throughput while requiring minimal cost.15-18 
 
Computational models for predicting deamidation occurrences have been around for decades and 
have been undergoing continued evolvement.17-25 Informed by prior knowledges that flanking 
sequences, secondary and tertiary structure, solvent accessibility, and structural rigidity can all 
impact antibody deamidations, these models can be largely divided into two categories, namely, 
sequence-based models and structure-based models. For example, to date some sequence-based 
deamidation tools simply designate all deamidation “hot spots” based on sequence motifs of NG 
and NS, enlightened from a model that used pentapeptide surrogates to probe various 
deamidation rates;26 however, in reality even the same sequence motifs are likely to exhibit 
varied deamidation rates due to changes in solvent accessibility and high order structure. In 
general, conventional sequence-based models are typically easy to use but suffer in accurate 
performances. In comparison, structure-based models typically performed better, as additional 
descriptors such as secondary structure, tertiary structure, SASA, backbone and side-chain 
dihedral angles are taken into account. For example, in separate studies, Jia et al.21 and Delmar et 
al.19 have developed machine learning models for liable Asn deamidation prediction by mining 
structural parameters such as backbone nucleophilic attack distance, dihedral angles, side-chain 
dihedral angles and torsion angles, etc. from crystal structures and 3D antibody structural 
homology models, respectively.  Hoffmann et al.20 recently reported an effective QSAR model 
factoring in the accessible surface area (ASA) of residue, the pKa value of the backbone amide, 
and the root mean square deviations of both the alpha carbon and the side chain. As one would 
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expect, different structure-based models may require different crafting and selection of structural 
features. Despite these successes in structure-based approaches, a prerequisite to enable the use 
of these models is either an experimental crystal structure or an in silico structural homology 
model; in some cases, molecular dynamic (MD) simulations were also required in order to 
compensate for flexible loop conformations.25 This has limited the ease of access to the structure-
based approaches. Besides, for more complex modalities such as multispecifics or fusion 
proteins, it’s inherently challenging to even obtain structural homologies.  
 
With the recent advancement of artificial intelligence and natural language processing 
techniques, pretrained protein language models (pLMs) employing the transformer 
architectures27 have debuted as an increasingly widespread paradigm to extract contextual 
information directly from sequences, enabling effective amino acid-level representations of 
various proteins including therapeutic antibodies. Notable examples of pLMs include ProtBert,28 
ESM-1b,29 ESM-2,30 ProtT5,31 these models were pretrained on massive sets of protein 
sequences in an unsupervised manner via masked language modeling objective, and were shown 
to be capable of learning complex contextual dependencies among residues properties and 
structural features. These learned representations of proteins, often manifested as vectors (also 
known as embeddings), are meaningful “heuristic features” about proteins, potentially 
eliminating the need for structural homology, feature engineering, evolutionary searches, and 
multiple sequence alignments (MSA), all of these processes are typically time consuming and 
computationally expensive. Indeed, by simply taking protein sequences as input, pLM 
embeddings can be used in a broad range of tasks including protein 3D structure 
prediction,30,32,33 subcellular localization,34 mutational impact prediction,35 and more recently, 
post-translational modifications.36,37 
 
In this study, we propose the use of embeddings from a state-of-the-art pLM, namely, ESM-2, for 
the prediction of deamidation sites in therapeutic antibodies. The use of pLM have demonstrated 
a trail of success in predicting various domain-specific tasks. However, to our best knowledge, 
the feasibility of using pLM for deamidation predictions has yet been explored. We present a 
novel, chimeric deep-learning model that integrates the contextual residue-level embeddings 
with the local amino acid sequence information. Notably, we show that this method achieves 
state-of-the-art performance by directly taking antibody sequences as input, no requirement for 
handcrafted or manual features extractions. In addition, the method can also project the 
quantitative deamidation extents at future time points. Last but not least, we underscore that the 
presented systematic workflow, involving high-throughput automated peptide mapping followed 
by pLM-fueled deep learning framework, is applicable to other sequence liabilities of therapeutic 
antibodies. 
 
Results 
 
High-throughput (HTP) automated peptide mapping 
The peptide mapping-rooted approach, recently dubbed as multi-attribute method (MAM), 
employs mass spectrometry detection for simultaneous identification and quantitation of many 
protein quality attributes including deamidations.13,14,38,39 Although peptide mapping is ideal in 
providing site-specific modification readouts, the throughput of peptide mapping has long been a 
bottleneck limiting its practicality especially in drug discovery phase where sample numbers are 
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large and expected throughputs are high. To address this, we developed an automated peptide 
mapping sample preparation protocol using Lynx liquid handling system. The fully walk-off 
system processes a 96-well plate in 7 hours with high degree of reproducibility (Figure S1). The 
sample preparations for all degradation samples included in this study (255 samples for total 51 
antibodies, refer to Material and Methods for details) were completed in 3 days using the 
described high-throughput peptide mapping platform (Figure 1). To illustrate method 
reproducibility, we show in Table S1 the PTM% comparisons among samples located at diagonal 
positions on a 96-well plate (A1 to H8). These site-specific PTM percentages demonstrated good 
repeatability in terms of quantification across a wide dynamic range (from 0.1% to 100%). Note 
that besides detecting deamidations, the method can simultaneously measure and quantify a 
number of other PTMs including oxidation, isomerization, N-/C-terminal modification, 
succinimide formation, glycosylation (Figure 2a, and Table S1). The levels of heavy chain 
PENNY peptide deamidations (i.e., N387 and N392) were less than 2% and Met255 oxidation 
~3% (Table S1), suggesting that our method did not generate artifact PTMs.  
 
Another important metric evaluating an automated procedure is its comparability to manual 
procedure. We show that the automated procedure can be implemented interchangeably with its 
manual protocol equivalency, as the tryptic digestion profiles generated from automation 
platform notably resembled that from the manual workflow (Figure S2). Furthermore, the PTM% 
obtained using the automated peptide mapping were comparable to those obtained using manual 
protocol. Take mAb-A as example where the samples were stressed at various time points (40 ℃ 
pH 8.0) before submitting to automated and manual peptide mapping (Figure 2a), the outcome 
demonstrated great comparability for numerous PTMs including deamidation, between the two 
protocols over a wide quantitation range from 0.1% to 80%. Overall, the developed high-
throughput automated peptide mapping workflow significantly streamlined and expedited the 
sample processing, generating large amount high-quality data at amino acid level poised for the 
subsequent machine learning endeavors. 
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Figure 1. Development of a systematic workflow to predict therapeutic antibody deamidations. Starting 
from forced degradation at 40 °C pH 8.0 condition for 8 weeks with interim time points (t0, 1 week, 2 
weeks, 4 weeks, 8 weeks), antibody samples were subjected to high-throughput automated peptide 
mapping followed by LC-MS/MS analysis. Machine learning models were trained on curated, 
deamidation site-specific dataset. 

 
Next, the processed peptide mapping data were further curated to concentrate on the deamidation 
outcome. Essentially, each deamidation instance was manifested as a site-specific, time-
dependent profile consisting of t = 0, 1, 2, 4, and 8 weeks five time points (For instance, the 
heavy chain Q3, N73, N83, N386, N391 deamidations in Figure 2a). In supervised machine 
learning with the goal of classifying the deamidation sites into active set (or hot spot) versus 
inactive set (not liable, or low risk), it’s imperative to carefully label the dataset instances. In this 
study, each deamidation site was labeled by setting a fixed deamidation threshold. Specifically, 
for any site of interest (either N or Q residue), it was labeled as active set if the increment of 
measured deamidation extents from either t0 to t1week or from t1week to t2week time points exceed 
1.0%; any remaining deamidation instances were labeled as inactive sites, these also include any 
N/Q residues that did not give measurable deamidations during peptide mapping analysis; of 
note, the LOQ in our peptide mapping assay is approximately 0.1%. For training and test dataset 
split, we allocated full dataset corresponding to 45 in-house antibodies as training set, and the 
remainder including NISTmAb as independent test set. 
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The harvested training dataset revealed a pronounced imbalance, with 2285 labeled deamidation 
instances, predominantly skewed towards negative labels. In specific, 276 instances were 
designated as deamidation hot spots, while 2009 were classified as inactive (Figure 2b). Notably, 
the distribution of deamidation hot spots was not confined to specific regions along the protein 
sequences; instead, they were observed to span across both the light and heavy chains (Figure 
2c). Each deamidation instance in the dataset was accompanied by a binary label indicating its 
deamidation status, along with the experimental quantitative measurements of deamidation 
extents at t2week, t4week and t8week. As illustrated in Figure 2d and Figure S3, sites labeled as 
inactive exhibited consistently lower levels of deamidation compared to those identified as hot 
spots. The distribution of quantitative deamidation extents also showed a notable shift towards 
higher percentages over the course of the experiment (Figure 2e), corresponding to the gradually 
elevating deamidation extents from t2week to t8week. 

 

Figure 2. (a) Quantitation of PTMs of various categories by automated peptide mapping (red) for stressed 
mAb-A samples at five different time points (t = 0, 1, 2, 4, 8 week); the same set of samples were subjected 
to manual peptide mapping (blue) to demonstrate good quantitation comparability between the two 
protocols.  (b) Bar-graphs illustrating the imbalanced nature of the final deamidation-specific training 
dataset (n = 2285). (c) Overall distribution of deamidation binary labels (hot spot versus inactive) in the 
dataset along light chain and heavy chain sequences, respectively. (d) Overall distribution of quantitative 
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deamidation extents at t=2week, t=4week, and t=8week time points compared with respect to 
deamidation labels, indicating that sites labeled as hot spot gave broader deamidation distribution and 
higher extents whereas sites labeled as inactive showed narrower distribution centered at lower (<20%) 
deamidation extents. (e) Histogram of total quantitative deamidation in the dataset by three time points (t 
= 2, 4, 8 week) showed deamidation extents shift towards higher percentages over the time course.  

 
The use of ESM-2 embedding for deamidation site prediction 
Our objective was to construct models capable of classifying deamidation directly as active 
(indicating a hot spot or potential liability) or inactive (representing low risk) for any site of 
interest (N or Q residue) within antibody sequence, using only the antibody sequences 
themselves as input. To achieve this, it was essential to first encode the antibody sequences into 
suitable representations prior to passing to downstream learning tasks.  
 
Among the various encoding schemes that extract vector representations (embeddings) directly 
from protein sequences,40 pretrained protein language models (pLMs) have emerged as 
particularly powerful tools. In our study, we employed protein language models to render latent, 
context-dependent embeddings. Specifically, the embeddings utilized in our work were derived 
from a pretrained ESM-2 model, which was trained on approximately 65 million unique protein 
sequences sourced from the UniRef41 protein sequence database.30 Of the many different sizes of 
pretrained ESM-2 models which differ by the number of parameters ranging from eight million 
to 15 billion, we selected the one with 33 layers and 650 million learnable parameters 
(esm2_t33_650m_UR50D), striking a balance between model performance, protein embedding 
sizes, and hardware constraints.  
 
To leverage the pretrained ESM-2 model for encoding sequence representations, the model takes 
the entire antibody sequence, including the sites of interest, as input and returns the per-residue 
representations of the full-length antibody. The outputs from ESM-2 consists of residue-level 
sequence embeddings with dimension of n	 × 	1280 (Figure 3a), where 1280 represents the 
dimension of the embeddings and n is the length of amino acid sequence. These embedding 
features were then fed into the downstream neural networks and trained to discriminate antibody 
deamidation sites. This process, typically referred to as transfer learning,42 capitalizes on 
knowledge gained from a previous task (in this case, the pre-training of the pLM) to improve 
performance in new tasks (such as deamidation prediction) by reusing the learned feature 
representations, especially when the previously task is data-rich and the new tasks have limited 
labeled data. We have applied transfer learning by using a simple deep neural network (DNN) to 
fine-tune the downstream deamidation prediction task. The DNN comprises 2 hidden layers, 
each followed by a dropout layer to prevent overfitting. The overall model architecture, utilizing 
only ESM-2 embeddings as surrogate features for deamidation site prediction, is depicted in 
Figure 3a. Detailed parameters associated with this architecture are provided in Table S2. 
Notably, concordant with previous findings,37,43,44 these pLM-derived features do not require 
sophisticated architectures to be adapted to new predictions. 
 
The performance metrics of this model architecture were listed in Table 1. With the achieved 
94.4% accuracy, 0.798 and 0.728 for precision and recall, respectively, we showcase the 
possibility of predicting antibody deamidation sites using ESM-2 protein language model by 
taking only sequences as input. Note that this is distinctly different from the conventional 
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sequence-based computational approaches which simply convert selected sequence segments 
into static matrices; herein, the pLM derives context-dependent embeddings encompassing the 
intricate sequence-context relationships of the full-length antibody sequence. For each site of 
interest (N or Q residue), the representation has been transformed into a contextualized 1 x 1280-
dimension vector, corresponding to 1280 meaningfully assimilated descriptors about this residue 
learned from the pretrained pLM. The effectiveness of complex unsupervised-learned feature 
representations have also seen success in several other domain-specific tasks,43,45-47 
outperforming hand-crafted descriptors such as one-hot encoding (OHE) of amino acids, k-mer 
motif counts, secondary structures and backbone angles. 
 

 
Figure 3. a) The overall model architecture where ESM-2 embeddings corresponding to the potential 
deamidation sites were directly extracted and fed to downstream deep neutral networks (DNN) for 
deamidation sites classification. b) Word embedding generation for local sequence windows of size 31 
amino acids centered on the deamidation site of interest, followed by a bi-directional long short-term 
memory (LSTM) model to extract local sequence information.  

 
Enhanced prediction by combining ESM-2 embedding and local sequence 
Prior studies have highlighted the role of local structural environment25 and neighboring 
residues48  in influencing the deamidation status of specific sites. Several local sequence motifs, 
such as NG, NS, NN, among others, have been identified as correlating with the occurrence of 
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antibody deamidations.18,49,50 Recent investigations have demonstrated that these local sequence 
motifs, when integrated with additional structural or physicochemical property descriptors, can 
effectively predict deamidation hot spots.19,21,24,25  Drawing from these insights, our study 
integrates the local sequence information with the global contextual information captured by 
pretrained ESM-2 model. We trained a meta-classifier on the combined learned features. To 
transform local sequences into numerical inputs understandable by the model, we constructed 
local sequence windows centered on the potential deamidation sites, and then utilized supervised 
word embedding to capture the localized interactions among amino acids surrounding N/Q 
residues (Figure 3b). Subsequently, we employed bi-directional LSTM, a recurrent neural 
network (RNN) sequence model, to extract features reflecting the associations and influences of 
neighboring amino acids within the defined sequence window.  
 
Prior to incorporating local sequence information into ESM-2 embeddings, it was crucial to 
determine the optimal size of the sequence window. To achieve this, we processed various 
window sizes centered around the site of interest with an equal number of neighboring amino 
acids ranging from 3 to 51. These sequences were forward-passed to the model through fivefold 
cross-validation using the deamidation training dataset; the MCC score was used as metric for 
identifying the optimal window size. Of note, a window size of 3 corresponded to the 3-mer 
sequences incorporating the immediate adjacent residues (before and after) of the potential 
deamidation site as input. In our study, a window size of 3 represented the minimal window 
sequence size. We interrogated the predictive capabilities of these local sequences solely using 
just the flanking sequences as input to the base model depicted in Figure 3b without additional 
descriptors, by gradually increasing the number of neighboring residues while maintaining an 
equal number of residues on both sides. The MCC values plotted against different window sizes 
were illustrated in Figure S4a. Briefly, the model performance saw a steady increase as the 
sequence window size was enlarged – a trend anticipated, as excessively short windows are 
likely to convey limited local sequence information. However, the MCC reached a plateau at 
approximately 31 amino acids. In Figure S4 b-f we also visualized the effect of word embedding 
and window sizes, in terms of model’s ability to correctly distinguish deamidation hot spot from 
inactive set. With supervised word embedding, a widow size of 31 amino acids (Figure S4e) 
outperformed window size of 3 amino acids (Figure S4d); both performed significantly better 
than when supervised word embedding was not used (Figure S4c, 3-mer LR regression). Given 
all these, we selected a window size of 31 as optimal for supervised word embedding. Window 
sizes beyond 61 residues were not explored owing to computational burden associated with 
excessively long sequences. Detailed results for each window size are provided in Table S3. 
Noteworthily, we also tested local sequence models of different window sizes using an 
independent test set (Figure 5b); the outcome indicated that local sequences alone as predictors 
may not be as effective as using ESM-2 generated embeddings in terms of deamidation 
prediction. 
 
The final architecture highlights a “chimeric” model comprising two processing modules (Figure 
4), namely, a local module that learns sequence information from the localized, windowed 
sequences, and a global module that captures complex global contextual embeddings from the 
full-length protein sequences. Note that both modules directly take raw protein sequences as 
input, there is no additional requirement for sequence alignment or hand-crafted structural or 
physicochemical features. Each module independently encodes and processes the sequences, 
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yielding 1-D vector as outputs. In order to integrate the learned features by the two modules, we 
concatenated the vectors from both sources and trained a fully connected (FC) neural network 
classification head as a meta-classifier (Figure 4, Figure S5). The output of the classifier yields a 
probabilistic distribution ranging between 0 and 1, indicating the probability of being 
deamidated. This architecture was selected following fivefold stratified cross-validation. 
Essentially, during this process, we ensured that each fold retained the same proportion of classes 
as the original dataset, thereby minimizing bias and improving the reliability of model 
evaluations. We explored various other model architectures such as logistic regression, random 
forest, ANN, 1D-CNN, RNN, alongside different hyperparameters including hidden layer 
numbers, neuron counts per layer, and optimizers. Moreover, we also implemented an early 
stopping mechanism to optimize training and prevent overfitting. The hyperparameters used in 
the final architecture are listed in Table S4. 
 

 
Figure 4. Overall architecture of the chimeric model for enhanced deamidation sites classification. The 
architecture integrates the global module (ESM-2 embeddings) and local module (word embeddings), 
combines the two output vectors using a concatenation layer followed by a simple DNN-based 
classification head. Detailed hyperparameters and layer settings are listed in Supplemental Information.  

 
Performance evaluation of models 
Given the imbalanced class distribution within the dataset, namely, the prevalence of inactive 
N/Q deamidation sites vastly outnumbering deamidation hot spots (Figure 2b), the accuracy 
metric alone proves insufficient for assessing classifier performance in this study. In extreme 
cases, where the model simply designates every site of interest as inactive, it may still achieve an 
87.9% accuracy rate. Consequently, precision, recall, and specificity metrics were incorporated 
to provide a more comprehensive evaluation of model performance. The metrics of precision and 
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recall are particularly pertinent for imbalanced dataset. Precision quantifies the classifier’s ability 
to accurately predict positive instances (i.e., deamidation hot spot) relative to all predicted 
positive cases. Meanwhile, recall (also known as true positive rate or TPR) assesses the 
classifier’s success in identifying deamidation hot spots among all experimentally confirmed 
positives. In the context of deamidation site classification, striving for high precision and recall is 
essential for understanding the model’s capacity to distinguish deamidation hot spots amidst the 
predominant population of non-hot spots.  
 
The evaluation of the chimeric model involved performing fivefold stratified cross-validation on 
the training dataset, and comparing it with the base-models using either global contextual 
embedding or local sequence windows. Model performance was assessed using six metrics: 
accuracy, precision, recall, specificity, F1-score, and Mathew’s correlation coefficient (MCC). In 
addition, receiver operating characteristics (ROC) curves were plotted for visualization purposes, 
with the area under the curve (AUC) calculated as an additional metric. Further elaboration on 
performance metrics and their corresponding equations can be found in the Supplemental 
Information. 
 
The comparative performance analysis (outlined in Table 1) revealed notable distinction in 
performance metrics. The mean MCC of the local sequence base-model stood at 0.673 ± 0.030, 
while the ESM-2 base-model exhibited an improved performance with a mean MCC of 0.731 ± 
0.027. Remarkably, the chimeric meta-classifier exhibited a mean MCC of 0.787 ± 0.038, 
alongside enhanced performance metrics including a mean accuracy of 0.956 ± 0.014, mean 
precision of 0.836 ± 0.059, mean recall of 0.789 ± 0.036, and mean F1-score of 0.812 ± 0.031.  
 
To sum up, the chimeric model, which unites both global contextual embeddings and local 
sequence information from the two base-models, outperforms any individual base-model. Within 
the predominantly imbalanced training dataset containing 276 active deamidation sites (hot 
spots) and 2009 inactive sites, the chimeric model accurately identified 218 deamidation hot 
spots and 1966 inactive sites. Notably, approximately 84% of predicted deamidation hot spots 
were corroborated as active sites in peptide mapping experiments. 
 
 
Table 1. Performance metrics for models harnessing different sequence representations in prediction of deamidation 
using 5-fold stratified cross validation on training data set 

Descriptors Accuracy Precision Recall Specificity F1-score MCC 
Local sequence only 0.932 

±0.014 
0.745 
±0.044 

0.679 
±0.039 

0.967 
±0.019 

0.710 
±0.035 

0.673 
±0.030 

Global embeddings 
only 

0.944 
±0.012 

0.798 ± 
0.049 

0.728 ± 
0.043 

0.975 
±0.016 

0.761 
±0.046 

0.731 ± 
0.027 

Local + Global 
embeddings 

0.956 
±0.014 

0.835 
±0.059 

0.790 
±0.036 

0.979 
±0.016 

0.812 
±0.031 

0.787 
±0.038 

 
 
 
Independent dataset predicting deamidation hot spots 
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To rigorously test the “chimeric” model performance for deamidation hot spots predictions, we 
used an independent dataset. The dataset composed of 6 antibodies, including 5 in-house 
antibodies and the NISTmAb; all of which were subjected to the automated peptide mapping 
following the identical handling and incubation at 40 °C pH 8.0 for up to 8 weeks as described in 
Figure 1. Of the 312 total potential deamidation sites in this dataset involving N and Q residues, 
the chimeric model achieved an accuracy of 95%; 36 were labeled as true deamidation hot spots 
whereas the remaining 276 as inactive sites. The chimeric model correctly identified 28 
deamidation hot spots with only 6 false positive cases among the deamidation inactive set; 
specifically, the model overpredicted 6 deamidation events that were not experimentally 
observed, while underpredicted 8 cases (Figure 5a). Interestingly, one true positive deamidation 
event, revolving the CDR N73 deamidation of antibody-2, captured by the chimeric model 
prediction was however overlooked in peptide mapping to begin with, owing to the short peptide 
generated from tryptic digestion eluted with solvent front, causing loss of sequence coverage 
which include the asparagine site of interest. A follow-up LysC based peptide mapping 
experiment confirmed this site as true positive (Figure 5c). In Table S5 we show the prediction 
outcome for NISTmAb, antibody-1, antibody-2 from this dataset and highlighted the 
deamidation hot spots. Additionally, we used the AUC value of the receiver operating 
characteristics (ROC) curve to benchmark chimeric model’s performance, and compared with 
other models such as the ESM-2 only (without local module) model and several local sequence 
models using different window sizes (Figure 5b). As shown, the chimeric model demonstrated an 
AUC of 0.986, the highest among all models evaluated.  
 

 
Figure 5. a) Confusion matrix of the independent test dataset involving total 312 potential deamidation 
sites, with 276 experimentally confirmed inactive sites and 36 confirmed active sites. Specifically, within 
the confusion matrix, the model assigned 270 actual inactive sites as non-deamidated; the model 
identified 28 actual active sites as deamidation hot spot. Additionally, the model mistakenly assigned 6 
inactive sites as deamidation hot spot (overprediction); and the model overlooked 8 active sites and 
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assigned them as inactive sites (underprediction). b) The receiver operating characteristics (ROC) curves 
and area under the curves (AUC) for independent test set predictions with different models. The chimeric 
model outperformed the rest. c) Extracted ion chromatograms corresponding to the deamidated and 
unmodified peptides via LysC digestion enabled experimental confirmation of CDR N73 deamidation 
status.   

 
 
Additionally, we also compared the performance of chimeric model with other published 
deamidation classifiers or of similar architectures, in order to assess the relative performances. 
We computed performance metrics including accuracy, precision, recall, MCC, specificity. It’s 
imperative that the same training and test datasets are used for all classifiers tested; herein we 
have applied to our independent dataset several different classifiers available from literature. 
These include structure-based decision tree model by Yan et al.,25 a random forest model by Jia 
et al.;21 we also included a sequence-based method called NGOME,22 by using the web server 
that directly took sequence input with default parameter settings.23 Last but not least, we also 
compared all these approaches to a simple empirical method, which simply flags all NG, NS, and 
NN motifs to be deamidated.   
 
In Table 2 the comparison results among these different approaches are listed. As shown, the 
chimeric model achieved the highest MCC and accuracy. It did not achieve the highest precision 
performance, but our model performed still well in terms of precision metric, only less by 0.01 
unit. Regarding recall metric, the canonical NG/NS/NN motif-based approach gave an 
exceptionally high recall score of 0.944; however, these motifs are not always liable to 
deamidation, these canonical motifs tend to overpredict deamidations, as evidenced by the 
significantly lower precision score of 0.586.  
 
Table 2. Comparison of prediction performance using an independent test set. Values are rounded to three decimal 
places; highest value in each performance metric is highlighted in bold. 

Classifier Accuracy Precision Recall MCC Specificity 
Decision tree 
model25 

0.949 0.833 0.694 0.733 0.982 

Random forest 
model21  

0.952 0.818 0.750 0.757 0.978 

NGOME23 0.942 0.781 0.694 0.705 0.975 
NG, NS, NN-
motifs 

0.917 0.586 0.944 0.704 0.913 

Chimeric 
model 

0.955 0.823 0.778 0.775 0.978 

 
 
 
Quantitative deamidation extents prediction 
We show that the described architecture can go beyond classifying binary deamidation statuses, 
and further, quantitively predict the deamidation extents for future time points. This requires 
simple adjustment of the model output layers by adding a regression head which outputs three 
neurons corresponding to the t = 2, 4, 8 weeks three time points (Figure S5), followed by 
supervised learning using the experimentally measured deamidation extents at each time point as 
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labels. We were able to train the model to provide quantitative deamidation information. In 
Figure 6a, 6b, 6c we visualize the model performance based on fivefold cross-validation using 
the training dataset, where the predicted deamidation extents were plotted against the 
corresponding experimental deamidation percentages at different time points. At each time point, 
we performed linear regression as denoted by the solid-red straight line; whereas the dotted lines 
represent the hypothetical 45° diagonal line where the measured deamidations levels equal to 
those predicted. Overall, the regression model demonstrated good quantitative predictions for the 
deamidations.  
 
To further validate, we also tested using the same in-house independent test dataset that contains 
5 in-house antibodies and NISTmAb. Shown in Fig 6d are the comparative results between 
predicted deamidations for hot spots and the actual peptide mapping measured deamidations, for 
Ab-1, Ab-2, and NISTmAb.  where the model accurately predicted the deamidation levels. For 
NISTmAb, the predicted deamidation extents for its designated 3 deamidation hot spots (N328, 
N387, and N392 of heavy chain) aligned well with the measured levels; despite the comparable 
values among prediction and experimental, the model designated N328 as a hot spot whereas in 
reality the true label for N328 is inactive (Table S5). In Ab-1, the model’s quantitative 
predictions were in good agreement with peptide mapping measurements for all time points, with 
one exception of a marginally overpredicted deamidation on heavy chain N50. Although this site 
was labeled as inactive because it gave low deamidations experimentally throughout the 8 weeks’ 
time course (Figure 6d), the model classified it as a hot spot (Table S5); nevertheless, it’s 
reassuring to see that the model’s regression only assigned low levels of deamidations. Mostly 
interestingly for Ab-2, the CDR deamidation of N73 on heavy chain, while the model assigned 
this site as a deamidation hot spot and provided quite notable levels of deamidation predictions 
as shown in Table S5; experimentally, zero deamidation was detected in peptide mapping in the 
first place owing to the sequence coverage loss by the small tryptic peptide (peptide DN73SK, 
Figure 5c) generated from trypsin digestion – the peptide eluted with solvent front during LC-
MS therefore no coverage for N73 on heavy chain. Fortunately, we were able to confirm the N73 
deamidation status by conducting a LysC digestion peptide mapping, which rendered longer 
peptide (namely, less hydrophilic and better retention) carrying the site of interest (Figure 5c, 
6d). By and large, this is a rare but interesting scenario highlighting the model-based approach 
can overcome certain intrinsic limitations from experimental.  
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Figure 6. Chimeric model quantitative deamidation extent predictions evaluated by plotting the predicted 
deamidation values (y-axis) versus peptide mapping determined values (x-axis) at 2-week (a), 4-week (b), 
and 8-week (c) time points. Linear regression curves (red solid line) were generated and overlayed with 
diagonal lines (blue dotted line) for visual evaluation purpose. d) Bar graphs comparing the model-
predicted deamidation extents and the corresponding experimentally determined deamidation extents for 
NISTmAb, antibody-1, and antibody-2 at time points t = 2, 4, 8 weeks. 

 
 
Model implementation for high-throughput screening drug candidates  
In drug discovery space, effective drug screening and triage play pivotal roles in identifying 
optimal drug candidate, early de-risking, and accelerating biologics design to development.51 In 
addition to experimental screening approaches, computational screening and triaging have 
become a disruptive technique enabling the identification, optimization of drug candidates and 
advance lead selections.52,53 In this work, we ran a pilot study involving 86 clones from different 
transfection pools and fed only the FASTA sequences to the model framework for deamidation 
hot spots assignment and deamidation extents projection. All these clones shared a common light 
chain, but the heavy chain sequences were vastly different. The model was able to project the 
deamidation extents and identified a panel of 8 clones that potentially exhibited lower 
deamidation liabilities, as can be seen from Figure 7a where the heavy chain sequences of these 
antibodies were predicted to carry less deamidation (< 5%) even under 8 weeks’ stressed 
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condition of pH 8.0 and 40 ℃. The residue-specific deamidation profiles of each sample was 
further elucidated as a heatmap (Figure 7b). 
 
Notably, this screening process only took several minutes; in contrast, we estimate it may take up 
to 4 months to harvest comparable information experimentally for the 86 clones, given the 
lengthy processes including samples forced degradation treatment, peptide mapping sample 
preparation, LC-MS/MS data acquisition, and data processing. In fact, one may find it’s difficult 
to justify experimentally measuring all these samples in discovery phase considering the 
potential time and resources required to invest upfront. Nevertheless, we demonstrate this model-
based approach as a potential high-throughput screening and triage tool that facilitates the access 
of deamidation liability profiling, this information not only reduce experimental burdens, but 
also when in conjunction with other experimental efforts, can potentially ensure more effective 
drug lead selection and optimization.   
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Figure 7. a) A pilot study involving 86 different clones of antibody where the model projected quantitative 
deamidation levels for each sample under the condition of pH 8.0 and 40 °C for 2-week, 4-week, and 8-
week by taking FASTA sequence files as input. The circled region designates an identified panel of 8 
antibodies that exhibited low deamidation liability on heavy chain. b) Heatmap compiling the residue-
specific, time-dependent deamidation extents predicted by the model; each column refers to a specific N 
or Q residue (information masked) assigned as deamidation hot spot of the designated clone. 
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Discussion 
 
In this work, we showcase it’s possible to accurately predicts antibody deamidations by using the 
state-of-the-art protein language models (pLMs) framework, we described a systematic 
workflow capacitated by a novel high-throughput peptide mapping procedure, followed by pLM-
driven deep learning. The pLM used here is ESM-2. Our primary objective was to highlight the 
potential of using protein language models in extracting latent, context-dependent information 
feasible for assimilated protein features, and the implementation of automated peptide mapping 
in generating high quality large amount residue-specific data, based on which to fulfill the need 
for task-specific, supervised machine learning. The automation platform outlined here is an 
elaboration of a previously described workflow,54 with added functionality of automated sample 
concentration normalization.  
 
Compared to conventional machine learning methodologies in the context of deamidation 
predictions that require various handcrafted descriptors from structural and/or physicochemical 
aspects in addition to the protein sequences as input, the pLM-based methodology greatly 
simplifies the input and only requires primary sequences. For optimal performances, we 
investigated several different model architectures and settled with a chimeric design which 
incorporates two base-models working cohesively and extracting global sequence representations 
and local sequence information, respectively. The novelty of this approach is to use a pretrained 
protein language model (ESM-2) harvesting the global contextual embeddings for the sites in 
conjunction with use of supervised word embedding mining the local sequence dependencies.  
We demonstrated that the chimeric model performed well in both deamidation classification and 
regression tasks. Additionally, these findings may suggest that the information on the 
evolutionary context of a sequence, more specifically, potential rules pertinent to deamidation 
occurrences are already embedded in the large language model ESM-2. 
 
The improved performance of this model is most likely owing to the adoption of contextual 
protein language models that extract features from the overall protein sequences for the site of 
interest. These latent features have shown great flexibility and robustness in domain-specific 
tasks, even with sparse datasets where transfer learning, which entails training models on large 
datasets to study scarce datasets, becomes very useful.55 In this work despite high-throughput 
automation the available deamidation instances are still relative few, and the overall dataset is 
imbalanced. This, however, marks good use case combining language models-based approaches 
in conjunction with transfer learning. Specifically, the embeddings learned from pretrained pLM 
(i.e., ESM-2) are essentially distilled knowledges obtained through the data-rich pre-training 
objectives, these knowledges were then used to improve the downstream deamidation prediction 
tasks by feeding to the existing deamidation dataset supervised by the peptide mapping 
determined readouts. To the best of our knowledge, this work is the first using the distilled 
knowledge gathered from large pretrained pLMs for the prediction of deamidations; of note, 
pLMs have been used for other post-translational modification predictions such as 
succinylation,37 phosphorylation.36 Our data suggest that the pLM-derived representations are 
versatile, adaptive features; analyses of pLM representations have indicated that pLMs 
intrinsically learn essential biologically relevant features29 – a likely explanation why simple 
model architecture is sufficient to achieve competitive performances. 
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Despite the exceptional performances, an inevitable limitation of the outlined chimeric approach 
is the lack of clear insights as to what specific features are crucial for the learning and how they 
contribute to determining deamidations. This limitation echoes with the inherent lack of 
interpretability of protein language models or any large language models (LLMs); currently, 
comprehensive understanding of the inner workings of large language models remains elusive. In 
contrast, take the local sequence base-model as example, although it was less predictive 
compared to the chimeric model or to the ESM-2 base model (Table 1), it is advantageous in that 
it’s easily interpretable and provides insights regarding top sequence motifs learned that are most 
predictive of deamidations. For instance, with supervised word embedding using window size of 
3 amino acids, the local sequence model found that the top 3 deamidation X+1 motifs are NG, 
NS, and NN; in good agreement with previous findings that canonical motifs NG, NS and NN 
are among the most common in deamidation degradation,8,17,18,56 and that glycine and serine are 
critical residues affecting deamidation owing to their steric and catalytic effects.56 Interestingly, 
this local sequence model also identified sequence motifs such as SN, EN, and WN as the top 
three X-1 motifs. Chelius et al. has, concordantly, reported the highest level of deamidation in 
terms of X-1 motifs include SN, EN, and LN.50  
 
Notably, this presented workflow is not limited to antibody deamidations but, with minimal 
adjustment, extendable to other sequence liabilities, such as Asp isomerization, Met and Trp 
oxidation, Tyr sulfation, etc. In particular, Asp isomerization liability has been reported on 
antibodies impacting their stability and potency.48,57 Noteworthily, we also observed sporadic 
isomerization modifications in our dataset under the condition of pH 8.0 and 40 °C; however, 
Asp isomerization has a higher rate at lower pH (< 5.5).48,58 While it should be straightforward 
extending the protein language model-driven framework outlined here to Asp isomerization, 
challenges lie in the mass spectrometric detection and curation of quality dataset as unlike 
deamidations which render a +0.98 Da mass shift, isomerization has no net molecular mass 
change; instead, the detection and quantification of isomerization species largely depend on the 
chromatographic separation between isoAsp and Asp species. The use of ETD, rather than CID 
or HCD for tandem mass fragmentations, may assist in distinguishing isoAsp and Asp species, 
and resolve residue-specific isomerization.59  
 
Considerations to further improve the performance of pLM-focused approaches may involve the 
following aspects: (i) conducting supervised fine-tuning (FT)60 or parameter-efficient fine-tuning 
(PEFT)61 of pretrained pLM to tailor the language model to more efficient transfer learning 
adapting to downstream tasks; (ii) combining pLM embeddings with additional descriptors such 
as structural or physicochemical features; (iii) as is with any machine learning models, increasing 
dataset size with accurate results should help. 
 
 
Materials and methods 
 
Chemicals and reagents 
All antibodies described in this work, except for NISTmAb antibody, were produced using 
Chinese hamster ovary (CHO) cell lines at Bristol Myers Squibb. The NISTmAb, which is a 
humanized IgG1 monoclonal antibody, was obtained from Sigma-Aldrich (Cat. NIST8671). 
Trypsin was purchased from Promega (Cat. V5280); the guanidine hydrochloride (8.0 M, Cat. 
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24115) and microdialysis cassettes (Cat. 88260) were purchased from Thermo Fisher Scientific. 
All other reagents were purchase from Sigma-Aldrich.   
 
Accelerated thermal stress  
A panel of 51 antibodies, including NISTmAb and 50 in-house antibodies of varied modalities, 
including monoclonal antibody, bispecific antibody, fusion protein, were buffer exchanged to 
100 mM Tris pH 8.0 at 5.0 mg/mL, followed by incubation at 40 °C up to 8 weeks with interim 
time points of 1-week, 2-week, and 4-week (Figure 1). Samples were stored at -80 °C upon due 
time. For t = 0 control, the samples were put to storage immediately after buffer exchange. This 
gave overall 255 samples; these samples were then subjected to peptide mapping protocol and 
LC-MS/MS analysis. 
 
Automated peptide mapping 
A high-throughput fully automated peptide mapping sample preparation platform was developed 
by using the Lynx liquid handling robotic system (Dynamic Devices). The robot is equipped with 
a plate gripper and an individually addressable 96-chanel pipetting arm; each channel has a 
maximum capacity of 1250 L. The plate gripper enables 96-well plate movements on deck upon 
method initiation. The liquid handler deck is equipped with a BioShake Q1 (Q Instruments) that 
enables the heating, cooling, and shaking required in the protocol.  
Detailed sample handling steps are described in Supplemental Information. Briefly, the Lynx 
robotic system performed the following procedures sequentially: protein sample concentration 
normalization, denaturation, disulfide bond reduction, free cysteine alkylation, microdialysis-
based buffer exchange, trypsin digestion, quench of reaction, cooling storage. Upon completion, 
the resulting plate containing the quenched digests covered with a light-protective lid was placed 
on the cooling block upon retrieval by analyst.  
 
LC-MS/MS analysis  
The Vanquish UHPLC module (Thermo Fisher Scientific) was configured to directly take the 
resulting 96-well plate from automated peptide mapping protocol. An aliquot of peptide digests 
(6 µg) was loaded onto a reversed phase C18 column (130 Å, 1.7 µm, 2.1 ×150 mm; Waters) and 
spatially separated using a linear gradient from 0% to 40% mobile phase B, consisting of 0.02% 
(v/v) TFA in acetonitrile at flow rate of 0.2 mL/min. The column temperature was maintained at 
55 °C. The detection was performed using an Exploris 480 mass spectrometer (Thermo Fisher 
Scientific), with an electrospray ionization source operated in positive polarity at spray voltage 
of 3.5 kV, capillary temperature of 320 °C. The mass range of precursor ions was set at 250-2000 
m/z with a high resolving power of 120,000. Data acquisition was performed in top 5 data-
dependent acquisition mode, with dynamic exclusion duration set for 5 sec after each scan, in an 
effort to further boost MS/MS spectra even for lower-abundance species, facilitating site-specific 
modification assignment during data analysis. Details regarding database searching, post-
translational modifications (PTMs) identification and quantification are described in 
Supplemental Information. 
 
 
 
Abbreviations 
Ab  Antibody 
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ANN  Artificial neural network 
Asn  Asparagine 
Asp  Aspartic acid 
AUC  Area under the curve 
CDR  Complementarity-determining region 
CID  Collision-induced dissociation 
cIEF  Capillary isoelectric focusing 
CNN  Convolutional neural network 
Cys  Cysteine 
DNN  Deep neural network 
DTT  Dithiothreitol 
EDTA  Ethylenediaminetetraacetic acid 
ESM  Evolutionary scale modeling 
ETD  Electron-transfer dissociation 
FN  False negative 
FP  False positive 
FPR  False positive rate 
FTE  Full-time employee 
GdnHCl Guanidine hydrochloride 
HCD  Higher energy collision dissociation 
HTP  High-throughput 
IAM  Iodoacetamide 
LC-MS Liquid chromatography-mass spectrometry 
LSTM  Long short-term memory 
Lys  Lysine 
LysC  Endoproteinase Lys-C enzyme 
mAb  Monoclonal antibody 
MCC  Matthew’s correlation coefficient 
Met  Methionine 
MS/MS Tandem mass spectrometry 
pLM  Protein language model 
PTM  Post-translational modification 
QSAR  Quantitative structure-activity relationship 
ReLU  Rectified linear unit 
RNN  Recurrent neural network 
ROC  Receiver operating characteristics 
SASA  Solvent-accessible surface area 
SD  Standard deviation 
TFA  Trifluoroacetic acid 
TN  True negative 
TP  True positive 
TPR  True positive rate 
Trp  Tryptophan 
Tyr  Tyrosine 
UV  Ultraviolet 
XIC  Extracted ion chromatogram 
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