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Abstract

Block copolymers play a vital role in materials science due to their widely stud-

ied self-assembly behavior. Traditionally, exploring the phase space of block copoly-

mer self-assembly and associated structure–property relationships involves iterative

synthesis, characterization, and theory, which is labor-intensive both experimentally

and computationally. Here, we introduce a versatile, high-throughput workflow to-

wards materials discovery that integrates controlled polymerization and automated

chromatographic separation with a novel physics-informed machine learning (ML) al-

gorithm for the rapid analysis of small-angle X-ray scattering (SAXS) data. Leveraging

the expansive and high-quality experimental datasets generated by automated chro-

matography, this machine learning method effectively reduces data dimensionality by

extracting chemical-independent features from SAXS data. This new approach allows

for the rapid and accurate prediction of morphologies without repetitive manual anal-

ysis, achieving out-of-sample predictive accuracy of around 95% for both novel and

existing materials in the training dataset. By focusing on a subset of samples with

large predictive uncertainty, only a small fraction of the samples needs to be inspected

to further improve accuracy and achieve near-perfect predictions. In summary, the

synergistic combination of controlled synthesis, automated chromatography, and data-

driven analysis creates a powerful workflow that markedly expedites the discovery of

structure-property relationships in advanced soft materials.

Introduction

Block copolymers are an important class of materials known for undergoing self-assembly

into well-defined nanostructures, underpinning their use in applications including drug deliv-

ery, high-performance materials, and advanced electronics.1,2 Self-assembly into a variety of

nanostructures, including body-centered cubic (BCC), hexagonally-packed cylinders (HEX),

double gyroid networks (GYR), and lamellae (LAM) can be precisely tuned by various pa-

rameters including block chemistry, volume fraction (f ), molecular weight (M n), and archi-
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tecture.3 More recently, Frank–Kasper phases, hexagonally close-packed spheres, hierarchical

X-in-Y structures, and complex network phases have been discovered in block copolymers,

highlighting the ever-expanding palette of potential morphologies and properties achievable

in this class of soft materials.4–8

Traditionally, studying the phase behavior of block copolymers is laborious, involving

iterative synthesis across many different compositions and molecular weights, coupled with

characterizing each distinct material using tools such as small-angle X-ray scattering (SAXS).

The complexity of this approach is underscored by the need for rigorous peak indexing of

each SAXS pattern to accurately determine a given structure, which is complicated by is-

sues including poor long-range order, missing reflections (i.e., form-factor minima that sup-

press allowed reflections), limited peak resolution, sample purity, the presence of coexisting

phases, and extraneous atmospheric scattering.9–13 At best, analyzing SAXS datasets is

time-consuming and slow; at worst, the aforementioned issues cause challenges that only an

expert-level understanding of X-ray theory can help resolve. The considerable complexity,

time, and effort required to accurately identify nanostructures formed by block copolymers—

and other materials—is compounded by an expansive parameter space, highlighting the po-

tential utility of a workflow that accelerates the study of new materials, ideally in a fashion

that is accessible to researchers from many different backgrounds.

Thinking about solutions to such experimental bottlenecks can find inspiration from re-

cent advances in computation and theory. In many ways, similar issues are encountered with

the de-facto tool for simulating block copolymer phase behavior—self-consistent field theory

(SCFT).14–19 Like with contemporary experiments, the extensive computational resources

required to perform large numbers of simulations is often rate-limiting. In addressing these

challenges, recent advances in machine learning have created new opportunities to automate

structural analysis by detecting patterns in datasets with high dimensionality.20–23 For ex-

ample, Olsen and colleagues leveraged a random forest model to analyze the phase behavior

of diblock copolymers using experimental data mined from the literature24. While effective
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in predicting phases of existing polymers in the database, this method, which we refer to as

a chemistry-dependent random forest (CD-RF), relies on chemical-specific features, such as

monomer identities, volume fraction, molecular weight, and temperature, which limits the

predictive accuracy of phases formed by new monomers that are not in the database.

Here, we build on these advances and report a machine learning method that rapidly,

automatically, and accurately determines the morphology of block copolymers from small-

angle X-ray scattering (SAXS) data to enable real-time data analysis. Unlike conventional

machine-learning methods for analyzing SAXS data that process the full intensity curve

without explicit noise filtering, our approach is informed by X-ray scattering theory and

automatically extracts pivotal physics-informed morphological features from the reduced 1D

intensity scattering pattern to construct a universal classification model and enable real-time

data analysis for researchers. Statistically, our method introduces two major innovations.

First, by modeling each intensity curve with a Gaussian process,25,26 we incorporate ex-

perimental uncertainties across different wave vector magnitudes, q. Second, the use of

physics-informed features transforms full-intensity curves into a small set of informative

features, thereby enhancing the effectiveness and accuracy of our predictive models. This

combination of advanced statistical modeling and informed feature reduction significantly

enhances the robustness and reliability of our predictive models applied toward accelerated

materials discovery. Our machine learning process is structured into three stages: filtering

the noise of intensity curves with a Gaussian process, detecting peaks and extracting crucial

curve features, and applying different classification models, such as random forest,27 bag-

ging,28 and gradient boosting29 for material phase prediction. Importantly, we couple this

new physics-informed machine-learning algorithm with a powerful experimental technique

recently developed by our groups—automated chromatography—that yields a large set of

well-defined block copolymers from a very small number of as-synthesized samples.6,7,11,30–33

Together, the combined workflow minimizes the synthetic burden of creating comprehensive

and systematic sets of training data that were used to evaluate the accuracy and predictive
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capabilities of the machine-learning framework. Notably, this method achieves approxi-

mately 95% predictive accuracy across a variety of block copolymer chemistries, molecular

weights, domain spacings, and nanostructures, including both new and existing materials

in the training dataset. This method can further identify and correct data that was ini-

tially mislabeled as a result of human error. Through uncertainty assessment, the accuracy

of our method approaches nearly 100% after scrutinizing about 15% of the data with the

highest uncertainty in predictive labels, marking a crucial advancement towards automated,

high-throughput laboratories integrated with SAXS systems.34,35 The data and code used

in this paper are publicly available (https://github.com/UncertaintyQuantification/

automated_polymer_phase_identification).

Results and discussion

Generating block copolymer libraries

To evaluate the efficacy of our new machine-learning algorithm as applied to analyzing

small-angle X-ray scattering (SAXS) data, we leveraged a large experimental dataset (364

SAXS patterns) spanning four different block copolymer chemistries with systematically

varying molecular weights and volume fractions as derived from automated chromatography.

Note that we recently reported the phase behavior of these materials, which was manually

determined by painstaking analysis of each individual SAXS pattern; these experimental

phase portraits are reproduced in Figure 1.11 Each material is a diblock copolymer with

a poly(dodecyl acrylate) block connected to one of four semi-fluorinated acrylates; we de-

note the volume fraction of the semi-fluorinated block in each case by fF. Four classes of

AB diblock copolymers with increasing degrees of fluorination were synthesized via sequen-

tial photo-initiated atom transfer radical polymerization: poly(dodecyl acrylate)-b-poly(2-

fluoroethyl acrylate) (D-1F), poly(dodecyl acrylate)-b-poly(2,2,3,3,3-pentafluoropropyl acry-

late) (D-5F), poly(dodecyl acrylate)-b-poly(1H,1H,2H,2H-nonafluorohexyl acrylate) (D-9F),
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Figure 1: A library of 364 well-ordered diblock copolymers derived from the synthesis and
separation of only 16 parent copolymer samples was used to evaluate the machine-learning
algorithms developed herein. These datasets were recently reported in Physical Review
Materials and are reproduced here for clarity.11 In this figure color indicates the morphology
as determined by manual analysis of SAXS data.

poly(dodecyl acrylate)-b-poly(2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoroheptyl acrylate) (D-12F). Read-

ers interested in the experimental details of the synthesis and chromatographic separation

are referred to our previous publication and the supporting information.11

Filtering and feature extraction

Automated chromatography yielded an extensive library of materials with high-quality self-

assembly across a wide range of volume fractions (f F = 0.02 – 0.80). Representative scat-

tering patterns from six distinct morphologies (disordered (DIS), BCC, σ, HEX, GYR, and
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Figure 2: Panels display a representative example of each morphology. Black and blue curves
represent the original log intensity and the smoothed intensity curves, respectively. Detected
peak locations are highlighted by red triangles and marked with orange dashed lines.

LAM) are plotted in Figure 2, where the blue curve represents the scattering intensities after

noise filtration via a twice differentiable Gaussian process with a Matérn kernel.36 We have

innovated an approach that integrates experimental uncertainties into the Kalman filter for

denoising with minimal computational demand, which is crucial for processing experimental

data. In X-ray diffraction, certain peaks may be absent or suppressed due to factors like

poor resolution or limited long-range order. For example, the σ pattern typically requires

synchrotron-level capabilities to resolve its intricate diffraction pattern often comprised of

circa 48 distinct peaks, whereas using traditional bench-top SAXS instruments would exhibit

significant peak broadening despite analyzing the same nanostructure.4 Excessive smoothing

can obscure these critical small or overlapping peaks, whereas insufficient smoothing might

misinterpret noise as peaks. The smoothing level in Gaussian process regression is controlled

by the range and nugget parameter of the covariance,37 which are determined using the max-

imum likelihood estimate from all DIS samples in our dataset. Comprehensive details on the

formulae for smoothing and peak detection are provided in SI.

In Figure 3, the left panel shows a t-distributed stochastic neighbor embedding (t-SNE)

plot of logarithmic SAXS intensities curves,38 where each point represents an individual
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curve, color-coded by morphology. Utilizing the entire 1D intensity scattering curves leads

to poor separation in t-SNE visualization, likely due to subtle differences in overall scattering

patterns across various morphologies as well as baseline noise interference. To address these

challenges, we employ X-ray scattering theory to construct physics-informed morphological

features (PIMF), which are automatically extracted and input into the machine learning

model rather than using the full scattering curve. Specifically, the analysis of the location

of the first three peaks proved highly diagnostic of distinct morphologies. The middle and

right panels of Figure 3 respectively show the first primary scattering peak location against

the distance between the first and second peaks, and the second peak location against the

distance between the second and third peaks. These plots illustrate that physics-informed

features, such as ratios between peak locations, facilitate a more effective morphology in-

terpretation than a method directly utilizing the entire scattering curve without accounting

for physical information, as different morphologies can be better separated and identified by

physics-informed features. These refined features—the location of the first primary scatter-

ing peak and pairwise ratios of the first three peak locations—hold particular significance

for researchers seeking to analyze novel materials that may lack extensive long-range order.

Figure 3: Left panel: T-distributed stochastic neighbor embedding (t-SNE) for visualization
of original log intensity. Middle panel: First peak location vs. distance between second and
first peak. Right panel: Second peak location vs. distance between third and second peak.

In addition to peak locations, the width and sharpness of the peaks are also critical for

identifying morphologies in block copolymers. Typically, disordered samples exhibit a single

broad and low-intensity peak, whereas ordered block copolymers often display multiple well-

8

https://doi.org/10.26434/chemrxiv-2024-9zjt0 ORCID: https://orcid.org/0000-0003-0846-7943 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-9zjt0
https://orcid.org/0000-0003-0846-7943
https://creativecommons.org/licenses/by-nc/4.0/


resolved and sharp reflections. However, there are instances, such as in HEX, BCC, and

σ phases, where a single peak might emerge due to overlapping peaks or being close to

the order–disorder boundary. To address these challenges, we include the width of the first

primary scattering peak and its sharpness, measured by the second derivative of the peak,

into the model.

Our approach effectively reduced the original intensity curves to six salient features: the

pairwise ratio of the first three peak locations, and the location, width, and sharpness of

the first primary scattering peak. These physics-informed features substantially simplify the

high-dimensional scattering intensity patterns to enable facile structure determination. Im-

portantly, these features are independent of the specific chemical composition of the material,

underscoring the versatility of this approach as a universal algorithm for phase identifica-

tion in a wide range of block copolymers. Including more morphologically relevant features

can improve predictive accuracy in similar tasks, whereas adding a large number of less

informative features may also degrade the predictive accuracy of the model.

Phase identification of new block copolymer chemistries

To demonstrate the versatility of our method with PIMF in rapidly analyzing novel block

copolymers, we first trained our model using manually identified SAXS patterns from three

block copolymer chemistries to predict the morphologies of a fourth material group. Due to

the increased conformational asymmetry of D-1F and D-5F block copolymers, these materials

exhibit a window of σ stability that vanishes in D-9F and D-12F.11 Holding out these two

groups as the training data could lead to inaccurate predictions due to the limited number

of σ samples. Thus, we focused on two testing scenarios: using D-1F, D-5F, and D-12F

to predict the morphology of D-9F, and using the other three block copolymer libraries to

predict D-12F.

We present the results of out-of-sample prediction by the physics-informed morphological

features in the random forest (PIMF-RF) model27 and compare the accuracy with the CD-RF
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model that relies on volume fraction, total molar mass, temperature, and monomer identity

of the diblock copolymers24. We also employ bagging and the gradient boosting model with

our feature set, which provides similar results detailed in the SI. The upper portions of

Table 1 present classification accuracy comparing the performance of different approaches,

both applied to predict the phase behavior of group D-9F. Notably, our approach only has

2 misclassifications out of 57 samples, significantly outperforming the 22 misclassifications

observed in the CD-RF method.

The RF model classifies phases based on the predicted probability for each phase, where

the phase with the highest probability is selected as the predicted outcome. The low maxi-

mum predicted probability indicates high uncertainty of the method, which can be used to

control the predictive error.39 The left panel of Figure 4 represents the maximum predicted

probabilities for all test samples, overlaid on violin plots that illustrate the distribution of

these probabilities.40 The plot reveals that the 2 misclassified samples in group D-9F have

probabilities below 0.55, indicating low prediction confidence. Conversely, correctly classi-

fied samples generally display maximum probabilities exceeding 0.7, demonstrating a higher

confidence level. This pattern suggests that inspecting a small subset of test samples with

low maximum predicted probabilities could enhance the accuracy close to 100%, which will

substantially reduce the manual review workload compared to examining all samples.

0.6
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Figure 4: Maximum predicted probability for correctly and incorrectly predicted morpholo-
gies for the D-9F block copolymer library (left) and the D-12F block copolymer library
(right) using PIMF-RF.

Subsequently, we applied the same PIMF-RF approach to predict the morphologies of

the D-12F block copolymer library with the classification results detailed in the lower two
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Table 1: Prediction results of random forest models on predicting D-9F and D-12F block
copolymer morphologies using PIMF-RF versus CD-RF. The table is segmented into four
sections: the performance of (i) PIMF-RF on D-9F, (ii) CD-RF on D-9F, (iii) PIMF-RF on
D-12F, and (iv) CD-RF on D-12F.

PIMF-RF pred
DIS σ HEX GYR LAM # Misclassified

true DIS 10 1 1
HEX 12 0
GYR 7 0
LAM 1 26 1

CD-RF pred
DIS BCC HEX GYR LAM # Misclassified

true DIS 4 2 5 7
HEX 12 0
GYR 7 7
LAM 4 4 19 8

PIMF-RF pred
DIS BCC HEX GYR LAM # Misclassified

true DIS 12 0
BCC 5 0
HEX 3 36 3
GYR 2 0
LAM 33 0

CD-RF pred
DIS BCC HEX GYR LAM # Misclassified

true DIS 8 1 3 4
BCC 4 1 4
HEX 4 1 29 1 4 10
GYR 1 1 2
LAM 1 32 1
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sections of Table 1. Of the 91 D-12F block copolymers, only three are inaccurately predicted,

an improvement over the CD-RF approach, which misclassified 21 morphologies24. The right

panel of Figure 4 shows that the maximum predicted probabilities of 3 misclassified samples

in the D-12F library are all below 0.5, reinforcing the earlier observation that reviewing sam-

ples with low predicted probabilities can avoid prediction errors from the machine learning

approach. Significantly, our PIMF-RF model accurately identifies the morphology of 142

out of 147 block copolymers (96.6% accuracy) consisting of novel monomers not present

in the training dataset, highlighting the power of this synergistic approach combining ma-

chine learning with automated chromatographic separation towards accelerated materials

discovery.

Phase identification of mixed block copolymer chemistries

To further evaluate the robustness of our high-throughput analysis method under diverse

training conditions, we combined all four classes of diblock copolymers and implemented a

5-fold cross-validation strategy. The dataset was randomly divided into five folds, with each

iteration using four folds for training and one fold for testing. Employing the PIMF-RF

approach results in 25 misclassified morphologies out of 364. Upon careful review, we found

three block copolymers initially mislabeled during manual morphology assignment were iden-

tified and correctly predicted by our approach. These three SAXS patterns are shown in the

SI. The left panel of Figure 5 displays the maximum predicted probabilities for all morpholo-

gies, with mislabeled materials highlighted in red. We retrained our model of the revised

dataset after correcting these labels, and the number of misclassified morphologies using our

PIMF-RF method reduced to 20, which is much smaller than the 62 misclassifications ob-

served with the CD-RF approach24 using the same training data (detailed results are shown

in the SI).

The right panel of Figure 5 presents the violin plot of the maximum predicted probabilities

of all held-out test samples by the PIMF-RF method. Analysis shows that when using a
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threshold of 0.6 for the predicted probabilities, we need to examine only 32 SAXS patterns

(9% of the data) to achieve a predictive accuracy of 98.4%. Increasing this threshold to

0.8 requires inspecting 69 samples (19% of the data), which results in remarkably accurate

predictions with 100% accuracy. This pattern suggests that strategically examining a small

subset of SAXS patterns with lower predicted probabilities enables the ML approach to

attain high predictive accuracy.

Figure 5: Maximum predicted probability for correctly and incorrectly predicted samples
of all diblock copolymers using the physics-informed features for the original samples (left
panel) and revised samples after correcting three mislabeled detected by our method (right
panel).

Conclusions

In summary, we have developed a high-throughput, material-independent workflow for char-

acterizing the morphology of unidentified block copolymers using a physics-informed machine

learning algorithm that rapidly analyzes SAXS data. Leveraging automated chromatogra-

phy and controlled polymerization to generate large datasets for training, our novel ML

approach rapidly analyzed 1D scattering patterns and achieved a remarkable 95% accuracy

in identifying the nanoscale morphologies of diblock copolymers. By integrating this auto-

mated synthesis method with advanced statistical models and machine learning techniques,

we established a robust, high-throughput framework to enhance the predictive accuracy and

efficiency of analyzing polymer phase behavior. This advance paves the way for accelerated

materials discovery and a deeper comprehension of structure-property relationships.41 We
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envision that the synergy between laboratory automation and machine learning will fur-

ther catalyze the development of laboratories of the future, ushering in new possibilities for

research and innovation in polymer science.
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