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We present a simple approximation to estimate the largest charge that a given molecule can hold until fragmentation
into smaller charged species becomes more energetically favorable. This approximation solely relies on the ionization
potentials, electron affinities of the parent and fragment species, and also on the neutral parent’s dissociation energy.

By parametrizing these quantities, it is possible to obtain analytical phase diagrams of polycationic stability. We
demonstrate the applicability of this approach by discussing maximal charge dependence on the size of the molecular
system. A numerical demonstration for linear polyenes, monocyclic annulenes, and helium clusters is provided.

1 Introduction

Molecular composition in the interstellar medium (ISM) is rich: so far, more than 300 molecular species have been
identified through their spectroscopic signatures.[1] If we also include the polycyclic aromatic hydrocarbons (PAHs),
which are estimated to contain up to 10% of all galactic carbon,[2] the potential molecular variety grows even larger.
However, the ISM is still a harsh place for molecules: cosmic radiation from various sources provides high-energy
photons that can provide single and multiple ionization of the molecular species.[1–4] For instance, if a PAH molecule
will absorb an extreme UV or soft X-ray photon, this can lead up to triple ionization with a production of a stable
trication and/or to fragmentation.[3, 5–7] Therefore, molecular mono- and polycations can exist in the ISM, serving as
intermediates in different chemical reactions and generating new molecular species.[8] The potential role of multiply
charged ions in the production of complex molecules can be crucial since the rates of ion-neutral reactions grow linearly
with the increase of the ionic charge.[9]

Over the years, many experimental results were obtained in investigating molecular polycations.[10, 11] For in-
stance, dications were detected in space, in the tails of comets,[12] trications of PAHs were produced with high-energy
photons,[6] by above-threshold ionization (ATI), and also by interaction with highly-charged xenon ions.[13] The quest
for molecular tetracations started with the high-power ATI by femtosecond intense laser pulses, which led to the labo-
ratory detection of tetracations of PAHs,[14] substituted benzene,[15] and even doubly-iodosubstituted acetylene.[16]
Intact tetracations of PAHs were also found in high-energy collisions of neutral PAH molecules with various ions.[17]
However, to our knowledge, no existing model provides a general description of the stability of polycations. In the case
of fragmentation, the availability of many possible pathways of fragmentation possibilities with various spin-charge
states provides a very challenging chemical space to sample.[5, 18–22] Theoretical calculations may be done, for in-
stance, using molecular dynamics-based approaches,[23–26] reproducing some of the polycationic properties, such as
the kinetic energy release in fragmentation.[27] Semi-quantitative models are known to be useful for describing trends
of different processes.[11, 28–31] In particular, a model for polycation stability based on the Coulomb interaction
potential was proposed in Ref. [11], and for fullerenes, a Hückel-method [32] based model was introduced in Ref. [31].

In this work, we provide a derivation of a simple approximation to estimate the largest charge a given molecule
can hold until the fragmentation of this ion into smaller charged species becomes more energetically favorable. This
approximation solely relies on the ionization potentials, electron affinities of the parent and fragment species, and the
neutral parent’s dissociation energy. This allows for a significant reduction of the computational time for estimating
the polycationic stability. The same approximation for the maximal possible charge of the molecule can be further
parametrized to produce an analytical approximation for the maximum charge, depending on various molecular prop-
erties, such as the size of the molecule. We demonstrate the applicability of our approach with two showcase examples,
imitating the ISM-important species. The first case is chemically-bound π-conjugated hydrocarbons: linear polyenes
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and monocyclic annulenes that serve as simplified analogs of PAHs. The second case is helium clusters, illustrat-
ing the general applicability of the same approach to non-covalently bound clusters, such as PAH clusters and dust
nanograins.[33]

2 Thermodynamics of the polycation’s dissociation

Let us define the thermodynamic stability of the polycation through its dissociation reaction via the following formal
chemical reaction:

PQ+ → XqX+ + YqY+ , (1)

where PQ+, with charge Q ≥ 0, is either a parent neutral molecule (Q = 0) or a (poly)cation (Q > 0), and XqX+ and
YqY+ are the daughter ions with charges qX ≥ 0 and qY ≥ 0, respectively. The daughter ions’ charges fulfill the charge
conservation Q = qX + qY. The following equation gives the dissociation energy of this reaction:

DXY(qX, qY) = EX(qX) + EY(qY) − EP(Q) , (2)

where EA(q) denotes the energy of the fragment “A” with charge q. For simplicity, we will consider only the electronic
energy contribution to dissociation energy, ignoring the vibrational effects. To approximate electronic energies of
molecules, we use a Taylor expansion of the following form:[34, 35]

E(q) ≈ E(0) +
dE

dq
(0) · q +

1

2

d2E

dq2
(0) · q2 = E(0) + χq + ηq2 , (3)

where E(0) is the electronic energy of the neutral molecule, χ = dE
dq (0) = IP+EA

2 is Mulliken’s electronegativity,

given through molecular ionization potential (IP) and electron affinity (EA), and η = 1
2
d2E
dq2 (0) = IP−EA

2 is the

Pearson’s absolute hardness.[34, 35] We can apply Koopmans’ theorem to calculate χ and η. This theorem states that
IP = −εHOMO and EA = −εLUMO with ε denoting the molecular orbital’s (MO) energy for the highest occupied MO
(HOMO) and lowest unoccupied MO (LUMO), respectively.[36] Therefore, we can express our parameters in Equation
3 as:

χ =
IP + EA

2
= −εLUMO + εHOMO

2
, (4)

and

η =
IP − EA

2
=

εLUMO − εHOMO

2
. (5)

Parametrization of the electronic energy given in Equation 3 by construction provides exact values for the IP and EA
of the molecule. The aforementioned approximation for the higher ionization states deviates from the actual energy
values. Nevertheless, the general energy increase trend is being reproduced. For instance, for quintuply-charged
benzene (C6H6), the approximation via Equation 3 overestimates the ionization energy by 36% compared to the
DFT-computed value, and for [22]annulene (C22H22), the analogous overestimation is 16%. However, for lower charge
states, the overestimation of the energy is smaller, which makes Equation 3 a useful parametrization of the trends
for IP. A comparison of actual and estimated electronic energies for five annulenes can be found in the supporting
information (SI) in Figure S1.

The expression 3 thus gives us an approximation for the polycation’s dissociation energy of Equation 2:

DXY(qX, qY) ≈
D︷ ︸︸ ︷

EX(0) + EY(0) − EP(0) +

+ χXqX + ηXq
2
X + χYqY + ηYq

2
Y − χPQ− ηPQ

2 =

= D + χXqX + ηXq
2
X + χYqY + ηYq

2
Y − χPQ− ηPQ

2 , (6)

where D = DXY(0, 0) is the dissociation energy of the neutral molecule. For a polycation with charge Q to be
thermodynamically stable, all possible dissociation energies for all dissociation reactions of the type 1 should be
endothermic, i.e., the thermodynamic stability condition is:

min {DXY(qX, qY)} ≥ 0 , (7)

which should be fulfilled for all combinations of the daughter species “X” and “Y” and their charges qX and qY. For a
given set of daughter fragments and the dissociation energy approximation from Equation 6, we can find the minimum
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dissociation energy by varying the charges qX and qY with the charge conservation conditions Q = qX + qY. This can
be easily done using the Lagrangian multipliers technique. For that, we need to find the minimum of the function

F (qX, qY, λ) = DXY(qX, qY) − λ · (qX + qY −Q)

with respect to variables qX, qY, and of the Lagrangian multiplier λ. This is done by solving the following three
equations 

∂F
∂qX

= χX + 2ηXqX − λ = 0
∂F
∂qY

= χY + 2ηYqY − λ = 0
∂F
∂λ = Q− qX − qY = 0

The solution of these linear equations provides us with the optimal values of the fragments’ charges:{
qX = ηXY

ηX
Q + (χY−χX)

2(ηX+ηY) ,

qY = ηXY

ηX
Q + (χX−χY)

2(ηX+ηY) ,
(8)

where ηXY is the reduced hardness of the two fragments, given by the following expression:

ηXY =

(
1

ηX
+

1

ηY

)−1

=
ηX · ηY
ηX + ηY

(9)

Substitution of the optimal charges (Equation 8) into the dissociation energy (Equation 6) would yield the final
(and tedious) expression for the minimal energy upon dissociation of the parent PQ+ into fragments “X” and “Y”.
However, for the hydrocarbons with a persistent sp2 hybridization of the carbon atoms (discussed in more detail in
Section 3), the electronegativities of all the species can be approximated to be the same, i.e., χP ≈ χX ≈ χY. This
simplifies the final equation for the minimal dissociation energy of the parent cation with charge Q into fragments “X”
and “Y” to be:

DXY(Q) = D −

∆η︷ ︸︸ ︷
(ηP − ηXY)Q2 = D − ∆η ·Q2 . (10)

The behavior of DXY(Q) with an increase of the charge Q depends on the sign of ∆η. To determine it, we need to
know if the hardness of the neutral parent (“P”) or the reduced hardness of the neutral fragments (“X” and “Y”) is
larger. From Equation 5, we know that the hardness is half of the HOMO-LUMO gap of the neutral molecule, which
means that the hardness should be a positive number (η > 0). Furthermore, the HOMO-LUMO gap usually tends
to decrease with increasing size of the molecular system. This means that the fragments would have equal or greater
hardness compared to the parent (ηX, ηY ≥ ηP). This inequality leads us to (see Equation 9)

1

ηXY
=

≤1/ηP︷︸︸︷
1

ηX
+

≤1/ηP︷︸︸︷
1

ηY
≤ 2

ηP
.

From here, we obtain ηP ≥ 2ηXY, which means that ∆η = ηP − ηXY ≥ ηXY > 0. Thus, with the increase of charge Q,
we inevitably hit a point when the parent polycation becomes thermodynamically unstable (i.e., condition 7 will be
broken).

Chemically, this result is simple to comprehend. When ionizing the parent, we remove electrons from the valence
shell, which is responsible for the chemical bonds holding the molecule together. Thus, if too many electrons are
removed, fragmentation will be thermodynamically preferable. Note that the parent species still might exist, but as a
metastable state, protected by the activation energy for the fragmentation reaction 1. The charge at which the parent
molecule will become thermodynamically unstable for fragmentation into fragments “X” and “Y” is denoted as the
maximum charge QXY,max, which can be obtained from Equation 10 by setting DXY(Q) = 0, giving

QXY,max =

√
D

∆η
. (11)

The limiting charge for the polycation thermodynamic stability will be the lowest one, and thus the maximal charge
that the parent molecule can acquire without being prone to breakup is

max(QP) = min
X,Y

{QXY,max} . (12)

3

https://doi.org/10.26434/chemrxiv-2023-z7cnv-v3 ORCID: https://orcid.org/0000-0003-3167-3104 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-z7cnv-v3
https://orcid.org/0000-0003-3167-3104
https://creativecommons.org/licenses/by/4.0/


3 Existence of the polycations of linear and cyclic conjugated hydrocar-
bons

3.1 Computational details

...

C2H4

C4H6

C6H8

C8H10

C10H12

C12H14

C22H24

CnHn+2 CnHn
C6H6

C10H10 C14H14

C18H18

C22H22

Figure 1: Linear polyenes (C2nH2n+2) and monocyclic Hückel annulenes (C4n+2H4n+2) considered in this work. The
dashed red lines denote the broken bonds upon dissociation into two equivalent fragments. The justification of the
equivalent fragment dissociation being the most preferable pathway is given in the Appendix.

In the following, we will treat the dissociation of the two classes of hydrocarbons with extended π-systems as
examples: linear polyenes (C2nH2n+2) and monocyclic Hückel annulenes (C4n+2H4n+2), see Figure 1. We will consider
the molecules up to 22 carbon atoms, comprising 11 linear polyenes (n = 1, . . . , 11) and 5 annulenes (n = 1, . . . , 5).
For the polyenes, the all-trans conformations were taken. The computational results (structures and energies) can be
found in the SI.

The quantum-chemical calculations were performed at the PBE0/def2-TZVP level of theory[37, 38] using the
ORCA 5 program package.[39] Each molecule was optimized in the singlet neutral state, and the harmonic frequencies
were computed to confirm that the structure found is indeed a local minimum. Then, for each molecule, at the
optimized neutral geometry, the energies of the doublet monoanion1 and polycations up to pentacations were computed.
Based on these optimized neutral geometries, the fragmentation products were obtained by breaking the central carbon-
carbon bonds (see Figure 1). The geometries of these products, to reduce computational expenses, were not optimized.
In general, this should lead to an underestimation of the dissociation energy in each case of fragmentation. However,
our numerical tests for ethylene, trans-1,3-butadiene, and all-trans-1,3,5-hexatriene show that the values obtained with
such approximation are well correlated with the adiabatic dissociation energies (see SI sections 1.2 and 1.3 for details).

Two multiplicities for the parent’s cations and each fragment species were tested: singlet and triplet for the even
and doublet and quadruplet for the odd number of electrons. For each of these species, the state with the lower energy
was then chosen to calculate the ionization potentials, electron affinities (for parent species), and dissociation energies
of the different neutral and cationic states.

3.2 Analytical solution using Hückel’s method

HOMO and LUMO orbitals for the extended neutral π-systems are π-orbitals in the chosen system set. Therefore, we
can apply Hückel’s method to express the MO energies εHOMO and εLUMO as a function of the number of atoms.[36, 40]

3.2.1 Linear polyenes

In a linear polyene of K carbon atoms, each of the atoms provides one pz orbital to form the π-system, therefore
producing K MOs with energies[40]

εk = α + 2β cos

(
π · k
K + 1

)
, (13)

where k = 1, 2, . . . ,K enumerates the π-orbitals, and parameters α, β ≤ 0 denote the energy of the unperturbed pz
orbital (α) and coupling between neighbouring pz orbitals (β). For a neutral linear polyene of K carbon atoms, the

1Monoanions were computed to obtain the EA values.
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HOMO’s orbital number will be kHOMO = K
2 , therefore2

εHOMO = εK/2 = α + 2β cos

(
πK

2(K + 1)

)
= α + 2β sin

(
π

2

1

(K + 1)

)
≈ α +

πβ

K + 1
.

Similarly, the LUMO’s number is kLUMO = K
2 + 1, and thus

εLUMO = ε(K/2)+1 = α + 2β cos

(
πK

2(K + 1)
+

π

(K + 1)

)
= α− 2β sin

(
π

2

1

(K + 1)

)
≈ α− πβ

K + 1

Using Koopmans’ theorem, we can re-parametrize these expressions. The IP for the K-carbon linear polyene is

IPK = −εHOMO ≈ −α− πβ

(K + 1)
= IP∞ +

B

K + 1
, (14)

where both parameters IP∞ = −α and B = −πβ are non-negative (unlike the original α and β). This gives us{
εHOMO = −IP∞ − B

K+1

εLUMO = −IP∞ + B
K+1

.

With these expressions, we can rewrite the χ and η (Equations 4 and 5) for the linear polyene of K-carbons as follows.
The electronegativity is

χK = IP∞ ≥ 0 , (15)

which means that it does not depend on the size of the polyene’s chain and also that the energy of the molecule
(Equation 3) increases upon ionization. For the hardness, the final expression is

ηK =
B

K + 1
≥ 0 , (16)

therefore, the hardness in this model (which is also half of the HOMO-LUMO gap, see Equation 5) approaches zero
when increasing the size of the molecule.

Upon the dissociation of the linear polyene of N carbon atoms via the carbon-carbon bond cleavage following the
reaction

PQ+︷ ︸︸ ︷
CNHQ+

N+2 →

XqX+︷ ︸︸ ︷
CNX

HqX+
MX

+

YqY+︷ ︸︸ ︷
CNY

HqY+
MY

two polyenes of smaller sizes are formed; therefore, their hardness will also be given by equation 16. This means that
the reduced hardness of the products (Equation 9) will be

ηXY =
B

N + 2
. (17)

Note that in Hückel’s method, the reduced hardness does not depend on the size of the fragments, i.e., all fragmentation
channels are equivalent. Substituting this equation and ηP = B

N+1 (Equation 16) into the equation 11 gives maximal
charge of the linear polyene as

Qmax =

√
Dpoly

B
(N + 2)(N + 1) , (18)

where Dpoly is the dissociation energy of the neutral polyene.

3.2.2 Cyclic annulenes

Let us now assume that we have a monocyclic annulene CNHQ+
N with charge Q. We want to know the dissociation

energy of the backbone of this cation into two smaller charged linear polyene fragments X = CNX
HqX+

NX
and Y =

CNY
HqY+

NY
with charges qX and qY, respectively. This corresponds to the energy of the chemical reaction:

PQ+︷ ︸︸ ︷
CNHQ+

M →

XqX+︷ ︸︸ ︷
CNX

HqX+
NX

+

XqX+︷ ︸︸ ︷
CNY

HqY+
NY

. (19)

As before, both charge and number of atoms must be conserved, i.e., N = NX + NY and Q = qX + qY.

2We use πK
2(K+1)

= π
2
− π

2
1

(K+1)
and sin(x) ≈ x for small x.
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The derivation of the charge-size relation will be similar to linear polyenes in the previous section. As the values for
the dissociation products (linear polyenes) are already known (Equations 15 and 16), that leaves the electronegativity
and hardness of the parent species to be determined.

The MO energies of the cyclic polyenes within the same Hückel approximation are given by the following equation:[40]

εk = α + 2β cos

(
2πk

N

)
, (20)

where k = 0,±1,±2, . . . ,± (N−1)
2 , N

2 for even N , and k = 0,±1,±2, . . . ,± (N−1)
2 for odd N . Each MO is doubly

degenerate, except for k ̸= 0 and k ̸= N/2 (for even N), which means that εk = ε−k, and that the energy of the
MO increases with an increase of |k|. The |k| is essentially an MO’s angular momentum quantum number. We will
limit ourselves to Hückel aromatic annulenes, where N = 4l + 2 with l = 0, 1, 2, . . ..[41] The integer number l denotes
essentially the k-value of the HOMO (kHOMO), which leads to N = 4kHOMO + 2. And kLUMO = l+ 1, since all the ±k
MOs are occupied for Hückel aromatic annulenes. We can formally rewrite N = 4l + 2 as l = (N − 2)/4, which will
give kHOMO = (N − 2)/4 and kLUMO = 1 + (N − 2)/4. Therefore, the energies of these orbitals from Equation 20 are

εHOMO = ε(N−2)/4 = α + 2β cos
(π

2
− π

N

)
= α + 2β sin

( π

N

)
≈

−IP∞︷︸︸︷
α +

2

−B︷︸︸︷
βπ

N
= −IP∞ − 2B

N
(21)

and

εLUMO = ε1+(N−2)/4 = α + 2β cos
(π

2
+

π

N

)
= α− 2β sin

( π

N

)
≈

−IP∞︷︸︸︷
α −2

−B︷︸︸︷
βπ

N
= −IP∞ +

2B

N
. (22)

Now, substituting these Equations 21 and 22 into expressions 4 and 5, we get Equation 15 for the electronegativity
(χ) and

ηN =
2B

N
(23)

The products’ reduced hardness will be again given by Equation 17. Substitution of Equations 23 and 17 into Equation
11 gives us the final maximal charge of the annulene as:

Qmax =

√
Dannu

B
N , (24)

where Dannu is the dissociation energy of the neutral annulene.

3.3 Parametrization of the model

Let us look at the set of parameters obtained from the quantum-chemical calculations: IP, EA, electronegativity χ
(Equation 4), hardness η (Equation 5), and also the dissociation energies of the neutral molecule into two equivalent
molecular fragments according to Figure 1. The resulting trends as a function of the number of carbon atoms in
the molecule are given in Figure 2. The IP decreases and EA increases with an increasing number of carbon atoms.
However, their mean value (χ) remains rather constant, as predicted with Hückel’s method. This means that our
approximation, resulting in Equation 11, applies to this type of system.

To apply the Hückel’s model expressions (Equations 18 and 24), we also need an estimation of the coupling
strength of the sp2-hybridized orbitals, given as parameter B in Equations 18 and 24. To obtain such an expression,
the Equation 14 was fitted to the quantum-chemically computed values of polyenes, giving IP∞ = 5.4 ± 0.1 [eV] and
B = 16.1± 0.7 [eV]. The second parameters, Dpoly and Dannu, were taken as the means of the dissociation energies of
the neutrals of all computed sizes. The values for both polyenes and annulenes approach some limit, therefore justifying
such an operation. The oscillations of the dissociation energies for polyenes arise from the alternating middle bond
being either a formally single or double bond (see Figure 1). The resulting values were Dpoly = 6.5 ± 0.7 [eV] and
Dannu = 12.3 ± 0.5 [eV]. Note that Dannu ≈ 2 ×Dpoly, because two carbon-carbon bonds are being broken during the
dissociation of the annulene.

The main flaw of the Hückel’s method solution is that the HOMO-LUMO gap of the extended systems decreases to
zero upon increasing the size of the polyene/annulene. As we can see from quantum chemistry (Figure 2), η decreases
in the case of both the polyenes and annulenes, but not to zero, as predicted by Hückel’s model, but to some finite
value. To remove this limitation, we use a three-parametric expression for approximating quantum-chemical values to
obtain the carbon backbone length-dependent graphs:

ηN = η∞ +
η0

N + K
, (25)
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Figure 2: Ionization potentials (IP), electron affinities (EA), electronegativity (χ), hardness (η), and dissociation
energies of the neutral molecule (D00) of the linear polyenes (left) and monocyclic annulenes (right) as a function of
the number of carbon atoms in the molecule. The IPs of polyenes were fitted with Equation 14. The legend is the
same in the left and right plots.

where N is the number of carbon atoms in the molecule, and the three fitting parameters are η∞, η0, and K. K

was limited to integer numbers. The results of the fitting are η
(poly)
∞ = 0.77 ± 0.1 [eV], η

(poly)
0 = 33.8 ± 0.1 [eV], and

K(poly) = 4 for the polyenes and η
(annu)
∞ = 1.2 ± 0.1 [eV], η

(annu)
0 = 25 ± 1 [eV], and K(annu) = 0 for annulenes.

With the hardness of the form given by Equation 25, the most energetically favorable breakdown channel is
dissociation into two equal fragments (see Appendix for proof). In this case, when a polyene or annulene with N
carbon atoms dissociates into two polyenes with N/2 carbons, we get the reduced hardness (Equation 9) to be

ηXY =
η
(poly)
N/2

2
,

where η
(poly)
N/2 corresponds to applying Equation 25 with N/2 atoms and polyene parameters, given above. We note

that this assumption of symmetric dissociation may fail if stable products are formed, like in the case of acetylene–like
fragments.[5] In particular, we observe this for adiabatic dissociation energies of the all-trans-1,3,5-hexatriene (section
1.3 of SI). However, the numerical tests show that the dissociation energy trends correlate well for the lowest energy
asymmetric dissociation and the symmetric energy dissociation channels.

3.4 Comparison of the model with quantum chemistry

We have computed the dissociation energies for each of the charge states of the polyenes and annulenes and dissociation
pathways given in Figure 1. As an example, the result is provided for the polyenes in Figure 3. We can think of the
resulting map as a phase diagram in the size-maximal charge space: the positive dissociation energies correspond to
thermodynamically stable polycations of a given size and charge, whether the negative ones are the thermodynamically
unstable species that are prone to carbon backbone dissociation. To estimate more accurately the maximal charge
at a given size for a given molecule, we can use the following approximation. First, determine the last stable integer
charge Q of the molecule with dissociation energy D(Q) ≥ 0. Then, use a linear approximation of dissociation energy
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Figure 3: Dissociation energies for the linear polyenes of different sizes and cationic charge states. The black line
approximates each species’ maximal charge Qmax.

D in the range of charges between Q and Q + 1 to find the Qmax from condition D(Qmax) = 0 as

Qmax ≈ Q +
D(Q)

D(Q) −D(Q + 1)
.

The corresponding line can be considered an approximate phase-change line, and such a result for polyenes is shown
in Figure 3.

Additionally, we can compare the quantum-chemically computed Qmax values with the quantum-chemically pa-
rameterized models, both based on simple Hückel’s method and more general parametrizations with hardness given by
Equation 25. The results are shown in Figure 4. The trend for the polyenes from Hückel’s method is too fast-growing,
which is attributed to the HOMO-LUMO gap approaching zero. The empirically-fitted hardness gives better trends,
although lower in energy than the quantum-chemical values. This is probably due to approximating the parent species
and using their values for the fragments. In the case of linear polyenes, this approximation gives better results since the
products are reminiscent of the parent species. However, in the case of the annulene species, the resulting fragments
are structurally different from those from polyenes, and these effects, like differences in trans-/cis- energies, can lead to
the observed deviations. Nevertheless, we can say that the approximate model based on the hardness of the reagents
and products reproduces the important features of the size-maximal charge phase diagrams.

4 Critical sizes of multicharged helium droplets

In the next step, we apply the same principles to the thermodynamic stability of the weakly bound clusters in the
most straightforward example, i.e., in the case of helium clusters, for which experimental data on the critical sizes
of the clusters with different charges is available from the literature. [42, 43] We also can find the expression of the
helium clusters’ (Hen) energies as a function of the number of atoms n:[44, 45]

Etot(n) = −ε∞ · n + ε2/3 · n2/3 − ε1/3 · n1/3 , (26)

where ε∞, ε2/3, and ε1/3 are the fitted coefficients.
We obtained the parametrizations of the energy, electronegativity, and hardness as a function of the helium cluster

size using the following procedure:
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Figure 5: Examples of GFN2-xTB-optimized structures of the Hen clusters.

• Various helium cluster initial geometries for n ≤ 1000 were cut from the hexagonal closed packing (HCP)
spherical cluster of 1002 atoms, optimized using the GFN-FF force field[46] implemented in xTB software. HCP-
type arrangement was chosen as a building pattern for clusters since solid helium can exist in this structure.[47]
For each of these Hen clusters, structure optimization and harmonic frequency calculations were performed at
the semi-empirical GFN2-xTB level of theory[48] using the xTB software.[49]

• For these Hen clusters, the single point energies (E(n)) were computed at the DLPNO-CCSD/aug-cc-pVDZ
level of theory. IP and EA were computed using IP-EOM-DLPNO-CCSD/aug-cc-pVDZ, and EA-EOM-DLPNO-
CCSD/aug-cc-pVDZ levels of theory, respectively. All these calculations were done using the ORCA 5 program
package.[39]

• The resulting total energies (Etot(n) = E(n) + ZPVE), comprised of the zero-point vibrational energy (ZPVE)
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at the GFN2-xTB level of theory and the electronic energy (E(n)) at the DLPNO-CCSD/aug-cc-pVDZ level of
theory, were fitted to the Equation 26. The resulting parameters were ε∞ = 78.6531±0.0001 [eV], ε2/3 = 13.8±0.6
[meV], and ε1/3 = 11.2 ± 0.5 [meV].

• The IPs and EAs were then fitted to the equations{
IP(n) = IP∞ + IP0 · n−1/3 ,

EA(n) = EA∞ + EA0 · n−1/3 ,
(27)

with these parameters being IP∞ = 24.066±0.004 [eV], IP0 = 0.32±0.01 [eV], EA∞ = −4.12±0.03 [eV], EA0 =
−0.6± 0.1 [eV]. These trends were then corrected for the experimental values of IP and EA for the helium atom
(IPexp(He) = 24.6 [eV] and EAexp(He) = 0.1 [eV])[50, 51] by adding corrections IPcorr = IPexp(He)− IP(1) = 0.2
[eV] and EAcorr = EAexp(He) − EA(1) = 4.7 [eV].

• From the corrected IP and EA dependencies (Equation 27), we produce the approximations for χ and η for Hen
clusters according to Equations 4 and 5:{

χ(n) = (IP(n) + EA(n) + IPcorr + EAcorr)/2 = χ∞ + χ0 · n−1/3 ,

η(n) = (IP(n) − EA(n) + IPcorr − EAcorr)/2 = η∞ + η0 · n−1/3 ,
(28)

where, from Equation 27, we get
χ∞ = (IP∞ + EA∞ + IPcorr + EAcorr)/2 = 12.4 [eV] ,

χ0 = (IP0 + EA0)/2 = −0.1 [eV] ,

η∞ = (IP∞ − EA∞ + IPcorr − EAcorr)/2 = 11.8 [eV] ,

η0 = (IP0 − EA0)/2 = 0.4 [eV] .

(29)

A detailed description of this procedure, justification of the methods used, and numerical results are available in the
SI (Section 2).

Unlike in the covalently bound molecules discussed above (polyenes and annulenes), the change in electronegativity
of the helium clusters (Hen) is noticeable upon increasing cluster size. Therefore, Equation 11 is insufficient due to
negligence of the change in χ. To account for that, let us reevaluate the solution. First, we examine the optimal
charges of the fragments in Equation 8. The maximal value of the Q-independent term for the helium clusters can be
estimated as (see Equations 28 and 29) ∣∣∣∣ χX − χY

2(ηX + ηY)

∣∣∣∣ ≤ |χ0|
4η∞

= 0.002 .

From this estimation, we can neglect this Q-independent term in Equation 8, giving us approximate optimal charges
that do not account for spontaneous charge separation upon neutral dissociation:{

qX ≈ ηYQ
ηX+ηY

,

qY ≈ ηXQ
ηX+ηY

,

and their substitution into the dissociation energy (Equation 6) gives the equation for obtaining the maximal stable
charge

D − ∆χQ− ∆ηQ2 = 0 , (30)

where ∆η is given by the same expression from Equation 10, and ∆χ is defined as

∆χ = χP −
(

ηYχX

ηX + ηY
+

ηXχY

ηX + ηY

)
. (31)

Equations 28 and 29 show that with increasing size, the electronegativity also increases. Thus, χP ≥ χX, χY. Assuming
that χX ≥ χY, we get

ηYχX

ηX + ηY
+

ηX

≤χX︷︸︸︷
χY

ηX + ηY
≤ χX ≤ χP ,

thus ∆χ ≥ 0. Solving Equation 30, we obtain the final expression:

Qmax = − ∆χ

2∆η
+

1

2∆η

√
∆χ2 + 4∆η ·D . (32)
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Figure 6: Experimental (points)[42] and model (colored area) maximal possible charge of helium clusters as a function
of cluster size. ξ is the asymmetry parameter for the dissociation reaction (Equation 34). The “Fit” curve represents
the fit of the experimental points to Equation 32 (see main text for details).

Unlike the previously discussed cases of polyenes and annulenes, all three parameters (∆χ, ∆η, and D) are size-
dependent for the helium clusters.

For evaluating the stability of the charged helium clusters, we evaluate the dissociation according to the reaction

HeQ+
n → HeQx+

nx
+ HeQy+

ny
, (Qx + Qy = Q, nx + ny = n, nx ≥ ny) . (33)

To characterize the asymmetry of the large cluster breakup, we introduce a parameter ξ ∈ (0, 1/2] defined as

ξ =
ny

n
, (34)

where symmetric breakup nx = ny = n/2 corresponds to ξ = 1/2, and maximally asymmetric breakup nx = n − 1,
ny = 1 is denoted by ξ = 1/n.

The results of Equation 32 with parameters D, ∆χ, and ∆η computed from parametrized Equations 26 and 28 are
also included in Figure 6. If we compare our results with the experimental data,[42, 43] we see very similar trends of
increasing stability of the poly-charged helium clusters with the increase of cluster size. It is worth noting that, unlike
the polyenes and annulenes, helium clusters are more stable for the symmetric breakup (ξ = 1/2) than for the small
cluster removal (ξ → 0). This is in agreement with the experimental observations, where the strong evaporation of
charged helium clusters was observed via the removal of small charged fragments and not through symmetric Coulomb
explosions.[43]

Despite the qualitative agreement of our theoretically predicted stability trends with the experimental observations,
the quantitative predictions differ from the actual observed trends. The main reason for this is that our theoretical
methodology has a limited quality of the quantum-chemical calculations, in particular for the sampling of the confor-
mational space, poor harmonic approximation of the ZPVE for the superfluid vibrational state,[44] limited size of the
basis set for calculation of the electronic energies, and significant failures of the conventional basis sets to describe
the EA of helium (see SI for details). These defects of the theoretical model, combined with extrapolation of the
parameters from cluster size ranges of 1 ≤ n < 1000 up to n ∼ 108, can lead to significant deviations in the observed
trends.

To align the model and experiment, we fitted the parameters of our model to the experimental data. The expression
for the Qmax (Equation 32) was fitted to the observed experimental trend by varying parameters from Equations 29,
that are used in Equations 28. A fit for χ and η included only a single parameter, with χ(1) and η(1) being taken
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from the experimental IP and EA values of the helium atom. The energy expression (Equation 26) was taken with
parameters from the literature, namely ε∞ = 0.621 [meV], ε2/3 = 1.526 [meV], and ε1/3 = 0.513 [meV].[44, 45] Due to
numerical instabilities of the fit, the smallest possible ξ = 0.4 was taken. The fitting resulted in a curve reproducing the
observations, as can be seen from Figure 6. This shows the potential of the proposed model for describing experimental
observations.

5 Conclusions

Here, we provided a new approach for computing the maximal possible charge a molecular polycation can carry
without being thermodynamically unstable (Qmax). The approach is based on the quadratic approximation of the
ionization potentials using the energy expansion in terms of Mulliken’s electronegativity and Pearson’s hardness. For
the conjugated hydrocarbons, Qmax can be estimated using Equation 11, and the value for the molecule is provided
as the lowest of those values for different fragmentation pathways. This estimation reduced the computations to
calculations of only the molecule’s and fragment’s electronic energy, ionization potential, and electron affinity. Further,
by parametrizing these properties with some molecular descriptors, one can produce analytical approximations for the
maximal charges, which is essentially a phase diagram of the thermodynamic stability of molecular polycations.
We demonstrated the applicability and efficiency of this approach using the three model systems: linear polyenes,
monocyclic annulenes, and helium clusters.

The resulting approach can be useful in the field of astrochemistry to produce effective and sufficiently accu-
rate approximations for quasi-thermodynamic modeling of the interstellar medium, interplanetary environment, and
atmospheres of exoplanets, to include the possibility of polycationic states in the photochemistry of molecules and
molecular clusters under the influence of harsh radiation. As a perspective, the proposed approach can be extended
to include the higher-order terms of the energy expansion (Equation 3), vibrational effects, and reach a more accurate
approximation of thermodynamic potentials (enthalpy, entropy, free energies).

Appendix

Here, we will provide explicit proof that for the fragmentation reaction with a fixed dissociation energy and size-
dependent hardness given by Equation 25, the most energetically favorable fragmentation channel for a polycation is
dissociation into two equal fragments.

Equation 12 is fulfilled if ∆η = ηP − ηXY is maximal (see Equations 11 and 10), and since D and ηP are fixed,
which is achieved by minimization of ηXY with respect to the fragments’ sizes X and Y = N −X. We will take η of
the fragments to depend on the sizes of fragments “X” and “Y” (x and y = N − x) as a function η = η(n), where
ηX = η(x) and ηY = η(y) = η(N − x). This means, that ηXY (Equation 9) is given as

ηXY (x) =
η(x) · η(N − x)

η(x) + η(N − x)
.

The stationary point of this function is found through the following equation:

dηXY

dx
= η′XY =

η′(x) · η2(N − x) − η′(N − x)′ · η2(x)

(η(x) + η(N − x))2
= 0 ,

with a trivial solution x = N/2. To prove that the found solution is indeed a minimum, we calculate the second
derivative at this point, which is given as

d2ηXY

dx2
(N/2) = η′′XY(N/2) =

η′′(N/2) · η(N/2) − 2 (η′(N/2))
2

2η(N/2)
.

The condition for minimum is η′′XY(N/2) > 0, and if we check the second derivative for the Equation 25, we get

η′′XY(N/2) =
η0η∞

(N/2 + K)2(η∞(N/2 + K) + η0)
> 0 ,

if η0, η∞ > 0.
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