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Abstract

RNA molecules play a significant role in many biological pathways and have diverse

functional roles, which is a result of their structural flexibility to fold into diverse con-

formations. This structural flexibility makes it challenging to obtain the structures of

RNAs experimentally. Deep learning can be used to predict the secondary structures of

RNA and other properties such as the backbone torsion angles, to be used as restraints

for the computational optimization of the tertiary structures of RNA. TorRNA is a

transformer encoder-decoder model, that takes an input RNA sequence and predicts

the (pseudo)torsion angles of each nucleotide with a pre-trained RNA-FM model as

the encoder. TorRNA is able to achieve a performance boost of 2% − 16% over the

previous (pseudo)torsion angle prediction method for RNAs. We also demonstrate that

TorRNA can used as a tool for model quality assessment of candidate RNA structures.
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Introduction

RNA molecules play a significant role in modulating many biological pathways, ranging

from acting as catalytic ribozymes1 to controlling gene expression via transcriptional regula-

tion.2 Recent advances in generation3 and delivery4 of RNA make it more feasible for RNA

molecules to be used as therapeutic agents5 to address the underlying pathology of diseases

rather than treating the symptomology as done by small molecule-based therapeutics.6 RNA

that are involved in disease pathways can also serve as druggable targets for small molecules

to bind to the RNA and modulate their function,7 increasing the number of ways we can in-

terfere with pathological mechanisms. This functional diversity of RNA molecules is closely

tied to their structure, with their ability to fold into various conformations impacting how

they interact with other molecules.8–10 Determining the structures of RNA is important for

understanding their mechanisms and to be able to exploit them as therapeutic agents and

targets.

RNA molecules fold hierarchically with their secondary structure elements being folded

first, which then interact and result in the tertiary structure.11 RNA molecules fold into their

secondary structures and specific sub-structures based on hydrogen bonding between the

nucleotides and their stacking, to form helices and unique RNA loops like hairpin loops and

pseudoknots. These secondary structure elements interact and form the tertiary structure,

and result in the great structural plasticity exhibited by RNA molecules. Determining the

tertiary structures of these RNA molecules through experimental means such as nuclear

magnetic resonance and X-ray crystallography is challenging due to the resolution limits of

these methods and the intrinsic structural plasticity of RNA molecules.12,13

To alleviate the struggles of determining the structure of RNA molecules experimentally,

a number of computational approaches based on thermodynamic models and Watson-Crick-

Franklin (WCF) interactions have been developed to determine the secondary structure

of RNA molecules over the years.14–19 Recently, new methods have made use of Machine

learning (ML) algorithms to solve problems in computational chemistry such as predicting
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and synthesizing new drug molecules20–23, performing molecular dynamics simulations24–26,

protein stability and binding site prediction27,28, and predicting physical molecular proper-

ties.29–31 ML has been employed to predict the secondary structure of RNA as early as the

1990s.32–34

Recent advances in deep learning have resulted in improved prediction of macromolecular

structures like proteins35,36 and RNA.37–39 The breakthroughs in protein structure prediction

by deep learning are due to the improved prediction of contact maps and backbone structures,

which are used as restraints for modelling the structures. However, there are only a few

studies that predict such restraints for RNAmolecules.37,40 With existing methods optimizing

the tertiary structure of RNA molecules when given the secondary structures, deep learning

can be used to solve the downgraded problem of predicting the secondary structures and

other structural properties41 that can be used as restraints for the optimization. Presented

in this manuscript, TorRNA focuses on accurate prediction of the backbone structure of

RNA molecules by predicting the torsion and pseudotorsion angles that can characterize the

backbone of an RNA molecule.

In proteins, the backbone configuration can be described by only two backbone confor-

mational parameters ϕ and ψ. For nucleic acid structures like RNA and DNA however, the

phosphodiester backbone is best characterized by 6 torsion angles (α, β, γ, δ, ϵ, and ζ), and

a torsion angle χ that quantifies the orientation of the base with respect to the sugar. For

a nucleotide indexed i and the next nucleotide along the 5′ − 3′ direction indexed as i + 1,

these 7 torsion angles as shown in Figure 1 can be described as the dihedral angle between

the atoms O3′i−1 − Pi −O5′i − C5′i(α), Pi −O5′i − C5′i − C4′i(β), O5
′
i − C5′i − C4′i − C3′i(γ),

C5′i − C4′i − C3′i − O3′i(δ), C4
′
i − C3′i − O3′i − Pi+1(ϵ), C3

′
i − O3′i − Pi+1 − O5′i+1(ζ), and

O4′i−C1′i−(N9i/N1i)−(C2i/C4i)(χ). To simplify the representation of the RNA backbone

configuration, two pseudotorsion angles eta (η) and theta (θ) can be used to describe the

RNA backbone configuration8,42 similar to how ϕ and ψ are used to describe backbone con-

figuration of proteins. These pseudotorsion angles as shown in Figure 1 can be described as
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the dihedral angle between the atoms C4′i−1−Pi−C4′i−Pi+1(η) and Pi−C4′i−Pi+1−C4′i+1(θ)

where i− 1, i, and i+ 1 are the indices of three nucleotides in the 5′ − 3′ direction. These 9

torsion and pseudotorsion angles are depicted in Figure 1 and are henceforth referred to as

(pseudo)torsion in the rest of the manuscript.

Figure 1: RNA backbone torsion (α, β, γ, δ, ϵ, ζ, χ) and pseudotorsion (η, θ) angles.

SPOT-RNA-1D40 employed a residual dilated convolutional neural network architec-

ture43,44 to predict seven torsion and two pseudotorsion angles, and was able to beat a

random baseline predictor by achieving a mean absolute error (MAE) between 14◦ and 44◦

for the nine (pseudo)torsion angles. The design choice of using a dilated convolutional neural

network architecture is justified by the architecture’s ability to learn long-range interactions

between nucleotides. However, SPOT-RNA-1D and other methods that predict secondary
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structures of RNA employ variations of CNNs since the properties they predict are repre-

sented by two-dimensional matrices - such as contact maps.

When compared to proteins, PDB45 has fewer 3D RNA structures. This lack of RNA

sequence-structure datapoints is one of the greatest challenge in developing ML-based se-

quence to structure methods for RNA. The RNA foundation model (RNA-FM)41 is a foun-

dation model trained in a self-supervised manner to learn any patterns in the RNA sequences

and generates sequence encodings that potentially capture the underlying evolutionary, struc-

tural, and functional information of the corresponding RNA molecules from their sequences.

RNA-FM implicitly learns the co-evolutionary information of RNA sequences from 23 mil-

lion unlabeled non-coding RNA sequences and performed well in downstream tasks like

RNA secondary structure prediction and 3D contact map prediction. RNA-FM has been

used by E2Efold-3D46 to develop the first end-to-end deep learning approach to predict 3D

RNA structures directly from the sequence, highlighting the importance of the information

contained in the RNA-FM encodings.

In this work, we present TorRNA - a method that focuses on predicting the (pseudo)torsion

angles of each residue by using a transformer47 architecture to predict the (pseudo)torsion

angles. TorRNA uses the encodings of all nucleotides of an input RNA sequence as gen-

erated by a pre-trained RNA-FM model and predicts the (pseudo)torsion angles using a

transformer decoder architecture. The choice of using a transformer is consistent with the

choice of using a dilated convolutional neural network since a transformer also contains

residual connections48 to help learn the long-range interactions between nucleotides.

Methods

Dataset

SPOT-RNA-1D’s40 training dataset contains 286 RNA chains, with the validation and test

dataset containing 30 and 147 RNA chains respectively. However, this dataset was con-
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structed by downloading all RNA structures from PDB45 with a suitable X-ray resolution

on October 3, 2020. To train and test TorRNA, we sought to create a new dataset that

contains the RNA structures uploaded to PDB45 in the recent years.

The dataset of RNAs used for training and testing TorRNA was curated with data from

RCSB Protein Data Bank (PDB)45 and BGSU RNA Representative Sets.49 More specifically,

we assembled the PDB identifiers of RNA structures that were available with a resolution of

< 4Å from PDB on July 4, 2023 and from Release 3.288 of BGSU RNA Representative Sets.

The structures of these RNAs were downloaded from PDB45 using their PDB identifiers.

The downloaded PDB structures are processed using the Biopython50 package to obtain the

structures of individual RNA chains.

We follow the same methodology as SPOT-RNA37 to make the train, validation, and test

splits of the dataset. To remove the redundancies in the dataset, the sequences of all the RNA

chains with < 500 nucleotides were clustered using CD-HIT-EST51 with a sequence identity

threshold of 80%. The RNA sequences that do not belong to any clusters are assigned to a

noncluster set (NCS), and the clustered RNA sequences are assigned to a cluster set (CS).

To ensure an even stronger nonredundancy between NCS and CS, we run the BLAST-N52

tool on the RNA sequences with an e-value cutoff of 10. Sequences in CS that have hits with

sequences in NCS are removed to ensure that sequence homologies between CS and NCS are

minimal. The resulting CS is used as the training data, and NCS is randomly divided into

validation and test dataset with a 20-80 split.

While dividing NCS into the validation and test datasets, we maintained the RNA se-

quences from the RNA-Puzzles benchmarking test set53–57 exclusively in the test dataset for

TorRNA to run further experiments on these RNAs as described in the . The final training,

validation, and test datasets have 767, 42, and 172 RNAs respectively. When comparing

the performance of TorRNA with SPOT-RNA-1D40 in the Results section, we use the same

dataset splits used by SPOT-RNA-1D40 in one of the results. For the list of curated PDB

IDs, we use the DSSR58,59 software tool to calculate the native torsion angles and to identify
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the structural regions from the 3D structures. The final dataset is available on our code

repository.

Architecture of TorRNA

TorRNA’s overall architecture is a transformer encoder-decoder as shown in Figure 2a, that

takes an input RNA sequence and predicts the (pseudo)torsion angles of each nucleotide. Tor-

RNA utilizes a pre-trained RNA-FM41 model’s embedding layer and subsequent transformer

encoder blocks47,60 to obtain encodings for each residue of an RNA sequence. RNA-FM’s41

model architecture as shown in Figure 2b is a stack of 12 transformer encoder blocks, similar

to the BERT60 language model architecture. Each encoder block has a hidden size of 640

and 20 self-attention heads, with layer normalization and residual connections being applied

before and after every block. For an RNA sequence as the input, RNA-FM first tokenizes

the sequence into the individual nucleotide tokens (‘A’, ‘U’, ‘G’, and ‘C’ among others). An

initial embedding layer maps each of these sequential nucleotide tokens to 640-dimensional

vectors. These initial embeddings are passed through the stack of 12 encoder blocks to give

final encodings of the same size for each nucleotide. These final encodings of each nucleotide

contain information aggregated from the entire RNA sequence.

The final encodings of each nucleotide computed by the pre-trained RNA-FM model

are then passed to a stack of 3 transformer decoder blocks47 along with the embeddings of

the nucleotides computed by the pre-trained embedding layer of RNA-FM. These decoder

blocks as shown in Figure 2b use the embeddings of each nucleotide and perform cross-

attention over the RNA-FM encodings to finally predict the (pseudo)torsion angles for each

nucleotide. Since these angles are in the range [−180◦, 180◦], TorRNA predicts the sine and

cosine values of the (pseudo)torsion angles instead of predicting the angles directly to handle

the periodicity of the angles as done in previous works that predict torsion angles for RNA

and proteins.40,61 The predicted sine and cosine values can be used to calculate the angle

using the inverse tangent function.
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angle = tan−1

(
sin(angle)

cos(angle)

)

The transformer decoder layers of TorRNA are trained to minimize the Mean Squared

Error (MSE) of the sine and cosine of the (pseudo)torsion angles using the Adam optimizer62

with the hyperparameters as chosen in Table 1. The training and testing of TorRNA was

done on a system with a Intel Xeon E5-2640 v4 processor and a GeForce RTX 2080 Ti GPU.

(a) Overall architecture of TorRNA is a transformer encoder-decoder that takes an input RNA
sequence and predicts the (pseudo)torsion angles of each nucleotide.

(b) Details of the RNA-FM encoder blocks and the TorRNA decoder blocks that shows how the
RNA-FM embeddings are used by the decoder blocks to predict the (pseudo)torsion angles.

Figure 2: Overall architecture of TorRNA.

To choose the best hyperparameters for TorRNA’s architecture and training procedure,
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we conduct grid search of the hyperparameters presented in Table 1. We chose the best

values for the hyperparameters when the error of predicting the (pseudo)torsion angles was

the lowest for the RNAs in the validation dataset.

The code and datasets for TorRNA are available at https://github.com/devalab/torrna.

Table 1: Search space and the best value for the various hyperparameters for TorRNA

Hyperparameter Search Space Best Value

Learning Rate [0.0001, 0.0002] 0.0002
Hidden Dimension [256, 512] 256
Number of Attention Heads [4, 8] 4
Number of Transformer Decoder Layers [2, 3, 4, 5, 6, 7] 3
Dropout [0.1, 0.2] 0.2
Tolerance [3, 5] 5

Results

To evaluate the performance of TorRNA, we use the Mean Absolute Error (MAE), which is

the average absolute error between the predicted and ground truth (pseudo)torsion angles.

To handle the periodicity of the angles in the MAE calculation, we consider min(d, 360◦−d),

where d is the absolute difference between two angles. We compare the results of TorRNA

with SPOT-RNA-1D40 and a random predictor. The random predictor works by constructing

a histogram of the native angles from the RNAs in the training dataset with a bin-width of

2◦, and returns the mean of 100 random predictions using the normalized frequency of each

bin as the discrete probability distribution for the center of each bin.

TorRNA outperforms SPOT-RNA-1D and the random baseline

predictor

Table 2 and Figure 3 compare the performance of TorRNA, SPOT-RNA-1D, and the random

baseline predictor in predicting the (pseudo)torsion angles. To provide a direct comparison
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with SPOT-RNA-1D , we show the performance of TorRNA when trained and tested on

dataset splits curated in this work in Table 2, and on the dataset splits used by SPOT-RNA-

1D in Table 3.

TorRNA shows improved performance in predicting all torsion angles (α, β, γ, δ, χ, ϵ, ζ)

and both pseudotorsion angles (η, θ) when compared to both SPOT-RNA-1D and the random

baseline predictor. The common trend exhibited by the ML-based prediction methods is that

the prediction of the angle delta (δ) has the least average error and the angle alpha (α) has

the highest average error. TorRNA and SPOT-RNA-1D have MAEs of 14.26◦ and 17.1◦

when predicting the angle delta (δ), and MAEs of 42.1◦ and 46.1◦ when predicting the angle

alpha (α) . TorRNA predicts the angle delta (δ) with the least error, followed by the angles

epsilon (ϵ), chi (χ), beta (β), zeta (ζ), gamma (γ), and alpha (α). When compared to

SPOT-RNA-1D, TorRNA achieves an improvement ranging from 2.7% for angle beta (β) to

16.5% for angle delta (δ).

Since the available source code for SPOT-RNA-1D does not allow the model to be re-

trained with new dataset splits, to obtain a direct comparision, we retrain and test TorRNA

on the same RNA molecules on which SPOT-RNA-1D was trained and tested. The perfor-

mance of the retrained TorRNA and SPOT-RNA-1D are presented in Table 3, which show

that TorRNA has better predictions of 8/9 of the (pseudo)torsion angles when compared

to SPOT-RNA-1D. In the Supplementary Information, we compare TorRNA against other

predictors submitted to RNA-Puzzles.53–57 TorRNA consistently performs the best in pre-

dicting the torsion angles for most puzzles, and gives comparable predictions to the top RNA

puzzle predictor in the remaining puzzles.

Correlation between TorRNA’s prediction errors and (pseudo)torsion

angle distributions

The boxplot of the prediction errors of the (pseudo)torsion angles shown in Figure 3 shows the

distribution of the errors whose averages are presented as the MAEs in Table 2. TorRNA’s
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Table 2: MAE of TorRNA compared with SPOT-RNA-1D and the random baseline method
for all (pseudo)torsion angles on TorRNA dataset splits

(pseudo)torsion angle
Prediction Method

TorRNA SPOT-RNA-1D Random Baseline

alpha (α) 42.052 46.079 73.044
beta (β) 20.626 21.209 123.877

gamma (γ) 36.443 37.958 59.064
delta (δ) 14.257 17.081 19.538
chi (χ) 20.11 21.999 46.129

epsilon (ϵ) 19.306 20.311 36.209
zeta (ζ) 29.182 30.545 50.646
eta (η) 25.124 29.114 79.595

theta (θ) 28.82 30.725 67.517

Table 3: MAE of TorRNA compared with SPOT-RNA-1D and the random baseline method
for all (pseudo)torsion angles on SPOT-RNA-1D dataset splits

(pseudo)torsion angle
Prediction Method

TorRNA SPOT-RNA-1D Random Baseline

alpha (α) 38.87 40.371 72.968
beta (β) 19.677 19.82 123.241

gamma (γ) 31.289 32.149 55.059
delta (δ) 12.668 14.71 17.396
chi (χ) 16.407 18.159 48.259

epsilon (ϵ) 19.956 19.798 33.564
zeta (ζ) 27.033 28.034 49.241
eta (η) 22.677 26.537 76.677

theta (θ) 25.788 27.887 65.929

prediction errors follow the same trend as SPOT-RNA-1D where the difficulty of predicting

the (pesudo)torsion angles depends on the distribution of the (pseudo)torsion angle. As seen

in Figure 4, the ground truth values of the angle delta (δ) have a narrow distribution, which

explains the low prediction error and the narrow range of the errors in predicting this angle

in Figure 3. The wide distribution of the ground truth values of the angle alpha (α) explain

the prediction errors having a wide range in Figure 3 and a high MAE as reported in Table

2.
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Figure 3: Boxplot of the prediction errors of the (pseudo)torsion angles to compare the
distribution of the errors of TorRNA, SPOT-RNA-1D, and the random baseline predictor.

TorRNA’s predictive ability for various structural regions of RNA

molecules

We investigate TorRNA’s (pseudo)torsion angle predictions of nucleotides with various sec-

ondary and tertiary interactions with other nucleotides within an RNA molecule. The

DSSR58,59 software tool marks each nucleotide with the type of interaction in which it is

involved. Table 4 shows the MAEs obtained by averaging TorRNA’s prediction errors for

the nucleotides in various structural regions. Figure 5 shows the various structural regions

that we consider in Table 4.

The (pseudo)torsion angles of nucleotides that are unpaired (∼ 28%) or are part of hairpin

loops (∼ 12%) are the hardest to predict. The difficulty in predicting the (pseudo)torsion
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Figure 4: Histograms of ground truth (pseudo)torsion angles and those predicted by TorRNA
and SPOT-RNA-1D. The Y-axis uses a logarithmic scale to show the frequency of each
frequency bin in the histogram.

13

https://doi.org/10.26434/chemrxiv-2024-cj4r0 ORCID: https://orcid.org/0000-0002-1330-8720 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-cj4r0
https://orcid.org/0000-0002-1330-8720
https://creativecommons.org/licenses/by-nc-nd/4.0/


(a) Canonical Base Paired
Residues.

(b) Canonical Nested Base
Paired Residues.

(c) Non-Canonical Base
Paired Residues.

(d) Hairpin Loop Residues. (e) Unpaired Residues.
(f) Lone Base Paired
Residues.

(g) Pseudoknot Residues. (h) Multiplet Residues.

Figure 5: The various structural regions of RNA molecules that we consider. The specific
residues are highlighted in red when the region is ambiguous from the figure.

angles of these regions could be due to the unpaired nucleotides being very flexible, and

TorRNA having no geometric information to infer the nucleotides in hairpin loops which

have a distribution of angles away from the remaining nucleotides. Nucleotides that are

a part of canonical nested pairs make up ∼ 47% of all nucleotides and are the easiest to

predict. As seen in Table 4, TorRNA predicts all (pseudo)torsion angles better than SPOT-

RNA-1D across most structural region, and gives comparable results to SPOT-RNA-1D in

the remaining cases.

TorRNA’s robustness to the length of RNA sequences

The lengths of the longest RNA sequence in the training, validation, and test sets varying

greatly could potentially affect the performance of TorRNA on long RNA molecules. To

analyse this, Figure 6 shows the MAEs of all (pseudo)torsion angles for RNA molecules

of varying sequence lengths. All the (pseudo)torsion angles largely have the same MAEs
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Table 4: MAE of angles predicted by TorRNA in various regions of an RNA molecule with
the MAE of the predictions by SPOT-RNA-1D in the parenthesis. SPOT-RNA-1D MAEs
are in bold when they are lower than the corresponding MAE of TorRNA.

Region
(% of all nucleotides present in this region) alpha (α) beta (β) gamma (γ) delta (δ) chi (χ) epsilon (ϵ) zeta (ζ) eta (η) theta (θ)

All Canonical Pairs (50.51%)
29.51
(32.72)

15.06
(15.66)

27.54
(28.26)

7.82
(11.66)

9.37
(12.15)

13.80
(15.44)

15.18
(16.28)

11.10
(15.48)

14.43
(16.05)

Canonical Nested Pairs (46.49%)
33.32
(36.56)

16.89
(17.33)

30.45
(31.25)

9.01
(12.41)

12.43
(14.54)

15.13
(16.73)

18.51
(19.47)

13.95
(17.94)

17.30
(18.79)

Non-Canonical Pairs (25.61%)
47.24
(50.10)

24.14
(24.64)

41.32
(41.66)

15.58
(17.91)

24.48
(25.48)

22.42
(22.66)

37.94
(38.76)

25.94
(28.14)

33.89
(34.86)

Hairpin Loops (11.72%)
62.57
(62.66)

26.55
(27.14)

42.77
(42.92)

22.75
(23.57)

28.52
( 28.47 )

26.57
( 26.55 )

46.18
(46.69)

48.98
(51.52)

45.43
(46.73)

Unpaired (27.77%)
61.56
(63.52)

29.32
(29.97)

48.21
(48.91)

22.45
(23.69)

32.14
(32.58)

26.75
(26.79)

46.76
(47.87)

48.18
(50.83)

48.83
(50.05)

Lone Pairs (5.99%)
44.43
(46.32)

22.18
(23.19)

37.18
(37.55)

16.28
(18.67)

22.48
(23.55)

22.96
( 22.73 )

42.93
(43.84)

25.10
(27.46)

36.16
(36.57)

Pseudoknots (2.71%)
38.30
(40.46)

18.51
(18.61)

30.23
(31.47)

11.88
(13.76)

13.38
(14.58)

18.73
(18.80)

27.96
(28.78)

23.60
(25.31)

27.61
(28.30)

Multiplets (9.24%)
50.89
(53.55)

24.89
(25.33)

42.53
(42.99)

17.36
(18.81)

25.07
(25.29)

22.88
( 22.78 )

42.60
(42.76)

27.60
(28.56)

37.04
(37.53)

for RNAs of all lengths. It can also be noted that there is no clear loss in performance in

predicting the (pseudo)torsion angles of RNAs of greater lengths, with some angles even

having their lowest prediction errors for the longest RNAs in the test dataset.

Using TorRNA as a model evaluator

While developing Ribonucleic Acids Statistical Potential (RASP)63 - an all-atom knowledge-

based potential for the assessment of 3D RNA structures - the authors use 500 decoy models

for each of the 85 native RNA structures in a dataset that they name randstr decoy set to

test the knowledge-based potential they developed. These decoys were built with the MOD-

ELLER computer program64 using an increasingly smaller subset of Gaussian potentials as

restraints on the dihedral angles and atomic distances.

Out of these 85 RNAs, 2 RNAs are present in the testing dataset of TorRNA and are

non-redundant with the training dataset. We use these 2 RNAs to explore the connection

between the prediction errors of TorRNA and the structural accuracy of the models measured

by the root-mean-square deviation (RMSD) and global distance test (GDT) score65 to their

native structures. Figure 7 plots the MAEs between the (pseudo)torsion angles predicted by

TorRNA and the angles of the decoy models against the structural accuracy of the models

for the PDB IDs 1MZP (Chain B) and 387D (Chain A). The MAE of the predictions increase
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Figure 6: MAEs of the (pseudo)torsion angles for various RNA sequence lengths. The X-axis
labels describe the length bins along with the number of RNAs that are in each length bin.

as the structural accuracy of the models decrease, i.e. as the RMSD increases and the GDT

decreases. This shows that the MAE of the predictions can serve as an effective proxy when

the RMSD and GDT scores are not available, which is the case when generating the structure

of a novel RNA.

In Figure 8a, we plot the distribution of the MAEs between the (pseudo)torsion angles

predicted by TorRNA and the angles of the decoy models for the decoy models that have

the minimum and maximum MAE for each RNA in the randstr decoy set. Figure 8b plots

the distributions of the RMSDs of decoy models that have the minimum and maximum

MAEs against the angles predicted by TorRNA. Both these figures show that the MAEs and

RMSDs of the decoy models with minimum and maximum MAEs show disjoint distributions,

implying that the MAE calculated against the (pseudo)torsion angles by TorRNA is a good
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Figure 7: MAE vs RMSD and MAE vs GDT scatterplots for PDB ID 1MZP (Chain B) (a,
b) and 387D (Chain A) (c, d)

metric to assess the quality of the decoy models. Figure 9 shows the best (green) and worst

(red) decoy models against the native structure (black) of 3 RNAs.

These results show that the difference of the (pseudo)torsion angles predicted by TorRNA

from the angles of a candidate model structure could be used as a model quality assessment of

the candidate 3D structure of the RNAmolecule. TorRNA’s MAEs can be used to distinguish

and correctly rank candidate models of RNA structures, even when the candidate models

have minimal structural deviation. TorRNA can work as a powerful RNA model quality

assessment tool to rank candidate models generated by ML-based methods or through other

methods.
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Figure 8: The MAE of a model’s angles against TorRNA’s predictions separates the best
and worst decoy models both in terms of the MAE, and also in terms of the RMSD of the
decoy structures with the native structure.
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(a) Best model for PDB ID 1Z43 (Chain
A) according to TorRNA. RMSD - 0.405
Å; MAE - 284◦.

(b) Worst model for PDB ID 1Z43 (Chain
A) according to TorRNA. RMSD - 4.582
Å; MAE - 608◦.

(c) Best model for PDB ID 3CPW (Chain
9) according to TorRNA. RMSD - 0.687
Å; MAE - 207◦.

(d) Worst model for PDB ID 3CPW
(Chain 9) according to TorRNA. RMSD -
4.626 Å; MAE - 583◦.

(e) Best model for PDB ID 3F1H (Chain
B) according to TorRNA. RMSD - 0.605
Å; MAE - 169◦.

(f) Worst model for PDB ID 3F1H (Chain
B) according to TorRNA. RMSD - 4.667
Å; MAE - 622◦.

Figure 9: The native structure (black) of various RNAs and the decoy model with the lowest
(green) and highest MAE (red) against the angles predicted by TorRNA to show TorRNA’s
potential to be used as a model quality assessment tool. The caption of each subfigure also
contains the RMSD of the decoy model to the native structure, and the sum of MAE between
TorRNA’s predictions and the decoy model’s (pseudo)torsion angles.19
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Discussion

TorRNA is a transformer encoder-decoder model, that takes an input RNA sequence and pre-

dicts the (pseudo)torsion angles of each nucleotide with a pre-trained RNA-FM model as the

transformer encoder. Since the secondary structure being predicted are the (pseudo)torsion

angles, TorRNA is able to employ a transformer decoder that takes the encodings from

a pre-trained transformer encoder. This sets TorRNA apart from other works that use

a CNN-based architecture to predict the secondary structure of proteins and nucleic acids

from encodings derived by foundation models. TorRNA also curates new dataset splits of the

RNAs that have high-resolution 3D structures available, to take into the account new data

that might have been gathered since the previous (pseudo)torsion angle prediction method

was released.

TorRNA is able to achieve a performance boost of 2%−16% over the previous (pseudo)torsion

angle prediction method SPOT-RNA-1D and consequently shows an improved performance

over a random baseline predictor as well. TorRNA is also robust in terms of predicting the

(pseudo)torsion angles for RNAs of various sizes, and for nucleotides in various structural

regions of the RNA molecules. With this improved prediction of the (pseudo)torsion angles,

these predictions can be used as restraints on the dihedrals for the optimization of unrefined

RNA structures. We also demonstrate the potential of TorRNA to be used as a tool for

model quality assessment of candidate RNA structures for a given RNA sequence.

We believe that TorRNA is a valuable contribution that would help spur further research

in improving sequence to structure methods for RNA molecules and take a step towards

unleashing the therapeutic value of RNA molecules to develop better drugs.
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