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Abstract

More than 40% of marketed drugs, including new chemical entities, suffer from low aqueous solubility.
Enhancing the solubility profile of these molecules, without altering their chemical identity or pharmaco-
logical activity, is achievable through co-crystallization, a process wherein the drug and another organic
molecule coexist in the crystal structure. However, finding the most promising combination of molecules
for co-crystallization is challenging, as well as time-consuming and source-intensive, due to the vast search
space. To overcome this limitation and rationally design experimental trials, we propose DeepCrystal, a
deep learning model based on chemical language. DeepCrystal is rigorously validated, achieving a balanced
accuracy of 78% on the external test set, as well as superior performance to existing models. In addition,
thanks to chemical language for molecule representation, we estimate the uncertainty of the model to gauge
its reliability for future applications. Finally, DeepCrystal is successfully employed to discover novel diflu-
nisal co-crystals, highlighting its potential, in both academic and industrial settings, for the design of new
pharmaceutical formulations.

1 Introduction

Co-crystallization [5] is a well-established technique
to enhance the solubility, stability, and processability
of active pharmaceutical ingredients (APIs) [2]. In
this approach, another molecule, called coformer, is
searched to form a multicomponent crystal based on

hydrogen bonding interacrions with the API, so that
physicochemical properties of the API are optimized
while its activity is preserved [7, 20]. However, due
to the thousands of potentially available molecules,
finding the optimal coformer is a labor-intensive and
time-consuming process based on trial and error [3,8].

Machine learning models have been developed to
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Figure 1: DeepCrystal a) architecture: API and co-
former are represented by SMILES strings; after pass-
ing via the convolutional layers, the learned repre-
sentations are then concatenated and passed through
fully connected layers for the prediction of the out-
puts. b) SMILES augmentation: the same molecule
is represented by n diverse SMILES strings, randomly
generated.

rapidly identify promising API-coformer pairs in the
vast search space [13,17]. The early approaches adopt
either fully connected neural networks or tree-based
models on molecular descriptors to predict the co-
crystallization of molecule pairs [21,22,24]. More re-
cent works introduced deep learning to the task and
utilized convolutions over molecular graphs [10, 23]
to improve the predictive performance. Common
to those models, they are trained on unbalanced
datasets with folds of more API-coformer co-crystals
than negative pairs, due to limited data availability,
and struggle to generalize unseen data [21]. Random
sampling of molecule pairs as negative API-coformer
mixtures are introduced to target this problem [6],
however, this approach comes at the cost of poten-
tially mislabeled data. Therefore new approaches
that are more robust to class imbalance and have
stronger generalizability to unseen data are needed.

Here we propose DeepCrystal, a novel deep learn-
ing approach to predict co-crystallization with higher
generalizability. DeepCrystal utilizes string repre-
sentation of molecules, the so-called chemical lan-
guage [15]. Leveraging the chemical language, Deep-
Crystal can use “SMILES augmentation” – the tech-
nique of representing the same molecule with multiple
strings – to target class imbalance and to improve
its generalizability. The evaluation of DeepCrystal
via internal and external test sets shows its supe-
rior performance to the models in the literature and
its stronger generalizability. Ablation studies reveal
that the performance boost is thanks to using chem-
ical language and SMILES augmentation adopted by
DeepCrystal. Furthermore, SMILES augmentation
equips DeepCrystal with a simple and effective un-
certainty estimation approach.

Last, we use DeepCrystal challenging prospec-
tive study: we screened four structurally similar co-
former candidates for diflunisal, a widely used anti-
inflammatory drug. Despite the high structure simi-
larity of the coformers, DeepCrystal accurately iden-
tified the co-cocrystals thanks to the uncertainty es-
timation module, as validated by the experimental
screening. This prospective study underlines Deep-
Crystal applicability in a realistic setting to acceler-
ate the coformer search in the co-crystallization work-
flow.
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2 Results and Discussion

2.1 Overview of DeepCrystal

DeepCrystal is a chemical language-based deep learn-
ing architecture to predict the co-crystallization of
API-coformer pairs. Specifically, DeepCrystal con-
sists of three blocks: (a) it represents the input
molecules (API and coformers) via SMILES strings,
(b) it learns ‘latent representations’ of the molec-
ular structures via a convolutional neural network
(CNN), and (c) a fully-connected neural network is
used to predict the potential co-crystallization of the
input pair (Figure 1a). DeepCrystal was trained on
a dataset collected from the Cambridge Structural
Database, literature, and in-house experiments. The
dataset contains different types of co-crystal systems
(pharmaceutical, π–π, and energetic), collecting 5240
co-crystals (“positives”) and 1392 physical mixtures
(“negatives”, i.e., no observed co-crystallization),
thereby presenting the class imbalance typical to co-
crystallization prediction.

DeepCrystal is trained, validated, and tested on
stratified splits of this dataset (10 randomly sampled
subsets with 10% molecules). As in existing studies
[9, 10], every API-coformer pair is presented to the
network twice, by switching the order of the inputs.
The number of negative and positive pairs is balanced
via SMILES augmentation, leveraging the power of
chemical language (Figure 1b).

2.2 Performance of DeepCrystal

We first analyze the effect of SMILES augmentation
by comparing the model trained on augmented data
to the model trained only on canonical SMILES (Ta-
ble 1). Both models reached an average balanced
accuracy (BAcc) [1] above 88%. Remarkably, in-
creasing the ratio of negative samples in the dataset
via SMILES augmentation improves the capacity of
DeepCrystal to identify negative pairs by 8% on av-
erage, as quantified by the specificity. A Wilcoxon
signed-rank test (p-value = 0.0108) also validates
the significance of the increase in the metric. This
comparison suggests that SMILES augmentation im-
proves predictive performance for the negative data

Figure 2: Tanimoto similarity to the training set
computed for internal (yellow) and external (blue)
test sets.

class, appreciable even with a small number of neg-
ative samples (525 positive/139 negative) resulting
from stratified partitioning of the entire dataset.

Having a particular interest in pharmaceutical co-
crystals (mainly anti-inflammatory, anti-tubercular,
nootropic, and anti-depressant drugs), we generate
a new set of API-coformer pairs and evaluate the
applicability domain of DeepCrystal. This external
test set is composed of 364 pairs, of which 129 are
co-crystals and 235 non-co-crystals. The lower sim-
ilarity of molecule pairs in this set compared to the
previous one (Tanimoto similarity computed over ex-
tended connectivity fingerprints with radius=2 and
nBits=1024) suggests that the external test presents
a more challenging and realistic setting to evaluate
generalizability (Figure 2).

Using the external test set, we compare DeepCrys-
tal to three existing approaches in the literature: (i)
a fully-connected neural network trained on extended
connectivity fingerprints [4, 6]; (ii) a fully-connected
neural network trained on molecular descriptors [14];
and (iii) CCGNet, a graph neural network available
in the literature [9]. CCGNet is trained on an un-
balanced and non-augmented dataset (6819 positive
and 1052 negative) and publicly available, while the
first two models are trained on the same DeepCrys-
tal dataset. The released model of CCGNet has a
reported 100% accuracy for independent test sets of
nicotinamide, carbamazepine, and paracetamol, but
is suspected of test-set data leakage [11].
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Table 1: Performance of DeepCrystal on the internal test sets (664 molecular pairs obtained from stratified
split). DeepCrystal trained on canonical SMILES and augmented SMILES is evaluated. DeepCrystal,
CCGNet, as well as DNN models based on ECFPs or classical molecular descriptors were compared on the
external test set (364 molecular pairs). Balanced accuracy, recall and specificity are reported. The best
performances per metric are highlighted in boldface for each test set.

Test set Model BAcc Recall Specificity

Internal DeepCrystal - canonical 0.88 ± 0.02 0.96 ± 0.01 0.79 ± 0.06
DeepCrystal - augmented 0.89 ± 0.02 0.92 ± 0.02 0.87 ± 0.03

External CCGNet [9] 0.60 0.51 0.69
Fingerprint-DNN 0.57 0.90 0.25
Descriptors-DNN 0.63 0.84 0.41
DeepCrystal - canonical 0.59 0.93 0.26
DeepCrystal - augmented 0.78 0.75 0.81

The results (Table 1) indicate the strong perfor-
mance of DeepCrystal over the benchmarks. Deep-
Crystal trained with data augmentation achieves
15%-21% higher balanced accuracy than the bench-
marks and 12%-56% higher specificity, at the cost
of a lower recall by 15%, in the worst case. These
results show that DeepCrystal finds a better trade-
off between positive and negative prediction power
than the models in the literature. Furthermore, the
SMILES augmentation increases the balanced accu-
racy by 19% (compared to using canonical SMILES
strings) in this challenging setting, validating the pre-
vious results and demonstrating its benefits for better
generalizability.

2.3 Uncertainty Estimation with
DeepCrystal

Interested in estimating the uncertainty in model pre-
dictions, we develop a pipeline on top of DeepCrys-
tal using test-time SMILES augmentation. Specifi-
cally, (i) we represent API-coformer pairs in the test
via ten different SMILES strings, (ii) predict the co-
crystallization of each representation, and (iii) com-
pute the average and standard deviation across pre-
dictions per molecule pair.
To qualitatively evaluate the performance of this

uncertainty estimation pipeline on our external test
set, we visualize the prediction average per true neg-

Figure 3: Uncertainty of the model evaluation. The
box plot depicts the average prediction on external
test set values, derived from 10-fold SMILES aug-
mentation results for each API-coformer pair.

4

https://doi.org/10.26434/chemrxiv-2024-vgvhk ORCID: https://orcid.org/0000-0002-4052-9721 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-vgvhk
https://orcid.org/0000-0002-4052-9721
https://creativecommons.org/licenses/by/4.0/


Table 2: Metrics vs standard deviation. Predictive
performance of DeepCrystal on the external test set,
calculated decreasing standard deviation across the
ten times SMILES augmentation predictions. N° =
number of samples on which the metrics are calcu-
lated.

Standard dev. N° BAcc Recall Spec.

≤ 0.50 364 0.76 0.75 0.77
≤ 0.40 351 0.77 0.76 0.78
≤ 0.30 275 0.82 0.80 0.83
≤ 0.20 227 0.86 0.85 0.87
≤ 0.10 191 0.88 0.86 0.90
≤ 0.05 161 0.88 0.84 0.91

atives, false positives, false negatives, and true nega-
tives (Figure 3), by considering mean predictions over
0.5 as a positive prediction. The results show that
true positives cluster more toward the high predic-
tion average regions and have a higher median than
false positives, suggesting that correct positive pre-
dictions have high prediction value across random-
ized API-coformer representations. Similar results
were observed for false negatives and true negatives,
where true negatives had a lower median of average
prediction. Taken together, these results suggest that
mean prediction across ten SMILES representations
per molecule pair is an indicator for model accuracy
downstream.

As uncertainty parameter, we compute balanced
accuracy, recall, and specificity evaluating the stan-
dard deviation across the ten predictions for each
molecule pair (Table 2). The results show an increas-
ing trend across the metrics, narrowing the analysis
to samples with a lower standard deviation. The bal-
ance accuracy increases from 76% to 88% as the stan-
dard deviation decreases from ± 0.50 to ± 0.05, a re-
markable gap can be noted when considering samples
showing a standard deviation below or above ± 0.20.

The same trend emerges computing metrics per
number of majority class predictions, increasing per-
formance as one prediction dominates the other
across ten predictions. Again, the balanced accu-

racy increases from 76% to 87% as majority class
predictions increase from five, a tie between nega-
tive and positive, to ten, where models predict the
same class across all SMILES representations of the
molecule pair. The uncertainty, measured by stan-
dard deviation, as well as the consistent prediction
values, highlight that using SMILES augmentation
at test time unlocks an estimation of prediction accu-
racy and further advocates for the adoption of Deep-
Crystal, especially in prospective settings where such
an estimate can lower misses in experiments and save
costs.

2.4 A Prospective Study with Deep-
Crystal

Motivated by the success of DeepCrystal in predict-
ing co-crystallization and presenting an uncertainty
estimate of its predictions, we ask the following ques-
tion: Can DeepCrystal empower a prospective co-
crystallization study?

To answer, we select diflunisal (DIF) as the tar-
get API for co-crystallization screening. The anti-
inflammatory activity of this molecule is limited by
its poor water solubility and co-crystallization can
succeed in improving its bioavailability [18]. Co-
former are sought among natural compounds based
on purines moiety because they are co-administrable
substance with several health benefits (central ner-
vous systems stimulants, risk reduction of neurode-
generative diseases, and anti-inflammatory proper-
ties [12,16].

Previous research reports the co-crystallization of
DIF with theophylline [19]. For stress-testing the
model and estimating whether DeepCrystal can dis-
tinguish between subtle chemical structural differ-
ences, we create a library of four molecules with the
same scaffold as theophylline: theobromine (TBR),
xanthine (XAN), caffeine (CAF), and adenine (ADE)
(Figure 4).

Next, we compared DeepCrystal trained on canon-
ical SMILES with DeepCrystal trained on augmented
SMILES to predict the co-crystallization between
DIF and the four selected molecules. Employing
DeepCrystal augmentated, we use ten-fold test-time
augmentation for each pair and compute mean pre-
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Table 3: DeepCrystal prediction for DIF-CAF, DIF-ADE, DIF-TBR, and DIF-XAN. The columns Deep-
Crystal (canonical) and Deep-Crystal (augmentated) refer to the respectively models’ prediction. The ’Deep-
Crystal augmented’ outputs are reported consider the average and standard deviation across ten different
prediction computed via test time SMILES augmentation.

Sample DeepCrystal
(canonical)

DeepCrystal
(augmented)

Consistent
predictions

lab result

DIF-CAF 0.99 0.99 ± 0.01 100% co-crystal
DIF-ADE 0.99 0.99 ± 0.00 100% co-crystal
DIF-TBR 0.99 0.66 ± 0.35 60% physical mixture
DIF-XAN 0.99 0.63 ± 0.38 60% physical mixture

Figure 4: Case study DIF-purines. Chemical struc-
ture of diflunisal and purines investigated as possible
coformers for cocrystallization.

diction and standard deviation across representations
(Table 3). DeepCrystal canonical is unable to dis-
criminate among the four candidates, predicting each
system as a co-crystal. Differently, DeepCrystal aug-
mentated predicts DIF-CAF and DIF-ADE as co-
crystals across all ten representations (with an av-
erage probability of 99while TBR and XAN are pre-
dicted to co-crystalize six times with an average prob-
ability below 66% and a high standard deviation.
These results indicate that DeepCrystal is “certain”
that CAF and ADE would co-crystallize with DIF,
while predictions for TBR and XAN carry more un-
certainty.
Moving to the lab, a comprehensive experimen-

tal screening is conducted, involving grinding, liquid-
assisted grinding, and slurry methods, as these are
the most commonly employed techniques for achiev-

ing co-crystallization. Each DIF-coformer pair is
tested using all three techniques, with variations in
experimental conditions such as time, quantity, and
the polarity of the solvent added during the liquid-
assisted grinding and slurry procedures. Co-crystal
formation occurs only for DIF-CAF and DIF-ADE
systems, achieved through liquid-assisted grinding in
ethanol and slurry in ethanol, respectively. Con-
versely, TBR and XAN results in physical mixtures
with DIF in all trials. To distinguish between co-
crystal and non-co-crystal formations, the obtained
powder samples are analyzed using infrared spec-
troscopy, powder X-ray diffraction, and solid-state
nuclear magnetic resonance.

The lab results validate the importance and ac-
curacy of uncertainty estimations by DeepCrystal.
While CAF and ADE, the compounds predicted to
co-crystallize with high certainty, form co-crystals
with DIF, whereas TBR and XAN do not. Thanks
to using chemical language and test-time augmenta-
tion, DeepCrystal prioritized the correct coformers
for DIF among four structurally similar candidates,
demonstrating the applicability of DeepCrystal in a
prospective setting.

3 Conclusions

Optimizing pharmacokinetic properties of active
compounds is an ever-lasting challenge in drug dis-
covery and co-crystallization is a useful tool to tar-
get this problem. Yet, finding co-crystallization part-
ners to active compounds is resource-intensive, and in
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silico approaches to accelerate the search are called
for. Here we developed DeepCrystal, a deep learning
model that can predict the co-crystallization of any
two compounds with unmatched accuracy.

DeepCrystal owes its state-of-the-art performance
to the first-time adoption of the chemical language to
represent molecules. Chemical language unlocks the
use of SMILES augmentation – the technique of rep-
resenting the same molecule with different strings – to
target class imbalance in the training dataset, a perti-
nent challenge in training co-crystallization models.
Our experiments show that SMILES augmentation
equips DeepCrystal with stronger generalizability to
molecules dissimilar to the training coumpounds.

Chemical language and SMILES augmentation add
another capability to DeepCrystal, that is estimating
the uncertainty of its predictions. Predicting the co-
crystallization of test set pairs across multiple repre-
sentations, DeepCrystal presents an uncertainty esti-
mate per prediction, which we show to correlate with
the performance downstream. We then use Deep-
Crystal prospectively and find two novel co-crystals
of diflunisal among structurally similar coformer can-
didates.

We see DeepCrystal as a step to accelerate the co-
crystallization workflows, reducing time and lab ex-
periments to develop promising new drug formula-
tions. The first-time adoption of chemical language
for the task has demonstrated non-disputable ben-
efits and is likely to trigger further research in the
same direction. We believe that DeepCrystal will be
a stepping stone for such research, in the big goal of
speeding up drug discovery.
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