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ABSTRACT

Generative models for the inverse design of molecules with particular properties have been heavily hyped but have
yet to demonstrate significant gains over machine learning augmented expert intuition. A major challenge of such
models is their limited accuracy in predicting molecules with targeted properties in the data scarce regime, which is
the regime typical of the prized outliers that inverse models are hoped to discover. For example, activity data for a
drug target or stability data for a material may only number in the tens to hundreds of samples, which is insufficient to
learn an accurate and reasonably general property-to-structure inverse mapping from scratch. We’ve hypothesized that
the property to structure mapping becomes unique when a sufficient number of properties are supplied to the models
during training. This hypothesis has several important corollaries if true. It would imply that data scarce properties
can be completely determined by a set of more accessible molecular properties. It would also imply that a generative
model trained on multiple properties would exhibit an accuracy phase transition after achieving a sufficient size—a
process analogous to what has been observed in the context of large language models. To interrogate these behaviors,
we have built the first transformers trained on the property to molecular graph task, which we dub “large property
models” (LPMs). A key ingredient is supplementing these models during training with relatively basic but abundant
chemical property data. The motivation for the large property model paradigm, the model architectures, and case studies
are presented here for review and discussion at the upcoming Faraday Discussion on “Data-driven discovery in the
chemical sciences”.

Keywords Machine Learning · Chemical Design · Inverse Problems

1 Introduction1

Machine learning (ML) research in the chemical sciences has produced a panoply of models that generally increase2

the accuracy and reduce the computational cost of predicting molecular properties. As these methods mature, solving3

the so-called “forward-problem” of predicting the properties of a given chemical structure is becoming routine when4

the requisite data is available; however, the “inverse-problem” of finding an optimal set of chemical structures under5

functional constraints is more directly relevant to molecular design and remains unsolved (Fig. 1).Yang et al. [2019],6

Coley et al. [2019], Iovanac and Savoie [2019], Iovanac et al. [2022], Boobier et al. [2020], Pinheiro et al. [2020],7

Jorner et al. [2021], Tian et al. [2021], Atz et al. [2021], Fang et al. [2022], McNaughton et al. [2023], Pan [2023],8

Heid et al. [2024], Liu et al. [2024], Barrett and Westermayr [2024] This work introduces the concept of the “large9

property model” (LPM), that represents a direct solution to the inverse problem by leveraging property scaling to make10

the property to molecular graph mapping learnable. The core question that is explored here is whether the inverse11

mapping of molecular properties to molecular structures is possible when provided a sufficient number of properties per12

molecule. The presented LPM implementation and benchmarks support an affirmative answer to this question, which13

opens a new paradigm for generative chemical models.14
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Figure 1: Comparison of the forward and inverse prediction paradigms. The forward problem (top) consists of predicting
molecular properties from a molecular structure. The forward problem is mature and the input to output mapping is
one-to-one for common properties (i.e., one property value per structure). The inverse problem (bottom) consists of
predicting the molecular structures that are consistent with a set of properties. The inverse problem is the crux of all
molecular design projects. The inverse problem has no general solutions and the input to output mapping is generally
one-to-many for small numbers of properties (i.e., there are many molecular structures that are consistent with a small
set of properties).

Deep generative models try to directly solve the inverse problem by learning the conditional probabil-15

ity, P (molecule|properties), then sampling this distribution with respect to targeted properties to yield ex-16

emplary structures. The hope is that a model of this distribution, f(properties) = P (molecules), that is17

provided sufficient examples of molecules with different property combinations would be able to generate18

non-trivial structures for unseen property combinations. The popular examples of language models—where19

the corresponding task is to learn P (next token|context)—image generators—P (image|caption)—and music20

generators—P (waveform|description)—have become ubiquitous over the past several years.Flam-Shepherd et al.21

[2022], Jablonka et al. [2023], Pan [2023], Yoshikawa et al. [2023], Guo et al. [2023], Liu et al. [2024], Ai et al. [2024]22

As anyone who has experimented with these can attest, they also demonstrate that non-trivial interpolations can emerge23

from such models as they are scaled up. Despite ample forerunners to developing analogous generative models for24

molecule generation, none have yet to significantly outperform expert intuition or forward-prediction workflows (e.g.,25

for screening molecular libraries and their derivatives using ML-augmented filters).Bilodeau et al. [2022]26

Several problems have been identified with deep generative chemical models, including the high frequency of invalid27

structures, false positives, and high data intensity that rules out applications to prized but data scarce properties.Sanchez-28

Lengeling and Aspuru-Guzik [2018], Kang and Cho [2018], Gómez-Bombarelli et al. [2018], Zhang et al. [2021],29

Sousa et al. [2021], Townshend et al. [2021], Bilodeau et al. [2022], Flam-Shepherd et al. [2022], Chowdhury et al.30

[2022], Yoshikai et al. [2024], Luo et al. [2024], Yue et al. [2024], Choudhary [2024], Mal et al. [2024], Lin [2024],31

Crocioni et al. [2024], Cheng et al. [2024] The structures generated by generative chemical models can also fail in32

more subtle ways—they may match targeted properties, but they aren’t stable, can’t be synthesized, aren’t soluble,33

are too expensive, or any number of other things that experts subconsciously normalize over when trying to design34

a molecule. We hypothesize that the origin of this poor performance is fundamentally due to the paucity of general35

chemical information utilized during training contemporary generative chemical models. For instance, although large36

numbers of chemical structures are typically utilized (>100k), only a small number of properties are supplied, which37

leaves these models with the unrealistic task of trying to learn chemistry from scratch while simultaneously generating38

application-relevant molecules. The motivating idea for LPMs may be glibly expressed as teaching generative models39

general chemistry before teaching them to predict PhD-level properties.40

In conventional formulations, generative chemical models are trained to learn a conditional distribution P (G|p0),41

where p0 is some property of interest (e.g., bandgap, toxicity, binding affinity, or whatever), and G is the molecular graph42

typically expressed using a grammar like SMILES or SELFIES.Weininger [1988], Krenn et al. [2019] However, every43

molecule has many more properties than just the sought after p0. For example, every molecule has a heat of formation,44

an electric dipole moment, a vibrational spectrum, and so-forth. So in practice, when one samples P (G|p0) one45

is also necessarily sampling the larger conditional distribution P (G|p0, p1, p2, . . . , pN ), where {p0, p1, p2, . . . , pN}46
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Figure 2: The property to molecular graph task used to train the large property models (LPMs) in this study. A training
set of molecules is curated with a set of properties associated with each molecule. A property to graph transformer
architecture is then trained on reconstructing the molecular graph from the associated property vector.

constitutes some “complete” set of properties that represent a basis set for uniquely specifying G. Thus, a user that is47

querying P (G|p0) is asking for a set of molecules conditioned on a host of implicit properties. In common terms, the48

user querying P (G|p0) is asking “give me a molecule with p0 but sample the rest of the unspecified properties from49

a reasonable physical distribution.” The limited exposure to these implicit properties helps explains why generative50

models often generate what seem to be unphysical structures when sampling the edge of the observed property51

distribution.Iovanac and Savoie [2019, 2020], Iovanac et al. [2022] In light of this, it should be advantageous to train52

the model to explicitly learn the full conditional distribution P (G|p0, p1, p2, . . . , pN ) from examples with a complete53

set of properties supplied, rather than try to indirectly learn the conditional distribution by only viewing examples of54

P (G|p0) with the other properties implicit in the graph but not directly represented.55

The conditional distribution P (G|p0) is typically learned indirectly, using architectures based on autoencoders with56

auxiliary prediction tasks or adversarial architectures.Gómez-Bombarelli et al. [2018], Pollice et al. [2021], Aldeghi57

and Coley [2022], Anstine and Isayev [2023] In contrast, the most straightforward formulation would be to learn the58

property to molecule mapping, f(p) = P (G) directly:59

argmin
w∈f

|f(p)−Gp| (1)

where f() is a mapping of one or more properties, p in vector form, to a molecule, Gp, with properties matching p,60

and w is the set of parameters/weights associated with the mapping. As of writing this, we are unaware of any attempt61

to learn the property to molecule mapping directly using a minimization analogous to Eq. 1. Apart from non-essential62

technical modifications, this is the formulation of the learning task used to train the LPMs developed in this study63

(Fig. 2). By learning this distribution, f() can be queried with arbitrary property vectors, p, to generate new chemical64

structures given sufficient examples of what to look for. Among the hypotheses suggested by this formulation of the65

property to molecular graph problem (Fig. 2) and that could be falsified by LPM case-studies are:66

1. The reconstruction accuracy of the model should monotonically increase with the number of independent67

properties supplied during training (i.e., the length of p).68

2. Including off-target properties in training may still improve the performance of sampling useful molecules69

with on-target property values.70

3. A finite number of properties are necessary to uniquely specify a molecule of a given size.71

4. A finite number of properties are necessary to uniquely predict every additional molecular property.72

5. The complexity of the conditional distribution P (G|p) decreases as the length of p increases, terminating in a73

delta function about a single molecule.74

Others implications can be imagined. Not all of these will be directly explored in the following case studies, but75

these might serve as a basis for discussion at the upcoming meeting.76
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Figure 3: The large property model (LPM) architecture. The properties are embedded based on whether they are
categorical, scalar, or vectors and then transformed into a compressed vectorial representation with self-attention. The
molecular structures associated with the property vector are decoded using a recursive SMILES-based transformer with
cross-attention performed against the encoded property vector.

2 Methods77

2.1 Data78

The current study uses a set of 1.3M molecules taken from Pubchem. These molecules were curated to have up to 1479

heavy atoms and include the elements CHONFCl. For each of these species, Auto3D was used to generate a geometry,80

and 23 properties were calculated for each structure using either GFN2-xTB as implemented in the xtb package,81

or directly parsed from PubChem.Bannwarth et al. [2019], Liu et al. [2022] The complete set of properties are as82

follows based on whether it was generated from xtb or parsed from PubChem: (xtb) dipole moment, total energy, total83

enthalpy, total free energy, HOMO-LUMO gap, heat capacity at constant pressure, standard entropy, vertical ionization84

potential, vertical electron affinity, global electrophilicity index, max/min/avg electrostatic potential, free energies85

of solvation in octanol and water, total solvent accessible surface areas in octanol and water, quadrupole moment;86

(Pubchem): compound complexity, number of H-bond acceptors and donors, log(P), and topological polar surface area.87

In combination this led to a total of 23 properties that were used as inputs to the LPMs during training and evaluation.88

It is beyond the scope of a Discussions article to fully excavate all the details of how these properties were calculated89

and their accuracy. The associated dataset will be published elsewhere. For the purposes of training and evaluating the90

LPMs, we will take these properties as ground-truth labels.91

A set of 80 trivial properties were also calculated for each molecule that we refer to as “constraints”, because these92

are properties that the user will often know in advance and would like to apply as a design constraint. For example,93

setting the number of fluorines to zero or limiting the size of the molecule is easy owing to the explicit inclusion of94

these constraints during training. The training constraints include the number of atoms of each element and boolean95

true/false flags for list of common functional groups. These constraints are concatenated with property vectors after96

embedding and prior to the attention layers. For the purpose of the following discussion, when we refer to “property97

vectors” we are referring to the catenated tensor associated with the separately embedded constraints and properties.98

2.2 Architecture99

A multimodal transformer architecture was designed and implemented here for the property to graph problem (Fig. 3).100

The architecture consists of a property encoder with self-attention cells and a graph decoder with masked cross-attention101

that uses the encoded property vector in the decoding. The transformer is multimodal in that it accepts different classes102

of properties, each with their own encoding. In particular, all class properties (here, these are only associated with103

constraints) are embedded using a property-specific word embedding, and all scalar properties are encoded separately,104

each with a property-specific linear layer. After embedding, the property information occupies a [101, demb] tensor,105

where demb is the embedding dimension that is equal to 256 for all of the models discussed here. The embedded106
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property tensor is transformed by a series of four eight-headed self-attention cells into a tensor of the same size that is107

used as the key and value inputs in the cross-attention blocks of the graph decoder.108

The graph decoder is constructed as a next-token SMILES predictor that begins with a “start” token. The decoding109

occurs recursively until the decoder predicts an “end” token or the decoded string reaches the maximum length. The110

input to the decoder is tokenized and embedded into a [dwin, demb] tensor based on a SMILES vocabulary with dvocab111

tokens, where dwin is the maximum length of the context window that is equal to 35 for all of the models discussed112

here. Sinusoidal positional embedding is added to the decoder embedding to capture the positional context (this isn’t113

required in the property encoder because we desire it to be positionally invariant). The embedded [dwin, demb] tensor is114

then transformed through four eight-headed cross-attention cells where the key and value inputs are supplied by the115

encoder output. Finally, the output of the decoder is projected to a [dwin, dvocab] tensor during training with a dense116

layer and a softmax to predict the probability of the next SMILES token. During inference the final projection is to a117

[1, dvocab] tensor because it is performed in token-by-token fashion.118

2.3 Training and Evaluation119

The models were trained and tested using fixed 80:10:10 training:validation:testing splits assigned randomly from120

the 1.3M molecule dataset. The models were trained on next-token prediction using masked cross-attention in the121

decoder, a cross-entropy loss, dropout for the dense layers in each attention cell, the Adam optimizer with learning122

rate 2, 000, 000−0.5 ∗ d−0.5
emb , and patience of 30 epochs evaluated on the validation set to conclude training. The 1.05M123

training samples of property/graph pairs were randomly sampled in batches of 100 for training. All numerical properties124

were min-max [0,100] normalized with respect to the training distribution. Training until termination by patience took125

between 54-106 epochs for the models trained here.126

A subset of the models were trained under conditions where a fraction of the inputted properties were masked.127

Masking was incorporated using a special token for class-based inputs and the mean value across the training set for128

scalar inputs. Both constrained properties and real properties were masked.129

During structure inference a beam search was implemented to decode the top-n structures predicted by each model130

to be consistent with the supplied property vector.Vaswani et al. [2017], Winter et al. [2019], Moret et al. [2021] For a131

beam size of 1, the beam search is simply a greedy decoding. For a beam size of n, next-token prediction occurs for the132

n most probable decodings that occur after each cycle.133

3 Results and Discussion134

3.1 Property Space135

The inverse problem is challenging because there is a one-to-many mapping between any individual property and many136

molecular structures. However with a sufficient number of properties, the relationship between property vectors and137

molecules should approach one-to-one. Between the two extremes, the density of molecules in property space should138

monotonically decrease as more properties are considered.139

How many properties does it take to uniquely specify a chemical structure? To sketch an answer to this question, 22140

properties from the dataset (all xtb calculated properties except quadrupole moment, plus the number of h-bond donors141

and acceptors from pubchem) were used to specify a position in property space for all 1.3M molecules and calculate142

the nearest-neighbor separations in various scenarios (Fig. 4). The theoretical maximum separation between a pair of143

molecules in property space grows as max(rNN) =
√∑

i p
2
i , where the summation runs over all properties and pi is144

the range of the property. All properties were percent normalized between [0,100] and the natural log of the percentage145

normalized separation was used for the y-axes. Under these conditions, the maximum log(rNN) is ~4.6 and 6.2 for146

1-dimensional and 22-dimensional property spaces, respectively.147

Unsurprisingly, the mean separation between molecules, ⟨rNN⟩, decreases as molecules are added to the property148

space (Fig. 4a). For example, if the molecular scope were limited to diatomics, then a single property–say, electric149

dipole moment–would probably be sufficient to uniquely identify the species. But as the number of heavy atoms (HA)150

in the molecules grow (and correspondingly the number of molecules in the space), the number of properties required151

to uniquely specify the chemical graph also grows. Nevertheless, the molecules remain unusually clustered in property152

space. For example, a 22-dimensional volume with sides of 100 containing 1.3M molecules has a number density of153

1.3E-38. This corresponds to an average nearest-neighbor separation of 66 (~4.2 on natural log scale) for an ideal gas154

of 22-dimensional spheres occupying the same volume. The ~5x larger ideal gas separation than ⟨rNN⟩ for the full155

dataset (i.e., the 14 HA case) is evidence of significant clustering in property space of these molecules. It isn’t clear if156

this clustering is intrinsic to the physically relevant space of chemistry or if this clustering merely reflects the limits157
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Figure 4: Nearest-neighbor statistics in property space for the 1.3M molecules in this study. (a) The mean nearest
neighbor separation, ⟨rNN⟩, and maximum nearest-neighbor separation, max(rNN), between molecules in the dataset
with a number of heavy atoms less than or equal to the x-value. (b) The same separation statistics calculated as a
function of the size of the property space. Different subsets of properties were resampled to estimate the property
dependence of the separation. Where visible, the bar denotes the one standard deviation across trials, otherwise the
error is within the marker. All properties are normalized between [0,100] and the y-axes are on a natural log scale.

of PubChem curation and synthetic biases. Regardless, the existence of this relatively low-dimensional manifold is158

consistent with the hypothesis that a relatively small set of physical properties may usefully span molecular space.159

Although they are clustered, the molecules are still distinguishable from one another when provided a sufficient160

number of properties (Fig. 4b). If we use a 1% difference in at least one property as a measure of distinctiveness, then161

the molecules are on average distinguishable in the full 22-dimensional property space. But as the dimensionality of the162

property space shrinks, many of the molecules become indistinguishable by this measure. It isn’t until approximately163

10 properties that the molecules are distinct on average (i.e., exhibiting an effective separation of 1% from another164

molecule in property space). We hypothesized that the choice of properties would play a major role in distinguishing165

molecules, with more orthogonal properties producing property spaces with larger effective separations. To test this we166

estimated the standard deviations in separations upon resampling subsets of the properties at random and calculating the167

molecular separations in the resulting property spaces. Somewhat surprisingly, the uncertainty with respect to property168

selection becomes effectively zero after moving into a 10-dimensional property space or larger. This is indirect support169

of the motivating hypothesis that property redundancy emerges from a sufficient basis set of physical properties.170

3.2 LPM Performance171

The feasibility of the property to graph task was first evaluated by training a LPM model without property masking172

and evaluating its performance in several graph reconstruction and property prediction tasks (Fig. 5). We consider it173

informative to distinguish between the LPM performance in reproducing the exact molecules associated with particular174

property vectors (i.e., the reconstruction tasks shown in blue), and reproducing molecules that exhibit consistent property175

vectors with the inputs (i.e., the property reconstruction tasks shown in green). Using the property vectors as inputs, the176

LPM predicts an exact match of the testing set molecule associated with the inputted property vector ~35% of the time.177

The testing set molecule is within the top-10 structures ~75% of the time. Structural isomers of the testing set molecules178

are also commonly predicted within the top-10. The LPM has an even stronger ability to match formula constraints,179

with the formula reconstruction accuracy approaching 100% for the testing set. Invalid top-1 predictions from the LPM180

(i.e., SMILES strings that do not correspond to valid Lewis structures) are also negligible. It is notable that no extra181

effort or architectural innovations were applied to filter invalid SMILES. This common problem of generative models182

simply resolved itself through scale and training on the property to graph task.183

Less than 100% accuracy in the top-1 reconstruction task is not necessarily a bad thing, given that the most direct184

application of the LPM is to generate new molecules. Additionally, the clustering of molecules in property space (Fig.185

4) suggests that multiple molecules are likely to exist with similar property profiles to the property vectors being used186

here for inference. Indeed, ~90% of the top-1 predicted molecules are new (i.e., contained neither within the training187

nor validation splits). But how well do the generated molecules actually reproduce the property vectors that were188
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Figure 5: Summary performance measures of LPM accuracy on property vectors from the testing set. Top-n reconstruc-
tions refer to the percentage of property vectors for which the original molecule was predicting by the LPM. Matches
formula only compares the formula of the top-1 predicted molecule with the molecule that produced the property vector.
Invalid molecules refers to top-1 predictions that are invalid SMILES. New molecules refers to top-1 predictions that
were not in the training and validation data splits. Within 10% of selected property refers to how closely individual
properties from the top-1 predicted molecule match the inputted property vector. The “best” and “worst” refer to the
properties with the highest and lowest average fidelity, respectively. Within 10% of all properties is the fraction of top-1
predicted molecules whose properties were within 10% of all specified properties.

used during inference? To assess this, the properties of the top-1 predicted structures were calculated according to189

the same protocol as the training data and the statistics for reproducing individual properties and all properties were190

calculated (Fig. 5, green). Not all properties are equally easy to reproduce. The most easily satisfied property was total191

energy, which was reproduced in ~99.87% of the top-1 predictions, and the hardest individual property to reproduce192

was average electrostatic potential, which was only reproduced in ~49% of the top-1 predictions. Remarkably, over193

40% of the top-1 predicted structures reproduced all 22 properties within 10% of the requested value.194

3.3 Masking Case-Studies195

In an authentic generative scenario the user may only desire to explicitly specify a small number of properties. The196

current LPMs accept up to 21 properties. Rather than specifying all 21 properties, the user might only wish to specify197

one property and have the other 20 properties be conditionally sampled by the model. Can the LPM’s be trained to198

perform inference on a subset of properties?199

To test this we implemented a simple masking strategy that consisted of keeping a fixed set of input properties200

and constraints but randomly masking subsets of the inputs during training (Fig. 6a). Masking was implemented by201

replacing scalar properties with the mean value from the training dataset and replacing categorical properties with202

a special masking token. The rationale for this strategy was that it would force the model to rely on a broader set203

of relationships between the properties because the available information was not fixed from inference to inference.204

Moreover, the relationships used by the LPM for inference would have to be dynamic in the masking scenario, because205

the inputs being masked were randomly selected from sample to sample. Conversely, this training strategy would make206

conditional inference easy for the user as any unknown properties could simply be masked during inference.207

Four LPMs were trained and tested under conditions with varying levels of property masking (Fig. 6b). The 0%208

masking LPM is the same as that used in Fig. 5, but the other LPMs were newly trained for this case study. All209

LPM architectures were held fixed and no attempt was made to fine-tune the architecture to improve performance in210
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Figure 6: Property masking case-study. (a) Illustration of the property masking task. A fixed percentage of properties
were masked during training and testing while evaluating the LPM’s ability to still infer correct structures. Scalar
properties were masked by supplying the mean value from the training distribution, while categorical properties were
masked with a special token. (b) LPM performance in structure reconstruction tasks subject to different masking levels
during training and evaluation. (c) LPM performance in property reconstruction tasks subject to different masking
levels during training and evaluation. The markers indicate the masking levels during training, the x-axis indicates the
masking levels during testing. The reported accuracies are calculated with respect to the unmasked properties.

the masking scenario. Masking has a monotonic adverse effect on LPM performance in the structure reconstruction211

tasks (Fig. 6b). Masking a fraction of properties is the same as reducing the property space from the perspective of212

information, and so it makes sense that the confidence in predicting a specific graph goes down as more properties are213

masked. Notably, the top-1 accuracy nearly falls to zero for the 50% masking case, which approximately matches the214

10-property threshold that we identified in the Figure 4b discussion as being necessary for practically distinguishing215

molecules within the training distribution. It is also notable that masking has a negligible effect on the prediction of216

invalid molecules and new molecules. This is consistent with all of these LPMs being trained in property spaces that are217

sufficiently informative to learn both the grammar and interpolation of the training distribution of molecules.218

Masking was envisioned to help in predicting molecules with targeted properties subject to limited off-target219

property information. Thus although masking is expected to hurt reconstruction accuracy, it should help property220

prediction accuracy in property-scarce scenarios. To test this, the LPMs trained in the varying masking scenarios were221

tested for property reproduction in both unmasked and masked scenarios (Fig. 6c). During these tests, the full testing222

set of property vectors were used with the specified percentage of inputs masked. The properties of the resulting top-1223

predictions were then characterized and compared with the unmasked portions of the inputted property vectors. The224

accuracy is reported as the percentage of the top-1 predictions that exhibit all properties (i.e., excluding constraints)225

within a specified percentage (either 5% or 20%) of the unmasked inputted values. The 0% masking LPM was used as a226

baseline and tested under all masking scenarios. Each masked LPM was tested under the same masking conditions227
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as its training and also the 0% masking scenario. Note that these tests are quite expensive because the properties of228

all new molecules must be characterized to evaluate the accuracy of the predictions; this is the only reason why all229

combinations of masked training and masked testing were not performed.230

Several notable behaviors emerge from this case study. First, the performance of the LPM trained without masking231

rapidly deteriorates in circumstances where it only has access to a subset of properties. In contrast, the masked LPMs232

all outperform the unmasked LPM in masked testing scenarios. This largely validates the hypothesis that masking233

forces the LPMs to learn a more dynamic set of property relationships, whereas the unmasked LPM relies on a fixed234

set of relationships that produce very poor results subject to incomplete information. Second, the LPMs trained with235

masking can still perform useful inference in the unmasked scenario. In particular, the LPM trained with 30% masking236

shows a small reduction in property accuracy in the unmasked scenario, while the LPM trained with 10% masking237

actually performs better in the unmasked scenario. Because the accuracy is only evaluated on the unmasked properties,238

this latter result unequivocally shows that some of the properties possess mutual information such that their joint239

specification increases their individual accuracy. Finally, the difference between the “all properties within 20% of240

target” and “all properties within 5% of target” accuracy measures increases with the masking level of evaluation,241

regardless of the masking level during training. We interpret this as additional evidence of the mutual information242

amongst the properties. As the number of properties available for inference shrinks, so do the accuracy and confidence243

of the properties associated with the predicted molecules.244

4 Conclusions245

Our initial experiments with LPMs suggest that the property to molecular structure mapping becomes directly learnable246

using a relatively low-dimensional property space. The finitude of property space has the corollaries that 1. a minimal247

basis set of properties exists with respect to which other properties are derivative, 2. that even seemingly unrelated248

properties can possess mutual information, and 3. that the conditional chemical structure distribution becomes simpler249

as more properties are explicitly specified. These corralaries suggest the practical possibility of making effective250

few-shot generative models by pretraining on property rich conditional property to graph distributions and fine tuning on251

a small number of specific examples. These and many other implications of LPM performance should be interrogated252

as part of the Faraday Discussion.253

Several things have also been intentionally left out of this study: we haven’t tested the LPMs in extrapolative254

scenarios; we haven’t tested the scaling behavior of the LPMs with respect to training data; we haven’t tested the255

scaling behavior of the LPMs beyond a small set of possible properties; we haven’t tested the transferability of LPMs to256

data-scarce or other unseen properties; we haven’t explored self-supervised training tasks beyond masking; we haven’t257

fine-tuned the architecture for performance. These and many other things are extensions of the ideas described here and258

will have to wait for future communications.259
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