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Abstract

We investigate the entropy of liquid water at ambient conditions using the two-phase

thermodynamic (2PT) model, applied to both common pairwise-additive water models

and the MB-pol and MB-pol(2023) data-driven many-body potentials. Our simulations

demonstrate that the 2PT model yields entropy values in semiquantitative agreement

with experimental data when using MB-pol and MB-pol(2023). Additionally, our anal-

yses indicate that the entropy values predicted by pairwise-additive water models may

benefit from error compensation between the inherent approximations of the 2PT model

and the known limitations of these water models in describing many-body interactions.

Despite its approximate nature, the simplicity of the 2PT model makes it a valuable

tool for estimating relative entropy changes of liquid water across various environ-

ments, especially when combined with water models that provide a consistently robust

representation of the structural, thermodynamic, and dynamical properties of liquid

water.

Introduction

Entropy is a central thermodynamic property across various fields, having broad implica-

tions not only in chemistry and physics but also in biology, information theory, and social

sciences.1–4 The second law of thermodynamics states that the total entropy of the universe

cannot decrease, thus determining the spontaneity of all transformations.5 For example, en-

tropy changes play a crucial role in determining reaction dynamics,6–8 understanding protein

folding,9 exploring phase transitions,10 and designing high-entropy materials.11 Although

Boltzmann’s statistical interpretation of entropy laid the groundwork over a century ago,12

accurately calculating entropy changes for complex molecular systems continues to represent

a significant challenge.

The two-phase thermodynamic (2PT) model provides a straightforward approach for

estimating the entropy of a liquid by decomposing the total density of states into solid-
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like and gas-like components.13–15 Within the 2PT framework, the solid-like component is

approximated by normal modes describing an ideal solid, while the gas-like component is

approximated by the diffusive motions of a hard-sphere gas. Since the diffusion of a liquid

can be fully attributed to the gas-like component, the decomposition of the total density

of states can be uniquely determined. It follows that the entropy of a liquid can then be

obtained by summing the entropy contributions from the solid-like and gas-like components,

which are calculated independently.

Water is arguably the most important liquid on Earth, directly mediating chemical, phys-

ical, and biological processes.16 It is thus not surprising that many molecular models17–20

have been developed since the first Monte Carlo (MC)21 and molecular dynamics (MD)22

simulations of liquid water. The most common models describe the water molecules as rigid

objects and represent the underlying interactions as a sum of physics-inspired, pairwise-

additive contributions. These models attempt to capture actual many-body interactions

through effective pairwise terms that are empirical parameterized to reproduce a subset of

experimental properties (e.g., density, freezing point, enthalpy of vaporization, etc.).18 Ex-

amples of empirical pairwise-additive models include SPC,23 SPC/E,24 TIP3P,25 TIP4P,25

TIP4P-Ew,26 TIP4P/2005,27 and TIP5P.28 Empirical pairwise-additive models with flexible

monomers (e.g., TIP4P/2005f,29 and SPC/Fw30) have also been developed. Although em-

pirical pairwise-additive models have been widely used in computer simulations of water and

various aqueous solutions they suffer from intrinsic shortcomings that limit their predictive

power and transferability across different phases.20

Recent advances in correlated electronic structure methods and machine learning algo-

rithms have enabled the development of water potentials rigorously derived from the many-

body expansion of the energy (MBE) calculated at the coupled cluster level of theory, includ-

ing single, double, and perturbative triple excitations, i.e., CCSD(T). CCSD(T) is currently

considered the “gold standard” of chemical accuracy for molecular interactions.31,32 Among

these data-driven many-body potentials, MB-pol33–35 has been shown to accurately repro-
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duce the properties of water from gas-phase clusters to liquid water to ice.36,37 Notably,

MB-pol is the first and, to date, only molecular model capable of accurately predicting the

phase diagram of water.38 In addition, MB-pol has also enabled accurate simulations of the

hydration properties of halide and alkali metal ions from small clusters39–46 to aqueous so-

lutions,47–51 as well as of water adsorbed in metal-organic frameworks at different relative

humidity values.52–60 More recently, an updated version of MB-pol, MB-pol(2023), trained

on larger training sets of CCSD(T) many-body energies, has been shown to achieve even

higher predictive accuracy for simulations of water in both gas and liquid phases.61

In this study, we report the entropy values of liquid water at ambient conditions for the

MB-pol and MB-pol(2023) potentials as predicted by the 2PT model and compare them

with values calculated with several commmon pairwise additive water models. Since the

2PT model involves the calculation of the vibrational density of states, which depends sensi-

tively on the water model used in the simulations, we also investigate the ability of empirical

pairwise-additive models, as well as the MB-pol and MB-pol(2023) potentials, to consistently

describe both the entropy and the structural and dynamical properties of liquid water at am-

bient conditions. Our analyses indicate that the entropy values calculated with both MB-pol

and MB-pol(2023) are about 10% smaller than the corresponding experimental value. Since

these data-driven many-body potentials provide remarkable agreement with experimental

data across all water’s phases, the discrepancy found for the entropy of liquid water might

primarily be due to the approximate nature of the 2PT model. Similar discrepancies are

also found for empirical pairwise-additive models (e.g., TIP4P/2005 and TIP4P/Ew) that

are known to provide a robust description of the properties of water at ambient conditions,

supporting the hypothesis that these discrepancies reflect inherent limitations of the 2PT

model. This is further corroborated by the good performance in reproducing the experimen-

tal entropy value exhibited by pairwise-additive water models (e.g., TIP3P and SPC) that

provide a poor description of both structural and dynamical properties of liquid water. This

apparent agreement thus hinges on fortuitous error compensation between the approxima-
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tions inherent to the 2PT model and the known inaccuracies of these pairwise-additive water

models in correctly representing many-body interactions. Nevertheless, given its simplicity,

the 2PT model can still serve as a valuable tool for estimating relative changes in the entropy

of liquid water across various environments, especially when applied to simulations carried

out with models that provide a reliable representation of the structural, thermodynamic,

and dynamical properties of water across all its phases.

Methods

We consider water models belonging to the SPCx (SPC,23 SPC/E,24 SPC/Fw30) and TIPnP

(TIP3P,25 TIP4P,25 TIP4P/2005,27 TIP4P/2005f,29 TIP4P/Ew,26 TIP5P28) families of

pairwise-additive water models along with the MB-pol33–35 and MB-pol(2023)61 data-driven

many-body potentials. All MD simulations were performed using the Large-scale Atomic/

Molecular Massively Parallel Simulator (LAMMPS)62 for a cubic box of N = 256 water

molecules in periodic boundary conditions. In the case of MB-pol and MB-pol(2023), the

simulations were enabled by the MBX C++ library63,64 interfaced with LAMMPS.

The equations of motion were propagated using the velocity-Verlet algorithm with a

time step of 0.2 fs in the canonical (NV T : constant number of molecules N , volume V , and

temperature T ) ensemble,65 with the temperature controlled using a global Nosé-Hoover

chain consisting of four thermostats.66 The nonbonded interactions were truncated at an

atom-atom distance of 9.0 Å. The long-range electrostatic interactions for models belonging

to the SPCx and TIPnP families were calculated using the particle-particle particle-mesh

solver as implemented in LAMMPS. The long-range electrostatic interactions for MB-pol

and MB-pol(2023) were calculated using the particle mesh Ewald method as implemented in

MBX.63,67,68 The entropy values of all water models were calculated using the 2PT model14

by averaging over 20 independent NVT trajectories, each 50 ps long.
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The tetrahedral order parameter, qtet, was calculated according to69

qtet = 1− 3

8

3∑
j=1

4∑
k=j+1

(
cosψijk +

1

3

)2

, (1)

where ψijk is the angle between the oxygen atom of the central water molecule with index i

and the oxygen atoms of two neighboring water molecules with index j and k lying within a

distance smaller than 3.5 Å from the central molecule. qtet = 0 corresponds to a completely

disordered structural arrangement as in an ideal gas, while qtet = 1 corresponds to a perfect

tetrahedral arrangement. The orientational correlation function was calculated by averaging

over the same 20 trajectories according to the following expression70

C2(t) = 〈P2[~e(0) · ~e(t)]〉. (2)

Here, ~e represents a unit vector along one of the OH bonds of a water molecule, P2 is the

second-order Legendre polynomial, and the bracket indicates an ensemble average over all

OH bonds at a given time t.

Results and Discussions

The entropy values calculated with all water models considered in this study are listed in

Table 1 along with the experimental value. The entropy values obtained for SPC, SPC/E,

SPC/Fw, TIP3P, TIP4P/2005, and TIP4P/Ew agree with those reported in previous stud-

ies.14,15 SPC and TIP3P display the closest agreement with the experimental value within

the SPCx and TIPnP families of models, respectively. All other SPC-type and TIPnP-type

models, on the other hand, predict similar entropy values that are consistently smaller than

the experimental value. In this regard, it should be noted that, despite water being empiri-

cal and described by effective two-body potential energy terms, TIP4P and TIP5P provide

slightly better agreement with the experimental value than MB-pol and MB-pol(2023), which
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Table 1: Entropy of liquid water at 298 K calculated using the 2PT model
and MD simulations carried out at 298 K with the MB-pol and MB-pol(2023)
data-driven many-body potentials, as well as various pairwise-additive models
belonging to the SPCx and TIPnP families.

Model Entropy (J/mol-K)

Experiment71 69.95 ± 0.03

Data-driven many-body potentials
MB-pol 62.9 ± 0.3
MB-pol(2023) 62.0 ± 0.5

SPCx pairwise-additive models
SPC 66.9 ± 0.3
SPC/E 61.7 ± 0.3
SPC/Fw 61.4 ± 0.4

TIPnP pairwise-additive models
TIP3P 70.6 ± 0.2
TIP4P 64.3 ± 0.2
TIP4P/2005 58.3 ± 0.2
TIP4P/2005f 60.2 ± 0.2
TIP4P/Ew 59.9 ± 0.2
TIP5P 63.5 ± 0.3

were developed based on a rigorous many-body formalism and CCSD(T) reference energies.

The differences in entropy values among the water models are related to the differences

in structural and dynamical properties of liquid water predicted by the models themselves.

To gain insights into the relationship between the structure of water and the calculated

entropy values, Figure 1 shows the oxygen-oxygen radial distribution function (RDF) of

liquid water calculated with each model at 298 K and experimental density. While the SPC

and TIP3P models provide the closest agreement with the experimental data, their RDFs lack

prominent long-range structural organization, which leads to an overall poor representation

of the overall structure of liquid water. On the other hand, all other models predict similar

RDFs, correctly predicting the presence of well-defined first and second solvation shells. In

particular, MB-pol and MB-pol(2023), which predict similar entropy values, provide the
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(A) (B)

Figure 1: Oxygen-oxygen radial distribution function, g(ROO), calculated from MD simula-
tions of liquid water carried out at 298 K with the MB-pol and MB-pol(2023) data-driven
many-body potentials, as well as various pairwise-additive models belonging to the SPCx
(A) and TIPnP (B) families. The experimental oxygen-oxygen radial distribution function
from Ref. 72 is also shown for comparison.

closest agreement with the experimental oxygen-oxygen RDF.

It should be noted that the trend in entropy values predicted by the various water models

qualitatively follows the structural ordering inferred from the analysis of the correspond-

ing oxygen-oxygen RDFs. In particular, the high entropy values predicted by the SPC

and TIP3P models are reflected in the absence of a second solvation shell in their oxygen-

oxygen RDFs. As shown in Table 1, the SPC/E, SPC/Fw, TIP4P/2005, TIP4P/2005f, and

TIP4P/Ew models predict smaller entropy values than MB-pol and MB-pol(2023). This dif-

ference correlates with the first hydration shell in the oxygen-oxygen RDFs calculated with

these models being overstructured compared to that predicted by MB-pol and MB-pol(2023).

Overall, the trend in entropy values displayed by the various water models appears to be

inversely correlated with their ability to predict the correct structure of liquid water. This

analysis suggests that the better agreement of the SPC and TIP3P models with the exper-

imental entropy value, compared to all other models, is likely due to error compensation

between the approximations adopted by the 2PT model and the intrinsic limitations of these

water models in correctly representing many-body interactions in liquid water. Additionally,

based on the consistent agreement of MB-pol and MB-pol(2023) with experimental data for
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several structural, thermodynamic, and dynamical properties of water, it seems reasonable

to assume that, due to its inherent approximate nature, the 2PT model likely underesti-

mates the entropy of liquid water at ambient conditions predicted by these two models by

approximately 10%.

The relationship between the structure and the entropy of water is further supported by

the analysis of the tetrahedral order parameter (qtet) for each water model, as shown in Fig-

ure 2. Except for SPC and TIP3P, all water models exhibit a similar bimodal distribution,

characterized by a shallow peak at qtet ≈ 0.5 and a pronounced peak at qtet ≈ 0.8. The

P (qtet) distributions calculated with the SPC and TIP3P models instead display a single

peak at qtet ≈ 0.5. The analyses of the RDFs (Figure 1) and qtet distributions (Figure 2)

demonstrate that the SPC and TIP3P models are unable to accurately predict the structure

of both the first and second solvation shells, despite providing the closest agreement with the

experimental entropy values. Moreover, the larger entropy values predicted by the SPC and

TIP3P models compared to other models qualitatively align with their P (qtet) distributions,

since both models provide more pronounced distributions at smaller qtet values, directly

correlating with more disordered structural arrangements. In addition, the slightly higher

(A) (B)

Figure 2: Probability distribution of the tetrahedral order parameter, P (qtet), calculated from
MD simulations of liquid water carried out at 298 K with the MB-pol and MB-pol(2023)
data-driven many-body potentials, as well as various pairwise-additive models belonging to
the SPCx (A) and TIPnP (B) families.

9

https://doi.org/10.26434/chemrxiv-2024-321x5 ORCID: https://orcid.org/0000-0002-4451-1203 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-321x5
https://orcid.org/0000-0002-4451-1203
https://creativecommons.org/licenses/by-nc-nd/4.0/


entropy value predicted by TIP4P compared to MB-pol and MB-pol(2023) can be under-

stood in terms of the differences in the corresponding P (qtet) distributions. Specifically, the

distribution calculated with TIP4P is noticeably higher at qtet ≈ 0.5 and lower at qtet ≈ 0.8

compared to the distributions calculated with MB-pol and MB-pol(2023), indicating slightly

more disordered arrangements of water molecules residing within the first solvation shell.

Insights into the relationship between entropy values and dynamical properties predicted

by the different water models can be gained by analyzing the calculated orientational corre-

lation functions, as shown in Figure 3. Following the same trends displayed by the entropy

values, RDFs, and P (qtet) distributions, all water models, except for SPC, TIP3P, and

TIP4P, predict a similar decay of the orientational correlation functions as a function of

time. The orientational relaxation times for all water models, τ2, which were determined

by fitting the long-time decay of the corresponding orientational correlation functions to a

single exponential function, are listed in Table 2. Among all models considered in this study,

MB-pol and SPC/E provide the closest agreement with the experimental value, followed by

MB-pol(2023), SPC/Fw, TIP4P/2005f, TIP4P/Ew, and TIP5P. Interestingly, while MB-pol

and MB-pol(2023) effectively display the same ability to predict the structural properties

(A) (B)

Figure 3: Orientational correlation function, C2(t), calculated from MD simulations of liquid
water carried out at 298 K with the MB-pol and MB-pol(2023) data-driven many-body
potentials, as well as various pairwise-additive models belonging to the SPC (A) and TIPnP
(B) families.
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Table 2: Orientational relaxation time, τ2, calculated from MD simulations of liq-
uid water carried out at 298 K with the MB-pol and MB-pol(2023) data-driven
many-body potentials, as well as various pairwise-additive models belonging to
the SPC (A) and TIPnP (B) families. For of each water mode, τ2 was calcu-
lated by fitting the long-time decay of the corresponding orientational correlation
function to an exponential function: C2(t) = A exp(−t/τ2).

Model τ2 (ps)

Experiment73 2.5

Data-driven many-body potentials
MB-pol 2.6 ± 0.1
MB-pol(2023) 2.8 ± 0.1

SPCx pairwise-additive models
SPC 1.5 ± 0.1
SPC/E 2.6 ± 0.1
SPC/Fw 3.0 ± 0.1

TIPnP pairwise-additive models
TIP3P 1.1 ± 0.1
TIP4P 1.8 ± 0.1
TIP4P/2005 3.1 ± 0.1
TIP4P/2005f 2.7 ± 0.1
TIP4P/Ew 2.7 ± 0.1
TIP5P 2.3 ± 0.1

of liquid water, as shown in Figures 1 and 2, they provide slightly different orientational

correlation functions. In addition, it is noteworthy that models with smaller τ2 values gener-

ally exhibit larger entropy values, as shown in Table 1. Smaller τ2 values, corresponding to

rapid decays of the corresponding correlation functions, indicate that water molecules more

quickly lose memory of their initial orientations. Consequently, information about the water

structure is more rapidly lost over time. In this context, the trends in τ2 and entropy values

among all water models suggest that, despite being inherently approximate, the 2PT model

qualitatively captures the essential features of entropy, directly correlating the entropy value

with the extent of structural order/disorder and information content.
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Conclusions

In this study, we have investigated the entropy of liquid water as predicted by the 2PT

model used in combination with various models, including the MB-pol and MB-pol(2023)

data-driven many-body potentials and models belonging to the SPCx and TIPnP families.

We have demonstrated that the entropy values calculated using the 2PT model qualitatively

correlate with the extent of structural ordering and fast dynamics predicted by a given water

model. However, our analyses indicate that the 2PT model does not consistently align the

entropy value calculated with a given water model with the ability of the same model to

reproduce other structural, thermodynamic, and dynamical properties of liquid water. This

discrepancy can be attributed to the interplay between the approximations adopted by the

2PT model and the ability of a water model to accurately describe many-body interactions

in water. This is evidenced by the ability of the SPC and TIP3P models to predict en-

tropy values in remarkable agreement with the experimental value while providing a poor

description of other structural and dynamical properties. On the other hand, the MB-pol

and MB-pol(2023) data-driven many-body potentials consistently provide excellent agree-

ment with experimental data for water across all phases but, when used in 2PT calculations,

they underestimate the entropy value by approximately 10%. Overall, our study suggests

that, despite its inherent approximate nature, the 2PT model can serve as an efficient tool

to estimate relative entropy changes of water in different environments when it is used in

combination with water models that provide a robust description of both the structure and

dynamics of liquid water.
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