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Abstract: 

 A longstanding project of the chemical kinetics community is to predict reaction rates and the behavior 
of reacting systems, even for systems where there are no experimental data. Many important reacting 
systems (atmosphere, combustion, pyrolysis, partial oxidations) involve a large number of reactions 
occurring simultaneously, and reaction intermediates that have never been observed, making this goal 
even more challenging. Improvements in our ability to compute rate coefficients and other important 
parameters accurately from first principles, and improvements in automated kinetic modeling software, 
have partially overcome many challenges. Indeed, in some cases quite complicated kinetic models have 
been constructed which accurately predicted the results of independent experiments. However, the 
process of constructing the models, and deciding which reactions to measure or compute ab initio, relies 
on accurate estimates (and indeed most of the numerical rate parameters in most large kinetic models 
are estimates.) Machine-learned models trained on large datasets can improve the accuracy of these 
estimates, and allow a better integration of quantum chemistry and experimental data. The need for 
continued development of shared (perhaps open-source) software and databases, and some directions 
for improvement, are highlighted. As we model more complicated systems, many of the weaknesses of 
the traditional ways of doing chemical kinetic modeling, and of testing kinetic models, have been 
exposed, identifying several challenges for future research by the community. 
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Introduction 

Historically, chemical processes have been developed using iterative experimentation: (1) discover a 
new reaction, (2) fit it into a laboratory process including separations/purifications and usually several 
other reactions to accomplish the overall transformation of interest, (3) then conduct several iterations 
of scale-up and optimization of reaction conditions, culminating in a pilot plant campaign. A kinetic 
model is fitted to the data measured in the pilot plant, and that model is used to make the predictions 

 

Fig. 1. Schematic of conventional chemical process development workflow. 
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needed to design the full industrial scale unit needed to commercialize the process, Fig. 1. The full-scale 
unit is then modestly tweaked to fine-tune its performance. 

This conventional procedure works, but has several drawbacks. First, it is expensive: the pilot plant 
experiments typically cost several million dollars, and this high cost significantly discourages innovations 
that involve introducing new chemical reactions. Since the pilot plant experiments are expensive, only a 
limited number are conducted, and so the final process model can only involve a small number of 
adjustable parameters tuned to match the limited data. Typically this is done by using a reduced 
simplistic model that only contains the major species, rather than a realistic kinetic model that includes 
the reactive intermediates. Also, this procedure locks in on particular process design and reaction 
conditions, since it is usually not practical to consider a wide range of possible processes or reaction 
conditions experimentally.  So in the end, the process that is modeled and built to full industrial scale is 
typically a local optimum in the limited region of process space tested, not the best possible process. 
And the simplistic model we have for that process, while usually accurate for interpolation between the 
reaction conditions of the pilot plan experiments, is usually unreliable in extrapolation. Often the 
simplistic model cannot represent minor byproducts, or any of several phenomena that can cause 
upsets in a large reactor. 

Could we do things differently? Is there some way to accurately predict the process kinetics without 
relying on pilot plant experiments? Could we predict the efficiency and rates of several different 
processes to achieve the same goals on the computer, to more efficiently hone in on the best process? 
Could we build a more accurate model, that includes the minor by-products and the physics underlying 
different upsets? 

There are at least two distinct issues when trying to make these predictions: (1) Predicting which species 
and reactions are important in the process, and (2) Predicting the numerical values of all the rate 
coefficients, equilibrium constants, and other parameters needed for kinetic simulations. 

This paper provides my current perspective on these two challenging issues, and how they both depend 
on our ability to accurately estimate rate coefficients and related quantities. In this paper I particularly 
focus on recent attempts to use machine-learning methods to provide the numerical estimates, which 
potentially could change how estimation is done. A large number of very talented researchers are 
currently working on these problems, and many more have worked on them in the past. There are 
volumes devoted to parts of this problem [1,2] and many reviews of different aspects of the 
problem.[3,4,5,6].  Here I do not attempt a comprehensive review of this big research area, but instead 
focus on some specific aspects of these big problems that I am most familiar with, mostly due to recent 
work done by my collaborators. 

Which Species and Reactions are Important?  

The first question, “which reactions are occurring, making which species?”, is important in many fields of 
chemistry, not just kinetics. For example, if one wants to synthesize a molecule, one needs to be able to 
predict what the major products from combining a set of reactants, reagents, and catalysts at certain 
reaction conditions will be.[7] But the question is particularly important in kinetics, since to build a 
kinetic model we need to predict not just the major products, but also the important reactive 
intermediates and reactions, and the important minor byproducts (e.g. those that are toxic, or which 
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cannot be allowed to contaminate the final product). And ideally we would like each reaction to be 
elementary, so we can predict how its rate depends on concentrations. 

The definition of ‘important’ depends on the needs of the modeler: which species can be safely ignored? 
What is the modeler’s error tolerance? It also depends on the reaction conditions: ethanol changes from 
an inert solvent into a major reactant at high temperatures (e.g. in the process for making ethylene from 
biomass).  Often there is a core set of species and reactions that are currently considered to be 
important, and then a much larger set of other species and reactions which could conceivably be 
important, as illustrated in Fig. 2 for the case of propene pyrolysis. In Fig. 2 the black species and solid-
arrow reactions are currently thought to be important at the reaction conditions of interest, while it is 
currently unknown if the dashed reactions and gray species are important. And of course there are 
thousands of other reactions and species that could conceivably be important, but which are not 
currently under consideration, these are not shown in the figure. A systematic method is needed, both 
to propose candidate reactions and species, and to decide which are actually important. 

 

 

Fig. 2 Some species and reactions that likely (dark) or may (gray) be important in pyrolysis of propene.  

Several procedures have been proposed to decide which species and reactions should be included in a 
kinetic simulation. One approach is to choose important reaction sequences by analogy to kinetic 
models for other systems. For example, if one has a model for the pre-ignition chemistry of one alkane, 
one can reasonably predict the important reactions in the pre-ignition chemistry of other alkanes [8]. 
This procedure of modeling-by-analogy is used by many expert kineticists as they begin to model a new 
system, and has been codified in some software packages that automatically generate kinetic models. 
[9,10]  Another idea is to assume low conversion of the reactant, so its reactions will dominate, and 
subsequent reactions of the initial products will be less important. This approach is used in software 
packages such as NetGen [11], and is a good approach for modeling systems where the initial build-up of 
small concentrations of by-products is harmful, e.g. shelf-stability of drugs.[12]   
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Yet another concept is to systematically generate every possible reaction from the dark species in Fig. 2, 
and then numerically test all the gray reactions, pruning away reactions which are calculated to be too 
slow to be important (as judged by some error tolerance). This “rate-based” approach is used in the 
Reaction Mechanism Generator (RMG).[13,14,15] The rate-based approach has the advantage of being 
more general than methods that assume knowledge of analogous system, or low conversion, and it has 
been impressively successful in a handful of cases.[16,17,18,19,20]  However, it has the disadvantage of 
being slower and more memory-intensive than those approaches, since it requires calculations of a very 
large number of reaction rates (for all the gray “edge” reactions in Fig. 2 as well as the “core” reactions 
shown in black). These rate calculations require calculations of the concentrations of each species (e.g. 
by solving the simulation with the current version of the reaction mechanism). So special work has been 
done to try to improve the computational efficiency of the rate-based approach [21,22], but even with 
those improvements it can be challenging to build a reaction network that achieves a user’s error 
tolerance.[23]  

Challenges with Species & Reaction Selection 

Even if one can successfully complete all the computations, cases are known which confuse the rate-
based algorithm, leading it to mis-classify some important species and reactions as unimportant, or vice-
versa. More complicated species-selection algorithms have been proposed to try to overcome some of 
these flaws [24,25], but there are still open questions and a need for better species-selection algorithms.  

The species-selection problem is particularly challenging for high-temperature low-pressure systems, 
where many of the reactions involve “well-skipping”, so there is more than one transition state between 
the reactant(s) and the major products of a reaction.[26] To deal with this issue, RMG includes an 
extension of the rate-based algorithm for chemically-activated reactions that was originally invented by 
Matheu [27], then improved by Allen and Goldsmith [28], and recently further improved by Johnson and 
Grinberg Dana [29]. The numerical/computational challenges can be severe for systems with a large 
number of important isomer wells; often there are so many possible isomers that it is difficult for a 
human to correctly enumerate them all, much less judge which are important at particular reaction 
conditions. Several research groups have been working on aspects of this problem; particularly notable 
is the automated Potential Energy Surface (PES) search software package KinBot developed by Zador 
and co-workers [30].  

Even in the high-pressure limit, it is not hard to identify important systems where there are so many 
possible reactions and reactive intermediates that it would be difficult-to-impossible to consider them 
all. A key practical limitation is that today’s differential equation solvers run into numerical difficulties 
for systems with more than about 10,000 stiff non-linear differential equations (i.e. more than about 
10,000 distinct radicals), due to round-off issues solving equations involving the large ill-conditioned 
Jacobian matrices. But some common mixtures, e.g. diesel fuel, contain more than 10,000 distinct stable 
molecules, and form more than 100,000 different radicals when they burn.  As another example, 
pyrolysis of biomass or waste polymers involves thousands of distinct radicals from H-abstractions of 
every C-H bond in the macromolecules, and each of these can react to form several different oligomers 
and product radicals. As the reactions proceed, multiple sites on the polymer are functionalized, leading 
to a combinatorial explosion of isomers. Similarly challenging are systems where polymerization or soot 
formation is occurring, since a detailed model would need to include multiple reactive intermediates of 
almost every size between the starting material and the macromolecules being formed. 
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There are a variety of other issues related to dealing with such large simulations, beyond today’s 
numerical solver problems. Not least is the challenge of constructing a complete set of all these 
important species and reactions (and to identify and debug any omissions). Another major challenge is 
coming up with accurate kinetic parameters for so many reactions, as discussed in the rest of this paper. 
Because of these difficulties, some researchers have built reduced models, using techniques such as 
Structure-Oriented Lumping [31] or the Fragment Method [32] to partially overcome the combinatorics. 
Further work is needed to better understand the errors introduced by these model-reduction 
approximations, and to automate these methods to make them easy to use. 

 

 

Computing k’s and Keq’s from First Principles 

During most of the 20th century, it was difficult-to-impossible to accurately compute most gas-phase 
high-pressure-limit rate coefficients k∞(T) from first principles, and even more difficult to compute the 
effects of pressure or solvent on the rates. However, the development of density-functional theory and 
other quantum chemistry methods, coupled with the rapid advances in computer hardware, have now 
made DFT calculations routine, and . Rather sophisticated quantum chemistry calculations are now 
feasible for many reactions [4,5], and they are often quicker and easier than experimental 
measurements of similar accuracy.  This game-changing advance is the reason that it is conceivable that 
predictions validated by inexpensive laboratory experiments, or in some cases even pure predictions, 
might be able to replace the conventional approach based on extensive pilot-plant experimentation 
shown in Fig. 1, while this was impossible in the 20th century. 

What accuracy do we need? Usually errors in computed or estimated energies dominate, because they 
appear in the exponents in the expressions for k∞(T) and Keq(T). Since Keq=exp(-∆Grxn/RT), if the 
computed value of the energy contains an error δG   

∆Grxn,computed = ∆Grxn,true + δG   

Keq,computed = Keq,true exp(δG/RT)  

So if |δG|>RT, that error will cause Keq,computed will be off by a factor of e ≈ 2.7x or more from the true 
value. Similarly, if the computed reaction barrier differs from the true barrier height by δE,  

kcomputed = ktrue exp(δE/RT)  

So if |δE| > RT, that error in the computed barrier energy will cause the computed rate coefficient k to 
be off by a factor of 2.7x or more. 

Can quantum chemistry achieve the needed accuracy? The deviations between high-accuracy 
experimental values of enthalpies of formation of small molecules and radicals from the Active 
Thermochemical Tables [33] and computations using various theoretical methods are shown in Fig. 3. 
Each tick on the x-axes is 10 kcal/mole. All the calculations shown use atom energy corrections (AEC) to 
bring the numbers from the quantum chemistry calculations onto the conventional elements-in-their-
standard-state heat of formation scale. The mean absolute errors (MAE) and root mean square errors 
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(RMSE) are computed 3 ways: (1) before applying fitted Bond-Additivity Corrections (BAC), (2) after BAC 
but showing training errors (no test set), and (3) after BAC using leave-one-out cross-validation. The 
cross-validation method gives the best estimate of the errors in predicting enthalpies of formation of 
most molecules. The “Before BAC” errors provide estimates of expected errors in predictions for 
systems with bond types absent from the training data. 

The popular low-level DFT method B3LYP-D3BJ, green bars in top figure, mis-predicts many molecules’ 
enthalpies by more than 10 kcal/mole, much larger than RT, corresponding to errors of many orders of 
magnitude in Keq’s and k’s. Fitted bond-additivity corrections (BAC), using the form proposed by 
Anantharaman and Melius [84], help significantly (purple bars) but even after these tweaks are there are 
still many errors ~3 kcal/mole or larger. The intermediate-level method CBS-QB3, middle, has been very 
popular in the combustion/pyrolysis community over the past two decades, since with BAC (purple 
histogram) it predicts most enthalpies within 2 kcal/mole, without requiring too many computational 
resources for molecules containing up to about 12 carbon atoms.[34] Note RT > 2 kcal/mole if T>1000 K. 
The highest-level method shown in Fig. 3, DLPNO-CCSD(T)-F12b/cc-pCVTZ-F12//ωB97M-V/def2-TZVPD, 
bottom, is so accurate that it does not require BAC corrections to predict almost all of the enthalpies 
within 2 kcal/mole, green bars.[35] If BAC are applied to this method, most of the enthalpy errors drop 
to less than 1 kcal/mole, corresponding to about a factor of 3 uncertainty in Keq’s at 500 K. For further 
discussion of methodology and similar tests of other quantum chemistry methods see [82]. Several 
research groups have automated quantum calculations of thermochemistry to automatically update the 
thermochemical parameters for hundreds of species in kinetic models.[88,89] 

Note that errors in energies are more tolerable at high temperatures, where RT is larger, than at low 
temperatures. At present we often can predict k’s and Keq’s fairly accurately at combustion 
temperatures, because we have methods that can predict energies with errors <RTcombustion. But 
predicting accurate k’s and Keq’s at room temperature is difficult, because most methods cannot 
compute energies with errors <RTroom.  Much of the most interesting low-temperature chemistry occurs 
in solvents, making it even more challenging to compute the energies to high accuracy. COSMO-RS [36] 
calculations based on DFT charge distributions predict the solvent corrections to the thermochemistry 
for many small neutral molecules in normal solvents with errors of about 1 kcal/mole [37,38,39], an 
error that adds to the often larger errors in the quantum chemistry prediction of the gas-phase 
enthalpies of formation. Errors in both types of calculations need to be reduced to enable accurate 
predictions of kinetics at room temperature. 

 

Transition state theory calculations for k∞(T) are similar to calculations of Keq(T). However, transition 
states more difficult to compute accurately than stable molecules: it is more difficult to provide guesses 
at transition state geometries that will successfully converge to the desired saddle point, and there are 
often low-lying electronic states which can cause convergence difficulties and degrade the accuracy of 
common approximations in the electronic structure calculations. At a simpler level, we do not have good 
empirical bond additivity corrections for transition states, so at best we might expect errors in barrier 
heights similar the green histograms in Fig. 3. The implication is that if we want |δE| < RT to keep our 
computed k’s within about a factor of 3 of the true values, we need to use rather expensive quantum 
chemistry methods (at least CBS-QB3, maybe CCSD(T)-F12).  
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Fig.3 Histograms of Errors between Quantum Chemistry calculations of enthalpies of formation and 
experimental values from Active Thermochemical Tables (ATcT). Green: errors after applying only atom 
energy corrections (AEC). Purple: errors after also applying fitted bond-additivity corrections (BAC). Top: 
Density Functional Theory (B3LYP-D3BJ/def2-TZVP) has RMSE > 9 kcal/mole before BAC. Middle: CBS-
QB3, a composite method based on single-determinant wavefunctions, has RMSE close to 1 kcal/mole 
after BAC. Bottom: CCSD(T)-F12b, a high-level method involving explicit correlation between each pair of 
electrons, has RMSE < 2 kcal/mole even without BAC. See Ref. [82] 
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If one uses high-accuracy quantum chemistry methods, the computed rates using transition state theory 
often closely match experiments.[4,5]  One example is shown in Fig. 4, for the reaction phenyl + 
ethene.[40-45] The effect of a 1 kcal/mole uncertainty in a reaction barrier height is also illustrated in 
Fig. 4: at high temperature it does not matter much, but at room temperature it leads to large 
uncertainty in k(T). 

 

Calculations of gas-phase reaction rates at low pressures and high temperatures requires dealing with 
many extra challenges and complexities, but there has been excellent progress in dealing with 
them.[46,47,48] Figs. 3 and 4 are some of the many published examples that demonstrate we can 
compute enthalpies (and so Keq’s) and gas-phase k(T)’s fairly accurately from first-principles.  

Recent work suggests that the kinetic solvent effects on small-molecule reactions (of neutral molecules 
in normal solvents) can also be computed accurately at low cost if the corresponding gas-phase barriers 
can be predicted accurately [49], though one might need to search for a different conformer of the 
reactant(s) and transition state in each solvent.[50] 

 

 

Fig. 4 Predicted and experimental k(T)’s for C6H5 + C2H4. The experimental data come from Refs. [41-45]. 
The gray band reflects 1 kcal/mole uncertainty in the computed (G2M(RCC5)//B3LYP) barrier height 
reported in [40]. This small uncertainty in energy corresponds to a large range of k’s (note the y-axis 
scale spans 6 orders of magnitude).  

 

Challenges in first-principles calculations of kinetic parameters 

However, the scope of reactions we can compute accurately is disappointingly narrow. First, accurate 
first-principles kinetics is mostly confined today to light elements, both for reasons of computational 
cost, and because the transition metals and lanthanides have low-lying electronic states which reduce 
the accuracy of single-determinant methods such as CCSD(T) that work so well for organic molecules. 
The heavy elements introduce additional challenges (relativistic effects, spin-orbit coupling). 
Supercomputers are advancing rapidly, and many researchers are working to improve quantum 
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chemistry methods for transition metals, so hopefully this major limitation will be resolved in the 
coming decade. 

Second, while we can compute the thermochemistry and reactions of ions and of electronically-excited 
states (e.g. photochemistry), the accuracy is significantly degraded compared to the reactions of ground-
state neutrals, particularly in condensed phase. For example, the solvation energy of ions in water is 
often mis-predicted by about 5 kcal/mole [90], which is much too inaccurate to use in kinetic modeling. 

Third, computational cost is a serious challenge as we move from small molecules (e.g. one aromatic 
ring) to the medium-sized molecules that are so important in organic, pharmaceutical, and biological 
chemistry. The accurate methods are based on coupled-cluster calculations (e.g. CCSD(T)), where the 
cost of computing the energy at a single molecular geometry scales roughly as the number of electrons 
to the 7th power. So for example computing the energy of a dimer (or a monomer + monomer Transition 
State) is about 27 = 128 times slower than computing its monomer. But as molecules get larger they also 
have more conformations, and so more geometries that need to be computed. Often many of the 
conformers correspond to the gauche-gauche’-trans arrangements around single bonds; there are about 
3Nrotors of those conformers. So if a monomer has 6 rotatable single bonds, it will have about 36 = 729 
conformers, and its dimer with 12 rotatable single bonds will have about 312 = 531,441 conformers, i.e. 
about 729 times as many conformers as the monomer. If one were to attempt to compute the energies 
of each conformer at the same high (e.g. CCSD(T)) level the CPU time to compute the dimer (or 
monomer + monomer TS) would be about 128*729 = 93,312 times longer than computing the monomer 
at the same level of theory. So although it may be practical to very accurately compute the properties of 
the monomer, it might be infeasible to compute the dimer or the monomer + monomer TS. There has 
been a lot of excellent work to find methods with near CCSD(T) accuracy but better scaling, but more 
work is needed on methods for handling conformers/rotors accurately and efficiently, particularly 
conformers of transition states.  

When trying to decide which species belongs in a kinetic model and which can be safely omitted, Fig. 2, 
it would be very helpful to have reliable numbers for the rate coefficients of each potential reaction. 
However, in many systems there are known to be hundreds or thousands of important species, and 
most species can react rapidly with all the radicals and some of the stable molecules, often in multiple 
ways. So today one would like to have reliable k’s for perhaps a million reactions, and in the future even 
more. Probably in coming decades, as both computational chemistry methods and computer hardware 
improve, it might become possible to compute a million reactions of medium size molecules accurately 
from first principles, but today it is not practical. So today we instead need to rely on estimates, as 
discussed next. 

How to Estimate Kinetic Parameters? 

In the 20th century (and even earlier) many methods were proposed for estimating rate coefficients or 
thermochemical parameters (which provide Keq’s and so the relationship between the k’s for a forward 
reaction and its reverse) were proposed. These included the Arrhenius equation (k = f(T)) [51], the 
Lindemann-Hinshelwood equation (k=f(P)) [52], the Hammett equations [53] for how both rate 
coefficients and equilibrium constants depend on substituents on an aromatic ring, the Evans-Polanyi 
equation (k = f(∆Hrxn)) [54], Benson’s group contribution method for thermochemistry (and so Keq) and 
estimation methods for Arrhenius A factors [55], and several other correlations. Most of these 
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correlations could be cast so that the handful of adjustable parameters could be unambiguously 
determined by linear least-squares fitting to a small number of data (though sometimes even these 
linear least-squares calculations ran into ill-conditioning problems). Several of these estimation methods 
involve first identifying which functional groups are in the molecules, or which bonds are changing 
during the reaction, and then using the appropriate linear correlation(s), shown schematically in Fig. 5. 
In modern parlance, that first step converts a molecule or reaction into a “fingerprint” vector, and the 
second step converts the vector into the estimate of the quantity of interest (e.g log(k) or log(Keq)). 

 

 Fig. 5. Common 20th century estimation strategy for molecular or reaction properties. For example, one 
entry in the fingerprint could be the number of a certain functional group in the molecule. 

As reliable quantum chemistry data became available, these were initially used to augment the 
experimental data, and fitted using similar linear correlations [56,57,58]. However in the last decade it 
has become practical to compute an enormous number of molecules and reactions using quantum 
chemistry [37,59,60,61], so much data that it can make sense to use much more complicated nonlinear 
correlations, a.k.a. “machine-learning (ML)”, Fig. 6. 

 

Fig. 6. The “machine-learning” non-linear correlation used by Chemprop and similar programs. The 
procedure “learns” which set of attributes is best to include in the fingerprint, using a type of graph 
convolution called a directed message passing neural net (D-MPNN). It simultaneously tunes a feed-
forward neural net (FFN) to predict the property of interest from that learned fingerprint. 

Fig. 6 shows one of several different non-linear many-parameter fitting forms that have been used to 
correlate molecules or reactions with their properties. The form shown in Fig. 6 is used in Chemprop 
[62], a very popular open-source “ML for Chemistry” software package (more than 100,000 downloads 
per month in early 2024). The Chemprop-type approach is very effective if one has a large amount of 
data (e.g. on >1,000 molecules or reactions). If one has a smaller data set, e.g. data on about 100 
molecules, other correlation methods with fewer adjustable parameters may be more satisfactory, e.g. 
the Reaction Mechanism Generator software package uses trees to classify reactions [63,64]. A key 
advantage of having a large dataset is that one can reserve a large “test set” as well as a “validation set” 
and still have a large amount of data remaining to train the estimator. The validation dataset is used to 
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detect when the model is starting to overfit the training data, and so when one should stop the training 
procedure. The reserved test set then provides a realistic assessment of the accuracy of the estimates, 
albeit on molecules or reactions similar to those in the test set. Helpful tips are available [65] on how 
best to do this fitting procedure and estimate the uncertainties in the predictions, with warnings about 
common pitfalls. 

Some properties depend on more than one molecule, e.g. solvation energy of a solute (Molecule 1) in a 
solvent (Molecule 2); that situation can be modeled as shown in Fig. 7. Slightly more complicated 
variations are required for reactions to maintain atom-mapping through the transition state [66] or for 
properties where Molecule 1 and Molecule 2 play the same roles, so (Molecule 1, Molecule 2) should 
give exactly the same property value as (Molecule 2, Molecule 1).[62] For predicting the properties of 
mixtures, one must also input the mole fractions of each molecule in the mixture. 

 

 

 

 

 

 

  

 

 

 

Fig. 7.  Properties that depend on more than one molecule can be modeled by concatenating their 
learned fingerprints.  

Many data are needed to “teach” a machine-learning model the rules of chemistry. This is often a 
problem in chemical kinetics, since we usually have only small experimental datasets, and often the data 
available is very “clumpy”, with many data for certain types of molecule or reactions, and zero data on 
some other types of molecules or reactions. The need for data is illustrated for solvation free energy in 
Fig. 8 (orange curve) using calculations and data reported by Vermeire and Green.[37]  

Molecule 1 

Molecule 2 
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Fig. 8. Achieving good accuracy with a model for solvation free energy based solely on experimental data 
requires many data. Pre-training a model on a large number of quantum (COSMO-RS) calculations 
greatly reduces the number of experimental data needed. The Model vs. Expt. root-mean-square error 
(RMSE) asymptotes at the experimental noise level; in that large-data limit the model can be significantly 
more accurate than the experiments. See [37]. 

One way to avoid the need to purchase or synthesize a large number of molecules, and then perform 
thousands of experiments, is to instead start with a large number of quantum chemistry calculations. 
Pre-training a solvation model with many quantum chemical (COSMO-RS [36]) calculations, and then 
calibrating that model with ~200 solute-solvent pairs gives (Fig. 8, blue curve) about the same prediction 
accuracy as the purely experimental model (orange curve) trained with ~3,000 solute-solvent pairs. This 
approach has the important advantage that one can easily compute molecules which are not 
purchasable, hard to synthesize, or short-lived. My group has constructed several large quantum 
chemistry datasets [37,60,61,67,71,73], and used them and the available experimental data to train 
estimators for several different quantities important in kinetics: thermochemistry of both stable 
molecules and radicals, reaction barriers, transition state geometries, gas-phase k’s, solvent effects on 
k’s and Keq’s, and IR and UV/vis spectra. [37,38,39,61,63,66,68,69,70,71,72,83] 

In recent years, it has become possible to use the computer to automatically discover transition state 
geometries [30, 74, 75, 76] and so to compute reaction barriers for large numbers of 
reactions.[60,73,77]. With these large data sets, one can use machine-learning methods to build models 
for rapidly estimating the barriers for other reactions.[66,72] A particularly interesting example of this 
approach is Spiekermann et al.’s [72] development of a fast estimator for predicting unimolecular 
reaction barriers (for neutral singlet PES’s involving only a few first row elements) trained by CCSD(T)-
F12 data, which achieves an accuracy better than possible with DFT calculations, Fig. 9. 

Fast reaction-barrier estimators of this quality would be very helpful for deciding which reactions should 
be included in a kinetic model, recall Fig. 2. In principle they could be combined with fast estimators for 
Arrhenius A-factors to provide fast estimates of k∞(T), but to our knowledge no one has yet provided a 
similarly large data set of reliable Arrhenius A-factors that would be needed to train this type of 
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comprehensive neural-net rate-estimation model. Instead, the best rate-estimates available today are 
for a limited set of reaction types, often based on tree classifiers, that assign different rate rules to 
different types of reactions. [63,64,78, 87] Tree classifiers are expected to be more suitable than neural 
nets if data is sparse, which currently the case for many types of reactions. For a recent example of how 
these tree classifiers can be constructed automatically see [63]. The tree classifiers provide a relatively 
easy way to estimate the uncertainty in the estimates [63], compared to the rather complicated and 
often too-optimistic uncertainty estimates from today’s neural-net approaches.[79,80] 

It is possible to extend these approaches to liquid phase, at least for cases where all the reactants, 
products and the solvent are neutral molecules. The kinetic solvent effects on small-molecule reactions 
can be computed accurately if the corresponding gas-phase barriers can be predicted accurately [49] 
and rapidly predicted using machine-learning approaches.[61] The kinetic solvent effect estimator was 
trained using a large dataset of COSMO-RS calculations, but tested using held-out experimental 
measurements, with an RMSE error in ∆∆Gǂ < 1 kcal/mole [61], comparable to the accuracy of COSMO-
RS calculations at predicting kinetic solvent effects.[49] However, it should be kept in mind that the 
number of reactions where the kinetic solvent effects on the rate coefficient has been experimentally 
determined and reported is rather small. Measurements on a broader range of reactions in various 
solvents and at various temperatures would be helpful to more thoroughly test the accuracy of kinetic 
solvent effect predictions.  

 

Fig. 9. Histogram of errors between fast estimator of reaction barrier heights and CCSD(T)-F12 
calculations on more than a thousand test reactions.  The mean absolute error in the fast estimates is ~3 
kcal/mole, better than the typical accuracy of DFT calculations of barrier heights. For details on the 
datasets and model see [72,73]. 

 

Challenges in Estimating Kinetic Parameters 

These approaches based on high-throughput quantum chemical calculations, while sometimes very 
helpful (see Fig. 8), are not a panacea: they are limited to molecules and properties which can be 
computed to a reasonable accuracy with quantum chemistry with the computer resources available. In 

https://doi.org/10.26434/chemrxiv-2024-phv4j ORCID: https://orcid.org/0000-0003-2603-9694 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-phv4j
https://orcid.org/0000-0003-2603-9694
https://creativecommons.org/licenses/by/4.0/


14 
 

particular it is usually impractical to compute large numbers of macromolecules, or molecules with 
complicated electronic structures (e.g. many metal complexes), so the quantum chemistry data sets are 
biased towards small simple molecules. Even for relatively small simple molecules, it can be impossible 
to guarantee that one has found all the important (i.e. low energy) conformers.[50] We also do not 
know how to compute some important properties (e.g. solvation of ions, photochemistry in condensed 
phase) to the accuracy required for predictive kinetic modeling. And in some cases, such as reaction 
barriers, we believe we know how to do the quantum chemistry calculations, but it can be challenging to 
determine the barrier heights by experiment to an accuracy sufficient to really test if the quantum 
chemistry is accurate. All of these issues lead to important gaps and errors in the training datasets for 
any rate estimator, and can force the estimator to work in extrapolation (e.g. to estimate reactions of 
large molecules from training data that only includes small molecules), leading to uncontrolled errors in 
the estimates. 

Quantum chemistry calculations are possible on many more molecules and reactions than are practical 
to address experimentally – this is a huge advantage over relying solely on experimental data to train an 
estimator. As a result, several large datasets of reaction barriers and thermochemistry have been 
computed in recent years [59,60,73,85,86], and several additional large datasets are expected to be 
published soon. However, there are often systematic gaps in the quantum chemistry datasets even if the 
dataset ostensibly covers the reaction one is trying to estimate. This can happen because the quantum 
chemistry fails to converge (or gives wrong values) for molecules or reactions with unusual electronic 
structures or geometries. So for example the widely used QM9 [59] dataset omits some small organic 
species with highly strained structures, and Grambow et al. [76] were unable to find satisfactory 
transition states for about 20% of the reactions they considered despite trying several different 
approaches. A few percent of Grambow’s large set of successfully computed saddle points [60] were 
later identified to have significant deviations in barrier heights from CCSD(T)-F12 values [73], 
presumably due to convergence problems or the inability of the DFT method employed to handle the 
electronic structures for those transition states. Also, many data sets are only computed using DFT or 
even lower-accuracy methods, not the expensive high-accuracy methods needed for quantitatively-
accurate predictions of rates or equilibria. Only a few of the data sets have included the bond-additivity 
or isodesmic reaction corrections needed to achieve thermochemistry close to experimental values, Fig. 
3.[81,82,84] These problems all propagate into errors in a rate or thermochemistry estimator trained 
using these data. Some of these problems can be hard to uncover, particularly if the estimator is pretty 
good and so predicts most k(T) accurately. In the worst case, a serious mis-prediction might not become 
apparent until years later, when new experimental data or a much better quantum chemistry calculation 
becomes available, demonstrating that the estimate and/or the original quantum chemistry calculation 
for a particular reaction was incorrect. Caveat emptor! 

Also, while quantum chemical calculations are often much faster than experiments, it is important to 
keep in mind that they are not zero-cost to society: someone is paying for the expensive supercomputer 
hardware and the electricity it is consuming to generate large data sets, and the associated greenhouse 
gas emissions are damaging the climate. Often, as in Fig. 8, there is limited value in pushing to larger and 
larger dataset sizes. So it is best practice to build models at the same time one is computing (or 
measuring) the data, to better assess the value of the next tranche of data relative to the cost of 
obtaining it. 
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Conclusion 

Predictive kinetic modeling based largely on quantum chemistry has advanced to the state where it can 
compete with traditional heavily empirical methods of constructing quantitative kinetic models in 
several subfields of chemistry. However, there is significant room for improving its scope and reliability 
when the challenges highlighted in this paper are overcome. A key, both today and in the future, is the 
continued development of methods for computing and estimating k(T) and Keq(T), with better 
identification of when those calculations or estimates are significantly uncertain. Achieving better 
estimates relies on access to more and better data both from quantum chemical calculations and from 
experiments. More open data sharing, and more recognition of the people who do the hard work 
involved in effectively sharing data and compiling curated data sets (ideally with error bars and 
provenance information on each number), would help us reach this goal. As the community routinely 
uses ever larger datasets and kinetic simulations, improved software tools are needed to assist humans 
in working with and checking the data, the models, and model vs. experiment comparisons, as well as 
better algorithms to convert the raw power of new computers into easy-to-use tools for predicting the 
behavior of chemical systems. 
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