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Abstract. Many-body Green’s function theory in the GW approximation with

the Bethe–Salpeter equation (BSE) provides a powerful framework for the first-

principles calculations of single-particle and electron-hole excitations in perfect crystals

and molecules alike. Application to complex molecular systems, e.g., solvated

dyes, molecular aggregates, thin films, interfaces, or macromolecules, is particularly

challenging as they contain a prohibitively large number of atoms. Exploiting the

often localized nature of excitation in such disordered systems, several methods have

recently been developed in which GW -BSE is applied to a smaller, tractable region of

interest that is embedded into an environment described with a lower-level method.

Here, we review the various strategies proposed for such embedded many-body Green’s

functions approaches, including quantum-quantum and quantum-classical embeddings,

and focus in particular on how they include environment screening effects either

intrinsically in the screened Coulomb interaction in the GW and BSE steps or via

extrinsic electrostatic couplings.

1. Introduction

Controlled use of electronic excitations within materials has paved the way for

technological advancements, from the design of cutting-edge optoelectronic devices

to the development of energy-efficient materials. A comprehensive understanding of

electronic excitations is hence required for harnessing the full potential of materials

and ab initio methods ideally provide some insight into these quantum-level processes

without any – or as little as possible – experimental input. However, as materials grow

in complexity, encompassing thousands or millions of atoms, and real-world conditions

arise, the computational burden of simulating such systems with high accuracy becomes

overwhelming. Macroscopic phenomena including optical absorption, luminescence,

electrical conductivity, and other bulk or surface material properties cannot be captured
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with microscale models alone because of the interplay of numerous interactions across

larger length and time scales. As a consequence, the study of electronic excitations in

complex disordered systems remains a challenge for ab initio methods.

Many-Body Green’s Functions Theory in the GW approximation and Bethe–

Salpeter Equation (BSE) has often been considered the method of choice for the

calculation of electronically excited states (both charged and neutral) in hard condensed

matter systems [1, 2, 3], starting from a mean-field ground-state reference often obtained

from density-functional theory [4, 5] (DFT). Early studies in the late 1990s of inorganic

crystals such as elementary semiconductors, or insulators such as magnesium oxide or

lithium fluoride have been tractable because the atomic structure of these materials

can be represented by small unit cells with only a few atoms [6]. Nowadays, efficient

implementations with periodic boundary conditions (PBCs) [7, 8, 9, 10] coupled with

recent methodological developments [11, 12] and increased computing power have

allowed treating larger systems, such as reconstructed surfaces, defect structures, or

in general materials with more complex structures [13, 14].

At the other end of the material spectrum, interest in applying GW -BSE to study

molecular excitations has picked up considerably later, beginning in earnest around

2010. The possible explanations for this delayed uptake are likely pragmatic: (i) many-

body wave function-based quantum chemistry alternatives such as coupled-cluster or

configuration interaction have widely been, and still are, considered the state-of-the-

art [15, 16, 17], and (ii) existing GW -BSE implementations in solid-state codes with

PBCs and a plane-wave basis are rather inefficient for isolated systems, requiring large

and mostly empty unit cells. With implementations without PBCs and localized-orbital

bases instead of plane-waves becoming available, several groups showed that Green’s

function methods are very powerful also in molecular systems, balancing – simplified

speaking – the accuracy of more computationally expensive wave function methods

with the cost of time-dependent density-functional theory [18] (TDDFT). One of the

most notorious problems, for instance, of TDDFT is the very sensitive dependence

of predicted charge-transfer type excitation energies on the choice of the exchange-

correlation functional [19]. In GW -BSE these excitation energies are predicted with the

same accuracy as localized excitations (compared to the experiment) usually without

the need for special tuning [20, 21, 22].

Based on these promising results in single molecules or dimers, it is natural to

turn the attention to more complex material systems, such as solvated dyes, molecular

aggregates, thin films, interfaces, or macromolecules. However, as for all other ab initio

methods, the system sizes required to realistically and representatively study electronic

excitations in such materials exceed by far what is computationally tractable. Yet, the

realization that many of such material systems are characterized by a significant amount

of disorder leading to – in broad terms – localization of electronic states (in contrast to

the Bloch states in hard condensed matter), offers a way out of this conundrum. That

is, partitioning the overall system into a region of interest (”active region”), say a dye

molecule, which is embedded in a surrounding region such as one containing a solvent.
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Both regions can then be described at different levels of theory such that the very

accurate and computationally expensive method is restricted to the active region, while

a less expensive lower-level method is used for the environment. This lower level can be

either a simplified quantum mechanical (QM) model in a QM/QM setting [23, 24, 25], a

molecular mechanics (MM) approach (QM/MM) [26], or a continuum model [27, 28, 29]

representing the environment as a structure-less material having realistic macroscopic

dielectric properties.

In the context of all of these approaches, the focus of this topical review is

specifically on embedded Many-Body Green’s Function methods, that is, calculations

using GW -BSE as the high-accuracy electronic structure method for a region of interest

embedded into a region at lower-level description. As we will see, there are generally

two classes of embedding strategies here: one is treating GW -BSE just as any other

high-level method and couple it extrinsically to the lower-level method via, e.g., in the

case of only weakly interacting systems purely classical electrostatic interaction modules.

While very powerful, as we will discuss in detail in Section 3.3, GW -BSE also allows for

another class of approaches. These exploit the fact that one of the main ingredients of

the Green’s functions methods here is the screened Coulomb interaction, W , which is

essential for representing the electronic many-body effects in quasiparticle and electron-

hole excitations. In some sense, GW -BSE can be seen as an exciting merger between

advanced quantum-mechanical principles, on the one hand, with classical electrostatic

concepts, on the other hand. Embedding approaches can be devised that explicitly and

intrinsically make use of these electrostatic concepts at the core of GW -BSE.

In this review, we will in the following first briefly revisit the general methodology

of GW -BSE in Section 2 to introduce the main concepts and equations as well as

some computational aspects as they will be relevant later. Section 3 is devoted

to the discussion of the various embedding strategies, starting from GW -BSE-in-

DFT methods either starting from projection-based-embedding or subsystem DFT,

introducing approximations to GW -BSE-in-MM embedding, and different flavors of

external GW -BSE/MM calculations. For each of these approaches, we will summarize

the main theoretical aspects and some computational details. Throughout, we will

also give a few examples of application to material systems, ranging from small dimer

complexes, via solvent-solute systems, to molecular films and surfaces.

2. Many-Body Green’s Functions Methods for Electronically Excited States

In this section, we briefly recapitulate the essential ideas and theoretical framework of

Green’s functions approaches, upon which the embedding methods we will discuss are

based. We restrict ourselves to the discussion of the most important results and refer

the interested reader to more exhaustive derivations in the literature [3].

All the following are essential approaches to extracting information on the excited

states of a system consisting of M nuclei and N electrons. The coordinates Rα of the

individual nuclei with charges Zα and ri of the individual electrons are combined into
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the variables R = (R1,R2, . . . ,RM) and r = (r1, r2, . . . , rN), respectively. For a simpler

presentation, we consider a system with a spin-singlet, closed-shell ground state. Hartree

atomic units are used throughout. Using the Born-Oppenheimer separation with the

adiabatic approximation, the stationary Schrödinger equation for the electrons reads

Ĥel(R)Φν(r;R) = Eν(R)Φν(r;R), (1)

with the electronic Hamiltonian

Ĥel = −1

2

N∑
i=1

∆ri −
M∑
α=1

N∑
i=1

Zα

|ri −Rα|
+

1

2

N∑
i,j=1

i ̸=j

1

|ri − rj|
. (2)

Here,
{
Φν(r;R)

}
is a set of adiabatic electronic wave functions, where ν = 0 indicates

the ground state and all ν > 0 the excited states of the system.

2.1. Effective single-particle ground state approaches

The electronic Schrödinger equation Eq. (1) is in practice still not solvable for many-

body systems, due to the presence of the electron-electron interaction V̂el−el. The Green’s

function methods we discuss in this review aim at descriptions of single- or two-particle

excited states. As most of the common formulations require information about the

ground state electronic structure, we begin the discussion with effective single-particle

methods for the ground state.

In the Hartree–Fock method [30], an ansatz is made for the many-electron wave

function based on single-electron functions ϕi(ri), enforcing the antisymmetry with

respect to particle exchange via the Slater determinant [31]:

ΦHF(r;R) =
1√
N !

det


ϕ1(r1) · · · ϕ1(rN)

ϕ2(r1) · · · ϕ2(rN)
...

. . .
...

ϕN(r1) · · · ϕN(rN)

 . (3)

With the help of the variational principle, a set of equations to determine the single-

particle functions can be derived:{
−∆r

2
+ vext(r) +

∫
n(r′)vC(r, r

′)dr′
}
ϕHF
j (r) (4)

−
∫

n(r, r′)vC(r, r
′)ϕHF

j (r′)dr′ = εHF
j ϕHF

j (r), (5)

with vC = |r− r′|−1. Here, we have also introduced the electronic densities

n(r) =
N∑
i=1

ϕ∗
i (r)ϕi(r) n(r, r′) =

N∑
i=1

ϕ∗
i (r)ϕi(r

′). (6)

The first integral in Eq. (5) corresponds to the classical Hartree integral [30] of the

Coulomb interaction vH(r) =
∫
n(r′)vC(r, r

′)dr′, and the second integral defines the

exchange potential operator vx(r) =
∫
n(r, r′)vC(r, r

′) · · · dr′. The N -electron problem
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has thus been mapped on a set of effective single-particle problems with the Hartree–

Fock potential

vHF(r) = vext(r) + vH(r) + vx(r). (7)

Hohenberg and Kohn [4] realized that one does not even need the full many-electron

wave function to find the ground state of a many-electron system and that instead

the electron density n(r) alone is enough to determine the ground state. Within the

Kohn–Sham framework of density-functional theory, the density is again determined

from another set of effective single-particle wave functions, which can be obtained as

solutions to the Kohn–Sham equations [5]:{
−1

2
∆ + vext(r) + vH(r) + vxc[n](r)

}
ϕKS
i (r) = εKS

i ϕKS
i (r), (8)

with the effective Kohn–Sham Hamiltonian

ĤKS = −1

2
∆ + vKS[n](r) = −1

2
∆ + vext(r) + vH(r) + vxc[n](r). (9)

Despite their formal differences, we can write both HF and DFT in more general

terms as mean-field (MF) single-particle methods with Hamiltonians

ĤMF = −∆

2
+ vext + vH + vMF = ĥ+ vMF, (10)

in which

vMF =

{
vx MF = HF

vxc MF = KS
(11)

Both the Hartree–Fock method and Kohn–Sham DFT provide a framework to

calculate the ground state of an interacting many-electron system. There are various

ways to obtain information about excited states in these frameworks, e.g., by time-

dependent formulations (explicit or within linear response). Alternatively, one can

consider electronic excitations as perturbations to the ground state and obtain again

effective single- or two-particle formulations for the excitations and their energies within

the framework of perturbation theory with many-body Green’s functions.

2.2. Single-particle Excitations and the GW Approximation

Hedin derived a closed set of equations that define the single-particle Green’s function

G1(r1t1, r2t2) for an interacting set of electrons [32, 33]. The main idea is to truncate

an infinite hierarchy of equations of motions for G1 depending on higher-order Green’s

functions G2, G3, . . . by the introduction of the self-energy Σ(r1t1, r2t2) which is an

effective non-local, non-Hermitian potential, accounting for all many-body exchange

and correlation terms that are beyond the scope of Hartree contributions.

Hedin’s equations can be simplified by the so-called GW approximation, in which

the self-energy is written as Σ = iGW , and allows to derive a set of effective single-

particle eigenvalue problems known as the quasiparticle (QP) equations

ĤMFϕQP
i (r)−

∫
vMF(r, r′)ϕQP

i (r′) d3r′ (12)
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+

∫
Σ(r, r′, εQP

i )ϕQP
i (r′) d3r′ = εQP

i ϕQP
i (r′).

Typically, the QP wave functions ϕQP
i (r) are approximated by the mean-field wave

functions ϕMF
i (r), which allows to write the QP energies as

εQP
i = εMF

i +
〈
ϕMF
i

∣∣∣Σ(εQP
i )
∣∣∣ϕMF

i

〉
. (13)

The self-energy is calculated in frequency space as

Σ(r, r′, ω) =
i

2π

∫
G(r, r′, ω + ω′)W (r, r′, ω′)eiω

′η dω′, (14)

from the Green’s function based on the mean-field solution

G(r, r′, ω) =
∑
m

ϕMF
m (r)ϕMF∗

m (r′)

ω − εMF
m − iηsgn(EF − εMF

m )
(15)

and the screened Coulomb interaction W in the random-phase approximation

W (r, r′, ω) =

∫
ϵ−1(r, r′′, ω)vC(r

′′, r′) d3r′′. (16)

Evaluating Eq. (16) in turn requires the microscopic, frequency-dependent dielectric

function given by

ϵ(r, r′, ω) = δ(r, r′)−
∫

vC(r, r
′′)χ0(r

′′, r′, ω) dω′ (17)

containing the irreducible polarizability χ0:

χ0(r, r
′, ω) =

occ∑
v

unocc∑
c

{
ϕMF∗
v (r)ϕMF

c (r)ϕMF∗
c (r′)ϕMF

v (r′)

ω − (εMF
c − εMF

v ) + iη
(18)

−ϕMF
v (r)ϕMF∗

c (r)ϕMF
c (r′)ϕMF∗

v (r′)

ω + (εMF
c − εMF

v )− iη

}
. (19)

As the self-energy is energy-dependent, and thus depends on εQP
i , the solution of Eq. (13)

must be found self-consistently. From Eq. (17) it is possible to split the self-energy

Σ = iGW into its bare exchange part

Σx(r, r′) =
i

2π

∫
G(r, r′ω + ω′)vC(r, r

′)eiω
′η dω′ (20)

= −
occ∑
v

ϕMF
v (r)ϕMF∗

v (r′)vC(r, r
′)

and the explicitly frequency-dependent correlation part

Σc(r, r′, ω) =
i

2π

∫
G(r, r′, ω + ω′) (W (r, r′, ω′)− vC(r, r

′)) dω′. (21)

With ωi = εMF
i + ⟨ϕMF

i |Σx − vMF|ϕMD
i ⟩ and ⟨ϕMF

i |Σc(ω)|ϕMF
i ⟩ = Σc

i (ω), we can

rewrite Eq. (13) into the fixed-point problem

ω − ωi = Σc
i (ω). (22)
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Due to the pole structure of the self-energy, there are in general several solutions to

Eq. (22). In this situation, the spectral weight, defined as

Z(ω) =

(
1− dΣc(ω)

dω

)−1

, (23)

is used to identify the ”true” QP energy by Z(ω) ≈ 1, or |dΣc(ω)/dω| ≈ 0.

In the above, when evaluating the self-energy, the MF eigenvalues and

eigenfunctions are used to constructG andW , which is also known as a ”one-shot”G0W0

calculation. Alternatively, it is possible to use updated QP energies until eigenvalue self-

consistency is reached (evGW ) [34, 35, 36].

2.3. Coulomb hole plus screened exchange approximation

As can be seen from the above, the frequency dependence of the self-energy gives rise

to several computational intricacies. If one considers only the static case, in which

W (r, r′, ω = 0) throughout, one can split the self-energy differently. In analogy to the

bare exchange term in HF or Σx, one can define a statically screened exchange (SEX)

term as

ΣSEX(r, r′) = −
occ∑
v

ϕMF
v (r)ϕMF∗

v (r′)W (r, r′, ω = 0) (24)

and a local-in-space static Coulomb hole (COH) term

ΣCOH(r, r′) = δ(r− r′) [W (r, r′, ω = 0)− vC(r, r
′)] . (25)

This COHSEX approach has been discussed in the literature as an alternative mean-

field potential vMF to use in Eq. (10), yielding in some cases improved starting points

for then dynamically screened GW calculations. It is mentioned here as it is also used

in several approaches for environment embedding, as will be discussed in Section 3.

2.4. Two-Particle Excitations and the Bethe–Salpeter Equation

The quasiparticle approach making use of the GW approximation is suitable for

modeling single particle excitations such as the addition or removal of an electron

to/from the system. However, charge-neutral excitations that involve excitonic

effects (electron-hole pair interaction) are not accounted for, as they require a two-

particle Green’s function in the context of many-body Green’s functions theory. The

corresponding equation-of-motion can be expressed after some manipulation as a non-

Hermitian eigenvalue problem known as Bethe–Salpeter equation (BSE)

HBSE|ζS⟩ = ΩS|ζS⟩, (26)

in which the electron-hole wave functions |ζS⟩ are typically expressed in a basis of

resonant and antiresonant products of single-particle functions

ζS(r, r
′) = AS

vcϕc(r)ϕ
∗
v(r

′) +BS
vcϕv(r)ϕ

∗
c(r

′). (27)
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With that, the BSE explicitly reads in matrix form(
Hres K

−K −Hres

)(
AS

BS

)
= ΩS

(
AS

BS

)
, (28)

with elements

Hres
vc,v′c′(ω) = Dvc,v′c′ +Kx

vc,v′c′ +Kd
vc,v′c′ (29)

Kcv,v′c′(ω) = Kx
cv,v′c′ +Kd

cv,v′c′ . (30)

and

Dvc,v′c′ = (εc − εv)δvv′δcc′ (31)

Kx
vc,v′c′ =

∫
ϕ∗
c(r)ϕv(r)vC(r, r

′)ϕc′(r
′)ϕ∗

v′(r
′)d3r d3r′ (32)

Kd
vc,v′c′ =

∫
ϕ∗
c(r)ϕc′(r)ϕv(r

′)ϕ∗
v′(r

′)W (r, r′, ω = 0)d3r d3r′ . (33)

For many systems, the off-diagonal blocks K in Eq. (28) are small and can be neglected

known as the Tamm–Dancoff approximation (TDA). This makes the BSE matrix a

Hermitian matrix. Furthermore, we can also ignore backward transitions which lead to:

HresAS,TDA = ΩTDA
S AS,TDA (34)

and the resulting electron-hole amplitude:

ζTDA
S (r, r′) =

∑
vc

AS,TDA
vc ϕc(r)ϕ

∗
v(r

′). (35)

We have suppressed the explicit spin variables so far. The spin structure of the

BSE solutions depends on the spin-orbit coupling. If the ground state is a spin singlet

state and spin-orbit coupling is small compared to the electron-hole coupling, the single

particles can be classified as spin-up state or spin-down state. It can be shown that there

are two distinct types of solutions to the BSE: spin-singlet and spin-triplet excitations.

This allows in turn, to solve the BSE separately for the spin type of interest, with

HBSE
singlet = D +Kd + 2Kx (36)

HBSE
triplet = D +Kd, (37)

respectively.

2.5. Computational aspects

All quantities involved in GW -BSE calculations are based on the mean-field single-

electron wave functions ϕMF
i and energies εMF

i . Most implementations for isolated,

molecular systems make use of localized basis functions, or atomic orbitals (AO), φα(r)

and expansion coefficients ciα according to

ϕi(r) =

Nb∑
α=1

ciαφα(r). (38)
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Inserting this into Eq. (10), multiplying from the left with φβ(r), and subsequent

integration yields

Nb∑
α=1

∫
φβ(r)Ĥ

MFφα(r)d
3r︸ ︷︷ ︸

FMF
βα

ciα =

Nb∑
α=1

∫
φβ(r)φα(r)d

3r︸ ︷︷ ︸
Sβα

ciαε
MF
i , (39)

with the integrals Fβα and Sβα defining the elements of the so called Fock matrix F and

overlap matrix S, respectively. The Fock matrix comprises terms from the one-electron

contributions to ĤMF (kinetic energy and external potential) also referred to as core

Hamiltonian hcore, from the classical Hartree contribution J, explicit exchange K in

hybrid DFT or HF, and from the exchange-correlation potential Vxc in DFT. Note that

in general, the basis functions are normalized but not orthogonal to each other, and

S ̸= 1. With this matrix notation, Eq. (39) can be written as

FMFci = εMF
i Sci (40)

and the electron density can then be rewritten as

n(r) =
N∑
i=1

|ϕi(r)|2 =
Nb∑

α,β=1

Dαβφα(r)φβ(r). (41)

Here, we introduce the density matrix D as

Dαβ =
N∑
i=1

ciαc
i
β. (42)

Of particular importance is the computation of 4-center repulsion integrals over the

GTOs

(αβ|α′β′) =

∫
d3r d3r′

φα(r)φβ(r)φα′(r′)φβ′(r′)

|r− r′| , (43)

which scales with N4
b (with Nb the number of basis functions) and occurs in the MF

Hamiltonian and in the self-energy.

The set of N2
b unique product functions φα(r)φβ(r) can be approximated by a

smaller auxiliary basis containing only Naux = 3Nb to 5Nb functions ξµ. This reduces

the scaling fromN4
b toN3

b by rewriting the 4-center integrals as a combination of 3-center

and 2-center repulsion integrals [37]:

(αβ|α′β′) ≈
∑
µ,ν

(αβ|µ)(µ|ν)−1(ν|α′β′), (44)

where (µ|ν)−1 is an element of the inverse of the 2-center repulsion matrix

(µ|ν) =
∫

d3r d3r′ ξµ(r)vC(r, r
′)ξν(r

′) (45)

and (αβ|µ) is an element of the 3-center repulsion tensor

(αβ|µ) =
∫

d3r d3r′ φα(r)φβ(r)vC(r, r
′)ξµ(r

′). (46)
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The expression in Eq. (44) appears formally as the insertion of a resolution-of-identity

(RI) with metric (ν|µ)−1.

Within the RI approximation, the elements of the QP Hamiltonian in the basis of

KS states contain Σmn(E) = ⟨ϕMF
m |Σ̂(E)|ϕMF

n ⟩, which are determined as

Σmn(E) =
∑
µ,ν

∑
l

Iml
µ Inlν

i

2π

∫
dω

eiωθϵ−1
µν (ω)

E + ω − εl ± iη
, (47)

where the factor with θ → 0+ ensures convergence of the integral, and the imaginary

perturbations ±η avoid singularities on the real axis, where the plus (minus) is taken

when l is occupied (unoccupied). Further,

Iml
µ =

∑
ν

(µ|ν)−1/2
∑
α,β

cmα c
l
β(αβ|ν) =

∑
ν

(µ|ν)−1/2Mml
ν (48)

and

ϵµν(ω) = δµν − 2
occ∑
m

unocc∑
l

Iml
µ Iml

ν

[
1

ω − (εm − εl) + 2iη
(49)

− 1

ω + (εm − εl)− 2iη

]
. (50)

is called the dielectric matrix (cf, Eq. (17)).

3. Embedding Strategies for Many-Body Green’s Function Methods

Complex molecular systems, here understood as systems composed of molecules with

sufficient structural disorder to localize electronic states, are usually impractical to treat

with the GW and BSE methods as described in the previous section. The O(N4) scaling

and overall cost of canonical GW-BSE implementations restrict the tractable system

size and prohibit the study of many systems that are relevant in the chemistry and

physics community, such as solid-liquid interfaces, molecules in solution, complex alloys,

nanostructures or hybrid interfaces, that require large simulation cells with hundreds

to thousands of atoms. Embedding strategies currently provide the best compromise

between accuracy and computational cost in modeling properties and processes of large

and complex molecular systems. In embedding theories, a subsystem of interest (I) is

treated at a higher level of accuracy whilst the rest of the system (II, the embedding

region) is accounted for with a lower accuracy method. From the perspective of this

review, we consider in the remainder that the high-accuracy method for the treatment

of electronically excited states is the Many-Body Green’s function method (GW-BSE),

and discuss coupling to different methods used in the embedding region.

In broad terms, two distinct embedding strategies can be employed. The idea

behind the subtractive and additive embeddings [38] is depicted somewhat simplified

in Figure 1. In a subtractive scheme, three separate calculations are performed: One

GW-BSE calculation for the isolated subsystem I and calculations at the lower accuracy
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Figure 1. Schematic representation of different QM/MM embedding schemes. In (a)

the subtractive QM/MM scheme. The QM part is replaced by a classical counterpart,

and the interaction between the inner and outer regions is treated purely classically. To

avoid double counting the energy of the classically treated QM part must be subtracted

from the overall energy. In other words in the subtractive scheme, the QM region

energy is shifted with the help of the classical contribution. In (b) the additive scheme

consists of evaluating the MM and QM region energy separately. The interaction

between the QM and MM part is treated explicitly (in (b) it is represented with a red

line). Usually, the MM part enters the QM Hamiltonian as an external field. Once the

electron density of the QM region is obtained, this interacts with the MM part. This

is repeated until self-consistency is reached.

embedding method (emb), one for the entire system (subsystems I + II) and one for

subsystem I. The total energy of the full system is then obtained as

Esub = EGW−BSE
I + Eemb

I+II − Eemb
I . (51)

The advantage of this approach is its simplicity: It automatically ensures that no

interactions are double-counted. The embedded total energy of the full system is a

simple sum, with the term Eemb
I+II − Eemb

I considered as an energy correction.

On the other hand, the additive scheme total energy reads

Eadd = EGW−BSE
I + Eemb

II + V GW−BSE−emb
I−II . (52)

where the GW-BSE system is embedded within the larger subsystem II and the

interaction between the two regions is explicitly evaluated via the inclusion of the term

V GW−BSE−emb
I−II in a coupled Hamiltonian and only a single calculation for the coupled

system is required.

The above is only giving the broad strokes of embedding methods for many-body

Green’s functions as several important details remain vague: (i) what is the total energy

of the GW-BSE system, (ii) what are suitable methods for the embedding, and (iii) how
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is the coupling term defined? The first question is straightforward to answer, considering

EGW-BSE
s =


EMF for s = ground state

EMF − εQP
s for s = hole excitation

EMF + εQP
s for s = electron excitation

EMF + ΩBSE
s for s = electron− hole excitation

. (53)

However, the state dependence of this energy highlights another complication, namely

that unless the method chosen for the embedding is purely static, the individual terms

in Eq. (51) and Eq. (88) are all state-dependent, as well. As a consequence, embedded

excitation energies need to be calculated as total energy difference, reminiscent of ∆SCF,

i.e.,

εQP,emb
s = EGW-BSE

gs − EGW-BSE
s for s = hole excitation (54)

εQP,emb
s = EGW-BSE

s − EGW-BSE
gs for s = electron excitation (55)

ΩBSE,emb
s = EGW-BSE

s − EGW-BSE
gs for s = electron− hole excitation. (56)

The above is, in principle at least, not unique to Green’s function method approaches

used as high-accuracy methods for subsystem I. We will see later that the state-

dependence and total energy perspective can be partially circumvented making use

of the dielectric screening intrinsically present in GW-BSE via the self-energy and the

screened Coulomb interaction. In what follows, we will review some specific choices for

embedding strategies in the context of GW-BSE both from a methodological point of

view and by showcasing application examples. We will differentiate embedding with

other quantum-mechanical (QM/QM) methods and embedding with classical molecular

mechanics (QM/MM) methods.

3.1. GW -BSE-in-DFT embedding

Here, we first consider the case in which the method for the embedding subsystem

II is another mean-field quantum-mechanical method, specifically DFT, and focus on

GW-BSE-in-DFT embedding methods. These approaches build on the fact that it is

possible to partition the ground-state electronic density within DFT in an in-principle

exact manner compared to a (sometimes fictitious) full treatment.

3.1.1. Projection-based embedding Projection-based embedding was introduced by

Manby, Miller, and co-workers [39] as a formally exact DFT-in-DFT embedding scheme.

Its idea is to partition the density of a full reference system n(r) into the densities of

two subsystems nI(r) and nII(r), such that n(r) = nI(r) + nII(r), and where one of

them (from now on nI(r)) is considered active, and the other (from now on nII(r)) an

inactive embedding density. In this scenario, it is possible to derive a set of effective

Kohn–Sham equations for the (orbitals forming) active density embedded in the inactive

density, which result in an exact reproduction of the total energy of the full system.

The scheme begins with a self-consistent DFT calculation on the complete reference

system in the full-molecule AO basis as described in Chapter 2.5. The N occupied
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canonical molecular orbitals from this calculation, ϕi(r) for i = 1, . . . N , are then first

transformed into localized orbitals, ϕLO
i (r), with a unitary transformation that leaves the

total density of the system unchanged. After the localization, one constructs an initial

active density from those localized orbitals which have a significant Mulliken population

qIi > qt on these atoms in subsystem I:

nI(r) = 2
N∑
i=1

qI
i
>qt

∣∣ϕLO
i (r)

∣∣2. (57)

With nI(r) given, one can determine the density of the inactive region as nII(r) =

n(r)−nI(r). Up to this point, we have achieved merely a partitioning of the total density

in two subsystems. In the next step, we consider the active density variable and seek a

set of effective equations for the embedded calculation on subsystem I. This requires an

embedding potential that takes into account the electrostatic and exchange-correlation

interactions with the electrons in subsystem II while ensuring that the Pauli exclusion

principle is followed between the orbitals forming the densities of both subsystems.

In projector-based embedding, both objectives can effectively be achieved by raising

the energies of orbitals associated with subsystem II to very high energies during the

calculation for subsystem I.

If we now consider nI(r) the initial density of the active region and denote the

variable density as ñI(r), the Fock matrix in the full-molecule AO basis for an embedded

(I-in-II) calculation on the electrons in subsystem I is given by

FI−in−II = hI−in−II
core [nI + nII] + J[ñI] +K[ñI] +Vxc[ñ

I], (58)

where hI−in−II
core is the embedded core Hamiltonian based on the partitioned initial

densities nI and nII. The density-dependent terms J, K, and Vxc are updated in each

iterative step and hence depend on the updated active density ñI. The embedded core

Hamiltonian reads

hI−in−II
core [nI + nII] = hcore + J[nI + nII]− J[nI] +K[nI + nII]−K[nI] (59)

+Vxc[n
I + nII]−Vxc[n

I] + µPII (60)

and contains the core Hamiltonian of the full system, the difference between the Hartree,

exchange, and exchange-correlation terms for the full system and the initially chosen

active subsystem, respectively, as well as a projection term µPII with the projection

operator

PII = SDIIS (61)

based on the density matrix DII of the environment and the atomic orbital overlap

matrix S to ensure orthogonality between the occupied states of the environment and

the rest of the active subsystem. The level-shift parameter µ is typically of the order of

105 − 106Hartree.
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3.1.2. Subsystem DFT Compared to projection-based embedding, the subsystem-DFT

(sDFT) approach does not start from a plain DFT reference calculation of the full

system. Instead, the idea here is to perform Kohn–Sham-like calculations on fragments

and then to determine the full-system density from the fragment densities. This way,

the embedding region II can actually be split further into all molecular fragments. For

the sake of presentation, we continue with the two region notation. Then, as in the

projection-based embedding, the total electron density is given as n(r) = nI(r)+nII(r),

and each subsystem density is obtained from Kohn–Sham equations with constrained

electron density (KSCED). To calculate the molecular orbitals of subsystem I in the

frozen density nII of subsystem II, these KSCED equations read [40, 41, 42, 43, 44]:{
−1

2
∆ + vext(r) + vH[n

I](r) + vxc[n
I](r) + vemb[n

I, nII](r)

}
ϕI
i(r) = εIiϕ

I
i(r),(62)

where the embedding potential is

vemb[n
I, nII](r) = vH[n

II](r)+vxc[n
I+nII](r)−vxc[n

I](r)+
δT nadd

s [nI, nII]

δnI
.(63)

Here, the last term stems from the variation of the nonadditive kinetic energy Ts[n
I +

nII] = Ts[n
I] + Ts[n

II] + T nadd
s [nI, nII], and needs to be approximated in practical use.

Note that in sDFT, the role of the subsystems (frozen vs unfrozen density) must be

iterated until a convergence of the total energy of the full system is achieved.

3.2. DFT-embedded GW -BSE calculations

Performing either projection-based embedding or sDFT calculation offers the advantage

that the respective densities can be associated with the two (or more) subsystems and

that the total density of the overall system is a sum of the subsystem densities. By

construction, then also the occupied molecular orbitals of the subsystem of interest I

are mostly localized in the respective spatial region. It is therefore possible, to limit the

GW-BSE calculation to this ”active” region only. As the embedding potential (whatever

its form) is already included in the preceding DFT-in-DFT calculation, there are no

changes to the procedure of the GW -BSE steps, except that all quantities involved use

the embedded Kohn–Sham molecular orbitals and their energies as starting point. While

the DFT-in-DFT calculation can be shown to reproduce the full reference total energy

exactly, we have seen that there are, by construction, changes in the molecular orbitals,

and we therefore cannot in general expect a GW -BSE calculation after subsystem-DFT

(from now on referred to for short as DFT-embedded GW -BSE) to yield the same

excitation energies as a full GW -BSE calculation.

One can get an indication of what the general changes are by considering, e.g., the

expression for the self-energy split into the exchange part Σx and correlation part Σc.

Expressing the former in terms of molecular orbitals it reads (c.f. Eq. (21))

Σx(r, r′) = −2
Nocc∑
i=1

ϕI
i(r)ϕ

I
i(r

′)vC(r, r
′). (64)
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The exchange part of the self-energy is therefore affected by (i) summing over fewer

occupied states in the DFT-embedded GW -BSE calculation and (ii) the changes in

the molecular orbitals themselves. Note that while Σx itself only depends on the

occupied orbitals, it enters the quasiparticle energies of both occupied and unoccupied

states. Therefore, even though the virtual molecular orbitals are unchanged in a

projection-based-DFT calculation, their GW quasiparticle energies may have different

contributions arising from Σx.

For the frequency-dependent correlation part, a similar analysis is more

complicated. Recall Eq. (21)

Σc(r, r′, ω) =
i

2π

∫
G(r, r′, ω + ω′) (W (r, r′, ω′)− vC(r, r

′)) dω′., (65)

where we focus on the screened Coulomb interaction depending on the irreducible

polarizability in the form (Eq. (19))

χ0(r, r
′, ω) =

occ∑
v

unocc∑
c

{
ϕ∗
v(r)ϕc(r)ϕ

∗
c(r

′)ϕv(r
′)

ω − (εc − εv) + iη
− ϕv(r)ϕ

∗
c(r)ϕc(r

′)ϕ∗
v(r

′)

ω + (εc − εv)− iη

}
(66)

symbolically via

W = vC + vCχ0W. (67)

We now consider as the exact reference a calculation in which the above is evaluated

based on a full-DFT ground state. Assuming that one performs an embedded DFT

calculation, we can simply define the irreducible polarizability for subsystem I as

χI
0(r, r

′, ω) =
occ∑
v

unocc∑
c

{
ϕI∗
v (r)ϕ

I
c(r)ϕ

I∗
c (r

′)ϕI
v(r

′)

ω − (εIc − εIv) + iη
− ϕI

v(r)ϕ
I∗
c (r)ϕ

I
c(r

′)ϕI∗
v (r

′)

ω + (εIc − εIv)− iη

}
.(68)

Subsystem embedding thus changes the polarizability. Even if the ϕ(r) and energies

ε were unchanged, the sum over occupied orbitals is limited to the active occupied

orbitals (the ones from the inactive one are found in the virtual space at high energy,

and should be excluded from the sum over virtual orbitals). As a result, the screening

only has contributions from transitions between orbitals in the active subsystem, while

contributions from transitions from the embedding region. The inactive region therefore

can be considered static from the perspective of the screened Coulomb interaction.

From the lack of screening from the now inactive region, one can generally expect the

contributions of Σc to the quasiparticle energies to be smaller (in absolute values) in

the DFT-embedded GW calculation compared to the full GW case. In other words,

even when the orbitals themselves are only minimally affected (for weakly interacting,

non-bonded molecular structures, for instance), one can expect to find the occupied

(virtual) quasiparticle energies from the embedded calculation to be below (above) the

ones from the full calculations. In particular, the HOMO-LUMO gap in subsystem-GW

is then larger than the respective gap in full-system GW .

One can make similar examinations on the level of the BSE. Naturally, as the

number of occupied orbitals is reduced, the electron-hole transitions used to expand

the two-particle wavefunctions are limited to the transitions starting from the active
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subsystem. Any changes to the quasiparticle energies as a result of the points discussed

above will directly impact the free transition term Dvc,v′c′ from Eq. (31) in the BSE

Hamiltonian. The effects on the exchange and direct (screened) terms of the electron-

hole interaction kernel Kx
vc,v′c′ and Kd

vc,v′c′ are similar to those discussed for Σx and Σc,

respectively. Especially, the reduced screening can be expected to result in stronger

electron-hole attraction compared to the full-system calculation and might in turn

compensate to some degree the larger quasiparticle gap in the free transition.

In Refs. [45, 46], Tölle et al. considered how additional screening effects from the

environment can be incorporated in DFT-embedded GW-BSE calculations. Starting

out from the screened Coulomb interaction of system I in the form of Eq. (67):

W I-I = vI-IC + vI-IC χI
0W

I-I, (69)

where the superscript I-I indicates that the screened and bare Coulomb interaction only

acts on orbitals in the region I. Including also the effects of the embedding subsystem

II via its own irreducible polarizability χII
0 , one obtains:

W I-I = vI-IC + vI-IC χI
0W

I-I + vI-IIC χII
0 W

II-I, (70)

where

W II-I = vII-IC + vII-IC χI
0W

I-I + vII-IIC χII
0 W

II-I, (71)

so that finally

W I-I =
(
vI-IC + vI-IIC χII

0 v
II-I
C

) (
1 + χI

0W
I-I
)
+ vI-IIC χII

0 v
I-II
C χII

0 W
II-I. (72)

After further manipulations including the introduction of the interacting polarizability

χI = χI
0 + χI

0

(
vI-IC χI + vI-IIC χII

)
, (73)

it is possible to rewrite

W I-I =
(
vI-IC + vI-IIC χIIvII-IC

) (
1 + χI

0W
I-I
)
= ṽI-IC

(
1 + χI

0W
I-I
)

(74)

or equivalently

W I-I = ṽI-IC + ṽI-IC χI
0W

I-I. (75)

Note that if the system is composed of more than two subsystems, higher order terms

(as many as the number of subsystems) need to be taken into account, and Eq. (75) is

then a one-body screening correction approximation. It includes a modified Coulomb

interaction ṽI-IC , in which the term vI-Ireac = vI-IIC χIIvII-IC can be interpreted as a reaction

field, describing the fluctuation of a charge at a point r due to a charge fluctuation at

r′ both in subsystem I which is mediated by the polarization of subsystem II. With the

help of the frequency-dependent dielectric function of subsystem I as

ϵI-I = 1− vI-IC χI
0 − vI-Ireacχ

I
0, (76)

one arrives at

W I-I = ϵI-I
−1 [

vI-IC + vI-Ireac

]
, (77)
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Figure 2. Quasi-particle energy of the HOMO located on ammonia in an ammonia-

benzene dimer with varying separation (see inset) using nonadditive kinetic (Naddkin)

(a) or projection-based embedding (PbE) (b) [G0W0@BHLYP, def2-TZVP; aux(m),

subsystem-only auxiliary basis; aux(s), supermolecular auxiliary basis]. (c) BSE

energies obtained from supermolecular and embedded evGW@PBE0-BSE(TDA)

calculations for aqueous MCP. Reprinted (adapted) with permission from J. Chem.

Theory Comput. 2021, 17, 4, 2186-2199. Copyright 2021 American Chemical Society.

and easily sees that the reaction field appears both in the dielectric function and again

in the modified Coulomb interaction.

Tölle et al. provided additional details about the implementation of the above for

several subsystem fragments in different bases within the resolution-of-identity (RI)

method in Refs. [45, 46], and we point the interested reader to the original work.

The authors then reported the results of DFT-embedded GW -BSE calculations on

an ammonia-benzene dimer, aqueous methylenecyclopropane, and a water-solvated

adenine-thymine dimer. In Figure 2, we reprint from their work the dependence of

the quasiparticle energy of the HOMO of ammonia in the ammonia-benzene dimer

at different intermolecular separations (Fig. 5 of [45]). One can clearly see that for

both sDFT (here labeled as ’Naddkin’) and projection-based-embedding (PbE), the

plain embedded GW calculations without accounting for environment screening (blue

open circles) from the benzene molecule yield lower quasiparticle energies than the

supermolecular full system reference (open squares). The difference is largest for the

closest dimer separation (around 0.2 eV) and becomes progressively smaller for larger

distances. Note that HOMO Kohn–Sham energies for the HOMO already differ by

about 0.05 eV in the respective ground state calculations for the shortest intermolecular

separation (cf., Fig. 4 of Ref. [45]). The inclusion of the environment screening here

from the single benzene molecule (red crosses) brings the quasiparticle energies in very

close agreement with the full calculations. The authors observed similar behavior for
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Figure 3. BSE energies obtained from supermolecular and embedded evGW@PBE0-

BSE(TDA) calculations for aqueous MCP. Reprinted (adapted) with permission from

J. Chem. Theory Comput. 2021, 17, 4, 2186-2199. Copyright 2021 American Chemical

Society.

the quasiparticle energies of methylenecyclopropane with a variable number of water

molecules as solvent and in water-solvated adenine-thymine dimers.

The authors also pointed out the importance of including the environment

correction in both steps of the GW -BSE procedure when interested in electron-hole

excitations. The screening enters both the calculation of the quasiparticle energies (and

with that the free transition part of the BSE) and the electron-hole interaction kernel.

The individual effects can be distinguished from the data shown in Figure 3 for solvated

MCP. Without environment screening, the excitations are found at higher energies in

the subsystem calculation as compared to the full reference. This is a combination of too

large quasiparticle gap and too strong electron-hole interaction when the environment

screening is not accounted for. One can see that when environment screening is included

on GW level only the BSE energies are obtained several 0.1 eV below the reference - the

free transition part is almost correct, so the deviation can be attributed to too strong

electron-hole interaction. Only when the latter is also additionally screened, a very good

agreement with the full system reference can be observed.

Overall, it could be demonstrated successfully that DFT-embedded GW-BSE

calculations yield good agreement with full supermolecular GW-BSE calculations if

even approximately, environment effects are taken into account. The downside of this

approach is mainly its still significant computational cost when applied to large-scale

systems with large molecules in active and inactive regions.

3.3. GW-BSE-in-MM embedding

Excited states in complex molecular systems are in general multiscale, in the sense that

intrinsic quantum-mechanical properties of the basic units, i.e. isolated molecules, and
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the local and global morphology of the large-scale molecular system are intertwined. At

this scale, the use of GW-BSE-in-DFT embedding as sketched in the previous section

can be computationally extremely demanding, if not prohibitive. Similar notions also

apply to other quantum-quantum embedding strategies [25, 27, 24].

A way to reduce such overly costly computations is to employ a classical

(electrostatic) method for the embedding region, including, i.a., approaches in which the

environment of an electronically active region is replaced by a polarizable continuum [27,

28, 47, 48], or when it is represented by a classical, molecular mechanics parametrization

(MM) [26, 49]. The GW-BSE formalism allows for different approaches to include

such classical environmental polarizabilities. The one that we will review first is

conceptionally very similar to the GW-BSE-in-DFT embedding, in the sense that the

environment response is directly included in the calculation of the screened Coulomb

interaction W both in the GW and the BSE stages of the calculations. Later, we will

also discuss alternative subtractive and additive quantum-classical approaches, which

use total energies of coupled systems as introduced earlier rather than modifying the

screened Coulomb interaction directly.

3.3.1. Classical environment polarizability in W While we present the idea of including

a classical environment polarizability in the calculation of the screened Coulomb

interaction of subsystem I after the GW-BSE-in-DFT embedding, these methods have

been developed historically in different order. For the sake of presentation, we pick

up from the definition of the modified Coulomb interaction in Eq. (74) in GW-BSE-in-

DFT embedding, which now in real-space form including the explicit dependence on the

frequency ω reads

ṽI-IC (r, r′, ω) = vI-IC (r, r′)+

∫
vI-IIC (r′, rII)χ

II(rII, r
′
II, ω)v

II-I
C (r′II, r)drIIdr

′
II.(78)

The integral on the right-hand side is the already introduced reaction field or reaction

potential

vI-Ireac(r, r
′, ω) =

∫
vI-IIC (r′, rII)χ

II(rII, r
′
II, ω)v

II-I
C (r′II, r)drIIdr

′
II. (79)

The decisive step is now to introduce here a classical model of the polarizability of

subsystem II, i.e., χII → χMM.

Essentially, a classical approximation to the environment polarizability only differs

by the adoption of a specific model for χMM in place of the explicitly QM variant used

in χII. There are, however, a few noteworthy aspects to this:

(i) There is not a single ’one-size-fits-all’ MM model for the environment polarizability,

including continuum models (polarizable continuum model) as well as atomistic

models of varying sophistication (Drude model [50, 51], charge equilibration [52, 53],

distributed polarizabilities in Applequist [54] or Thole [55, 56] form).

(ii) Classical models need to be parametrized, in the simplest case (polarizable

continuum model) with a macroscopic dielectric constant ϵr or with various element

or atom-specific quantities (Drude, Thole, charge equilibration).
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(iii) Most if not all classical models cannot be cast in an explicit form χMM(rII, r
′
II) that

allows a straightforward evaluation of Eq. (79).

(iv) Most if not all classical models only provide static polarizability in the zero-

frequency limit (ω → 0) instead of full dynamic polarizability.

Trying to address the details and the respective strengths and weaknesses of the different

classical polarization models and with that the steps required in their parametrization

according to points (i) and (ii) exceeds the scope of this review and we point the reader

to the original literature, instead. We will focus on general remarks to points (iii)

and (iv), which are to a large extent agnostic to the specifics of the MM models used.

Duchemin et al. [47] proposed to not calculate the real-space form of the reaction field,

vI-Ireac(r, r
′, ω), as in Eq. (79) but instead exploit the resolution-of-identity (RI) method.

Recall that in Eq. (45), auxiliary basis functions ξµ were used to calculate two-center

Coulomb repulsion integrals

(µ|ν) =
∫

ξµ(r)v
I-I
C (r, r′)ξν(r

′)drdr′ (80)

to be later used to calculate approximated four-center Coulomb integrals needed in the

GW-BSE implementation. Herein, one ’simply’ replaces vI-IC (r, r′) → ṽI-IC (r, r′), such that

one has to additionally determine:

(µ|ν)reac =
∫

ξµ(r)v
I-I
reac(r, r

′)ξν(r
′)drdr′. (81)

Note that both functions ξµ and ξν are auxiliary functions in the QM region (subsystem

I). These integrals can be computed by considering the basis function ξµ as a charge

distribution that polarizes the embedding region according to the adopted MM model.

Then, the action of this response field on the basis function ξν is calculated.

In the above, we have already conveniently ignored the frequency dependence,

implying the use of the static limit, as was also done in GW-BSE-in-DFT embedding,

for the whole frequency range. As an alternative, it was suggested also in Ref. [47] to

use the COHSEX approximation (cf., Eq. (24) and Eq. (25)) to determine state-specific

correction terms to the quasiparticle energies of an isolated system in a vacuum, εQP
i ,

as in

εQP,∆COHSEX
i = εQP

i +
(
εCOHSEX,emb
i − εCOHSEX

i

)
. (82)

As an example, the authors studied solvatochromic shifts of the first ionization potential

(HOMO energy) for the four nucleobases adenine, cytosine, thymine, and uracil upon

embedding in water represented by a polarizable continuum model. They pointed out

the importance of carefully choosing the appropriate value of the dielectric constant

for the embedding region, corresponding to fast and slow screening processes. The high

dielectric constant of water (ϵr = 78.35 ) results as a combination of relaxation processes

of electronic (fast) and nuclear (slow) degrees of freedom. The authors argue that

while for the ground state, screening from both is appropriate, only the fast, electronic,

processes can react to the excitation (ionization) process, and therefore one should use
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Table 1. Solvatochromic shifts (in eV) of the first ionization potential of four

nucleobases upon solvation in water represented by a PCM, as obtained by using

the static approximation for χMM directly in the GW calculation (∆GW ) and by the

∆COHSEX approach. All data from Ref. [47].

Adenine Cytosine Thymine Uracil

non-equilibrium

∆GW 0.60 0.67 0.95 1.05

∆COHSEX 0.64 0.70 0.99 1.07

equilibrium

∆GW 1.51 1.67 1.92 1.96

∆COHSEX 1.64 1.75 2.03 2.15
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Figure 4. (a) Time-dependent emission energy of prodan in different solvents and

(b) final Stokes shifts as obtained from MM/GW-BSE calculations from Ref. [57].

Reprinted (adapted) with permission from J. Phys. Chem. B 2020, 124, 13, 2643-265.

Copyright 2020 American Chemical Society.

the optical dielectric constant ϵ∞ = 1.78 in the embedded calculation, yielding in the

end to an additional contribution to the solvatochromic shift: first, the ground-state is

calculated based on DFT with PCM using the high ϵr, then aGW embedding calculation

is performed starting from the molecular orbitals of this ϵr-embedded ground state,

however using ϵ∞ in the reaction field calculation. In Table 1, we reprint the results

from this so-called non-equilibrium approach as reported in Ref. [47], obtained with the

direct use of the static approximation in the determination of the embedded quasiparticle

calculations (here labeled ∆GW ) and the ∆COHSEX variants, respectively. One can

see that both approaches give very similar shifts in the non-equilibrium calculation with

deviations less than 0.05 eV. In an equilibrium calculation, that is, if ϵr is also used in

the embedded GW step, the overall shifts are larger (due to the much larger polarization

effect) as are the differences between ∆GW and ∆COHSEX.
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Figure 5. Evolution of Ionization Potential and Electron Affinity from the gas

phase to crystal surfaces for a pentacene crystal. Calculation results from Ref. [49]

include different contributions from intermolecular interactions (polarization, crystal

field, band dispersion) to the final excitation energies at the crystal surface. Reprinted

(adapted) with permission from Phys. Rev. B 2018, 97, 035108.

As a side note, we emphasize that the choice between this non-equilibrium vs

equilibrium scenario may on the type of excitation and the physical process of interest.

Polarity-sensitive dyes, for instance, exhibit strong Stokes shifts of the optical emission

energy with respect to the absorption energy in strongly polar solvents such as water.

Here, however, nuclear relaxation by far dominates the effects of electronic degrees of

freedom. Baral et al. [57] studied such nuclear relaxation effects for prodan also with

coupled classical Molecular Dynamics-GW-BSE calculations (MM/GW-BSE), in which

no electronic polarization from the embedding region was taken into account, but only

electrostatic background from the reorienting solvent molecules. As shown in Figure 4,

this allows us to capture the nuclear relaxation on ps timescale and calculated Stokes

shifts in good agreement with the experiment. We will revisit such external coupling

between GW-BSE and MM regions in the following section.

What the previous example highlights is that excitation energies, no matter if

charged or neutral, can also be affected by electrostatic effects from the environment

that are not merely arising from polarization. Non-symmetrical structural details, for

instance, combined with non-negligible electrostatic moments can cause additional shifts

of excitation energies with respect to vacuum. Such situations are typically also present

in low-dimensional systems, such as surfaces of molecular crystals. Li et al. [49] have

extended the approach based on Eq. (81) to study charged excitations at the (001)

surface of a pentacene crystal. In particular, they used the charge response model

by Tsiper and Soos to model the polarization effects [58] and combined it with long-

range static embedding effects in the low-dimensional environment [59] to account for

crystal field effects. Figure 5 shows how the inclusion of different environmental effects

affects the calculated ionization potential and electron affinities at the surface. It

is very obvious that polarization effects massively reduce the GW gap compared to

the gas phase calculation (which agrees favorably with experimental results for gas

phase ionization energies). From a purely electrostatic perspective, the excited electron
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Figure 6. Example of a typical workflow for externally embedded GW -BSE

calculations combining classical microelectrostatics models with DFT and GW -BSE

calculations in a QM/MM scheme. Three different routes to conveged total energies are

indicated: 1 – ground state DFT/MM; 2 – quasiparticle GW/MM; 3 – electron-

hole GW -BSE/MM.

and hole get screened, or energetically stabilized, in the same way, meaning that the

ionization potential lowers and the electron affinity increases. Additional inclusion of

the crystal field affects both excitation energies in the same direction, i.e., the absolute

energies are shifted, but their energy difference is more or less constant.

3.3.2. External QM/MM The methods presented in Section 3.3.1 provide ways

to include screening effects from a classical environment into GW -BSE calculations

utilizing additional terms in the screened Coulomb interaction W . In contrast to

this internal inclusion of screening, alternative approaches focus on accounting for

these effects with what we from now on refer to as external QM/MM. As the name

suggests, the calculations for the QM and classical MM regions of such approaches

are more separated than, e.g. by evaluating the effects on an environment reaction

field via Eq. (81). Instead, the two regions are coupled based solely on electrostatic
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interactions. A typical workflow of such an external GW -BSE/MM calculation is shown

in Figure 6. The four method ingredients are the classical microelectrostatics model, the

DFT calculation for the ground state, as well as the GW and Bethe–Salpeter equation

steps, respectively. The classical, polarizable environment in the MM region enters the

GW-BSE workflow merely as a specific external potential on the level of the reference

ground state calculation: the MM region is typically represented by a set of static

atomic multipoles, and they form a local field to which the electronic density of the QM

region can react, it gets polarized. Then, using for instance a polarizable distributed

atomic multipole representation for molecules in the MM region (as mentioned in the

Section 3.3.1) also allows the treatment of both the effects of static electric fields and

the polarization response as a self-consistent reaction field inside the QM region. In

what is sometimes referred to as Thole model, we indicate static atomic multipole

moments [55, 56] as Qm
t , where t is the multipole rank and m the associated atom

in the molecule M . The tensor Tmm′
tu describes the interactions between the multipoles

moments Qm
t and Qm′

u . In the polarizable representation, each atom is additionally

assigned a polarizability αmm′
tu with which induced moments ∆Qm

t due to the field

generated by moments u on a different atom m′ can be created. Let us consider now a

purely classical (MM) system S in state s, which has been split into regions R and R′

with S = R ∪R′. Molecules in region R (R′) are indicated by M (M ′), and atoms in

molecule M (M ′) by m (m). The total classical energy of the system is then given by

E
(s)
class(S) = E(s)(R) + E(s)(R′) + E(s)(R,R′), (83)

where

E(s)(R) =
1

2

∑
M∈R

∑
M′∈R
M′ ̸=M

E
(s)
MM ′ +

1

2

∑
M∈R

E
(s)
M (84)

E(s)(R,R′) =
∑
M∈R

∑
M ′∈R′

E
(s)
MM ′ (85)

with

E
(s)
MM ′ =

∑
m∈M

∑
m′∈M ′

∑
tu

(Q
m(s)
t +∆Q

m(s)
t )

× Tmm′

tu (Qm′(s)
u +∆Qm′(s)

u ) (86)

and

E
(s)
M =

∑
m∈M

∑
m′∈M

m′ ̸=m

∑
tu

∆Q
m(s)
t (α−1)mm′

tu(s)∆Qm′(s)
u . (87)

Equation (83) follows a variational principle with respect to the induced moments

and a preconditioned conjugate gradient method is used to find the ∆Qm
t , which

gives the minimum energy. Induced interactions are modified using Thole’s damping

functions [55, 56] to avoid overpolarization. Note that other classical environment

models differ mainly by the specific expressions used for Eq. (86) and Eq. (87).
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Now turning toward the QM/MM setup, one can write its total energy as the sum

of QM, MM, and QM/MM coupling terms, cf. also Eq. (52):

Eadd
QM/MM = EQM

1 + EMM
2 + V

QM/MM
12 . (88)

The interaction between the two regions is explicitly evaluated via the term V
QM/MM
12 ,

implying that electrostatic interactions between the two subsystems are handled during

the computation of the electronic wave function by adding the external potential of the

multipoles in the MM region to the QM Hamiltonian as one-electron operators. In turn,

the explicit electrostatic field from the QM density is used to polarize the MM region.

For the GW -BSE approach, several such QM densities can be employed, depending on

the state of interest (s). If s is a quasiparticle excitation, we define

n
(s)
QP(r) = nDFT(r) + fs|ϕQP

s (r)|2, (89)

with fs = −1 for occupied and fs = +1 for unoccupied QPs. If s is an electron-hole

excitation, its total density is evaluated as

n(s)(r) = nDFT(r) + n(s)
e (r)− n

(s)
h (r). (90)

Here the electron (hole) contribution of the exciton to the density is computed by

integrating the squared excited-state wavefunction ζS with respect to the hole (electron)

coordinates, i.e.,

ρ(s)e (r) = ρ(s)e (re) =

∫
drh|ζS(re, rh)|2 (91)

ρ
(s)
h (r) = ρ

(s)
h (rh) =

∫
dre|ζS(re, rh)|2. (92)

The inclusion of a polarizable MM region requires a self-consistent procedure to

evaluate the total QM/MM energy of a system in a given state s. At a single step p

within this self-consistent procedure, first a QM level calculation (DFT for the ground

state s = g, DFT+GW -BSE for electron-hole excited s = x states) is performed in the

electric field generated by the total moments in the MM region. The total energy of

the QM region in state s is then given by Eq. (53), and excitation energies are obtained

from it and the energy of the classical region via ”∆-QM/MM-SCF” formulations as

total energy differences according to Eq. (56). In Figure 6 this is indicated by the

three different ”routes” that the calculation can take through the algorithm: Route

1 corresponds to the reference ground state calculation in which the MM region has

responded to the plain DFT density of the QM region; in route 2 the external polar

field the MM enacts on the QM region is determined as a response from the quasiparticle

density Eq. (90) (GW/MM); and route 3 is used to get the total QM/MM energy in

which the density in the QM region is determined according to Eq. (92).

As a first example of an application of a variant of such a GW/MM embedding

scheme, Galleni et al. [60] studied the peak broadening pf photoemission spectra in

amorphous polymers. Figure 7 shows as an example the obtained core level and valence

region photoelectron spectra of polymethyl methacrylate (PMMA), where the data

shown as ”charges” correspond roughly speaking to a GW/MM calculation with no
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Figure 7. Experimental and calculated photoelectron spectra for the O 1s, C 1s,

and valence regions of amorphous polymethyl methacrylate (PMMA) [60]. Reprinted

(adapted) with permission from J. Phys. Chem. Lett. 2024, 15, 3, 834-839. Copyright

2024 American Chemical Society.

Figure 8. Effect of polarization on charge-transfer excitons in solvated DNA from

different GW-BSE calculations: (a) a single DNA base pair in vacuum, (b) the same

base pair in an environment that is not polarizable, (c) the same base pair in a

polarizable environment. Reprinted with permission from J. Chem. Theory Comput.

2018, 14, 12, 6253. Copyright 2018 American Chemical Society.

polarization in the MM region, while ”charges+dipoles” include polarization effects.

One can clearly see that intrinsic local inhomogeneities in the electrostatic environment

induce a broadening of 0.2-0.7 eV in the binding energies of both core and semivalence

electrons.

Figure 8 shows in steps the effects of embedding of electron-hole excitations in

GW -BSE/MM on the charge-transfer type excitations between two adenine base pairs
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in solvated double-stranded DNA. The progression from a GW-BSE calculation in

vacuum, via a GW -BSE/MM with a non-polarizable environment, to GW -BSE/MM

with a polarizable environment shows not only that the charge-transfer excitation

energy is affected but that the nature of the electronic excitation is also sensitive to

effects from the complex environment. Here, for instance, the amount of transferred

charge changes from a partial charge transfer of 0.6 e to an integer charge transfer

of 1 e. It is also clear that this is an effect of polarization, as integer transfer is

not observed with a static MM environment in Figure 8(b). This is not only a

consequence of the converged GW -BSE/MM calculation having different weights for

the respective transitions between occupied and unoccupied single-electron states in

Eq. (27). Additionally, the single-particle functions themselves are affected by the

inclusion of the contribution of polarized electrostatic moments in the external potential

of the underlying ground-state calculation.

A notorious problem for the external GW -BSE/MM approaches with polarization

is related to the self-consistency procedure in the quantum-classical iterations cycle.

Evaluation of the QM density as in Eq. (90) or Eq. (92) (and the respective energies)

depending on the calculation route can be tricky as electronic energy levels can swap

between iterations. Following the ”correct” state is not always trivial, especially if

polarization effects cause significant changes to the nature of the excitation, as they do

in the example of Figure 8. Issues like these are well-known also for instance in geometry

optimizations in excited states.

3.3.3. Subtractive (MM-in-MM) embedding As attractive and powerful the embedding

approaches presented in Sections 3.2 and 3.3 are, the calculations are, in general,

still computationally demanding if applied to complex molecular systems. In some

situations, it can be attractive to use a subtractive embedding scheme as mentioned

in Section 3. Instead of explicitly coupling the quantum and classical regions via

electrostatic interactions as in Section 3.3, the QM part is also represented using the

same classical model as the environment. One then performs two calculations with

the classical model: one using a parametrization of the classical model based on the

ground state and one using a parametrization based on the excited state of interest.

Then, similar to the ∆-QM/MM-SCF of the previous section, the difference of the

classical total energies is an energy correction to the respective vacuum excitation energy,

cf. Eq. (51). This way, the calculation of energy corrections is very fast and can be

readily applied to, for instance, large molecular morphologies of amorphous materials,

or is easily combined – depending on the details of the microelectrostatics model –

with many of the available methods for efficient large-scale electrostatics methods like

Particle or Particle-Mesh Ewald [61, 62, 63].

As an example for GW calculations using periodic embedding [65] in the subtractive

sense, we show in Figure 9 the layer-resolved highest-occupied molecular orbital energy

diagram of a thin film of 2-methyl-9,10-bis(naphthalen-2-yl)anthracene [64]. The studied

film contains about 1000 molecules and the shown values for the respective layers are
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Figure 9. Layer-resolved energy levels of a thin film consisting of 1000 β-MADN

(see inset) molecules obtained at different levels of theory: vacuum KS, vacuum GW ,

static, and polarizable GW+MM-in-MM including long-range effects with periodic

embedding (labeled pMM), taken from [64]. The error bars correspond to the range of

± one standard deviation. Reprinted (adapted) with permission from Phys. Rev. B

2020, 101, 035403. Copyright 2020 American Physical Society.

obtained by averaging over many individual embedded GW calculations. Performing

1000 additive GW -BSE/MM as in Section 3.3 instead is orders of magnitude more

computationally expensive. The disadvantage of using the subtractive method is that

one needs classical microelectrostatics models for molecules both in their ground state

(for the embedding region) and the excited state and that these models provide a

sufficiently accurate representation of quantum mechanical electrostatic responses. In

Ref. [64], for instance, this was checked for selected molecules in the bulk and at the

surface of the film by comparing results from additive GW/MM and subtractively

embedded GW calculations.

4. Summary

In summary, we have explored in this review various strategies for building embedded

many-body Green’s function methods in application to complex molecular systems.

These strategies differ in many aspects: from how the environment is represented (on

a lower quantum-mechanical level, using a classical model with atomistic details, or by

a polarizable continuum), to how the environment effects are included in the GW -BSE

calculations (intrinsically via the screened Coulomb interaction W or extrinsically via a

self-consistency in total energy calculations of electrostatically coupled regions). Despite

their sometimes very fundamental differences, the presented example applications to

molecular dimers, molecular crystals, solvated dye or DNA systems, macromolecules,

and molecular thin films show that all the strategies contain the correct physics.

Preference for a particular method might depend on the actual system under study,
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apparently more so regarding the choice of the environment model rather than how the

effects of the model are included. Therefore, the careful parametrization of models for

the embedding region is a common challenge for all approaches, as is the resulting state

dependence and how to include frequency dependence in the environment screening

contribution.
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