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Abstract

Molecular dynamics (MD) simulations are widely applied to estimate absolute bind-

ing free energies of protein-ligand and protein-protein complexes. A routinely used

method for binding free energy calculations with MD is umbrella sampling (US), which

calculates the potential of mean force (PMF) along a single reaction coordinate. Sur-

prisingly, in spite of its wide-spread use, few validation studies have focused on the

convergence of the free energy computed along a single path for specific cases, not ad-

dressing the reproducibility of such calculations in general. In this work, we therefore

investigate the reproducibility and convergence of US along a standard distance-based

reaction coordinate for various protein-protein and protein-ligand complexes, following

commonly used guidelines for the setup. We show that repeating the complete US

workflow can lead to differences of 2-20 kcal/mol in computed binding free energies.

We attribute those discrepancies to small differences in the binding pathways. While

these differences are unavoidable in the established US protocol, the popularity of the

latter could hint at a lack of awareness of such reproducibility problems. To test if the
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convergence of PMF profiles can be improved if multiple pathways are sampled simul-

taneously, we performed additional simulations with an adaptive-biasing method, here

the accelerated weight histogram (AWH) approach. Indeed, the PMFs obtained from

AHW simulations are consistent and reproducible for the systems tested. To the best

of our knowledge, our work is the first to attempt a systematic assessment of the pitfalls

in one the most widely used protocols for computing binding affinities. We anticipate

therefore that our results will provide an incentive for a critical reassessment of the

validity of PMFs computed with US, and make a strong case to further benchmark the

performance of adaptive-biasing methods for computing binding affinities.

Introduction

Molecular dynamics (MD) simulations have proven their usefulness in studying many kinds

of biological processes, including intracellular dynamics,1 protein folding,2 and capturing

ligand-binding pathways.3 Among the goals that MD can target is the accurate calcula-

tion of association/dissociation free energies of, for example, protein-protein, protein-ligand,

protein-DNA, and ligand-membrane systems. For that, one would want to use MD to es-

timate absolute binding free energies (ABFE). While relative binding free energy (RBFE)

calculations have already matured and are now almost routinely used in industrial work-

flows,4–9 ABFE calculations are in general more complicated, require more resources, and

are still under development.10 The performance of methods for calculating ABFE is regularly

assessed in the SAMPL challenge,11,12 and currently, a typical error in ABFE calculations is

twice as high as in RBFE (mean absolute error of ∼2 kcal/mol for the best ABFE method12

versus <1 kcal/mol for RBFE methods5,7,13).

In the SAMPL challenge, as for ABFE calculations in general, one of the most frequently

used methods is umbrella sampling (US).14 The idea of US is to create a set of reference

configurations along a predefined reaction coordinate, for example by pulling a molecule

from another molecule, and to run MD for these independent "umbrellas" while restraining
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the sampling to the region around the reference configurations along the chosen reaction

coordinate. These simulations are independent and can hence be performed in parallel. After

the US simulations have sufficiently converged, the umbrellas are unbiased, for example with

the weighted histogram analysis method (WHAM),15,16 to obtain the potential of mean force

(PMF) from which the binding affinity is inferred. In what follows, we refer to the whole

procedure, which includes the creation of the reference configurations along the reaction

coordinate, the MD simulations of the individual umbrellas, and their transformation into

a PMF, as a single ’repeat’. The popularity of the US is largely because of its availability

in the popular MD software packages, tutorials, and automatic tools for setting up and

postprocessing the simulations.

Owing to its wide applicability, the usage of the US is accompanied by a lot of method-

ological development. To provide some examples of the current methodological developments

on US simulations for calculating the binding free energy, Woo and Roux17 demonstrated

that applying position restraints on the system during the US restricts the sampled configu-

rational space, which needs to be corrected to obtain the binding free energy. The approach

was further developed by Doudou et al.18 using linear restraints and Chipot et al.19 using

a set of geometrical restraints, the best combination of which was further scrutinized.20,21

It has been shown that without using such restraints the resulting PMFs do not correspond

well to the experimental values.22

As the reference configurations for US along a one-dimensional reaction coordinate are

often obtained from one-dimensional pulling simulations, in which usually one part of the

complex is pulled into the solvent, as generally advised,23,24 the US procedure has been

criticized for its unidirectional nature.25,26 To overcome this issue, other methods such as

metadynamics,27 adaptive-biasing force,28 and adaptive weight histogram25 have been devel-

oped. The advantage of these methods is that they iteratively alter the underlying potential

energy surface and enhance the sampling along the selected reaction coordinate in all direc-

tions, meaning multiple binding/unbinding events occur during a single simulation.
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Recent methodological developments have also focused on selecting optimal collective

variables for running metadynamics or other adaptive algorithms. This has for instance

been achieved by reweighting techniques29 or machine learning approaches.30 As a recent

example, it has been demonstrated that for a widely studied test system, benzamidine in

trypsin, the water networks can be explicitly taken into account as part of collective vari-

ables, which leads to a much better agreement between simulations and experiments.31 Other

methodological attempts focus on scaling the intermolecular interactions for different "um-

brellas", thus reducing the potentially high barriers of the intermediate states while allowing

to obtain the thermodynamic binding free energy.32 The aforementioned list of methodolog-

ical developments in ABFE calculations is far from complete, and we refer the interested

readers to recent reviews, in which the advances in the field are covered.33–36 Although vari-

ous methods aiming at accurate calculations of ABFE have been introduced during the past

decade, most of them are not yet implemented in popular software packages or have only

been tested for toy models. Therefore, the US along simple reaction coordinates remains one

of the most popular methods for computing ABFEs.

To illustrate how established the single-coordinate US is, we estimated the fraction

of MD simulation research which is actually using the technique. To compute the PMF

from the individual umbrella sampling windows, the most commonly used approach is the

weighted-histogram analysis method (WHAM).15,16 Two popular implementations of WHAM

used nowaways are the g_wham GROMACS tool by Hub et al.37,38 and the WHAM by A.

Grossfield.39 To emphasize the popularity of PMF calculation by the US method, based

on https://scholar.google.com/ data, the aforementioned publications15,16,37,39 related

to the WHAM method are cited 700-800 times per year during the last five years. Com-

pared to the number of total citations for the most popular MD softwares (AMBER,40–42

CHARMM,43,44 GROMACS,38,45–47 NAMD48–50), being around 6000-11000 per year dur-

ing the last five years, publications citing one of the PMF methods would correspond to

approximately 7-11% of all MD papers (Figure S1). Some recent examples of the ABFE
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calculation using the standard US approach include for example estimation of the free en-

ergy related to a cancer antigen binding to a protein,51 binding of DNA aptamers,52,53 small

molecules binding to membranes,54,55 ligands binding to SARS-CoV-2,56 and insulin dimer

dissociation.57 With so many resources dedicated to computing binding free energies with

US for problems with such high medical relevance, it is imperative that this approach yields

accurate predictions.

While US has been recommended as "one of the most accurate techniques for free-energy

calculations [...] only limited by its elevated computational cost",58 systematic validations

are currently lacking. Moreover, the few studies aimed at assessing this validity for specific

systems suggest a dependency of the calculated free energies on simulation setup.33,59 De-

spite this controversy, US along a one-dimensional distance-based coordinate has remained

a widely accepted method of choice for computing binding affinities, presumably because of

its simplicity. To understand if such optimism is justified, and in particular, to assess if the

common US workflows are generally valid, we have systematically assessed the accuracy of

the US sampling methods for protein-protein and protein-ligand systems.

Our results demonstrate that small deviations in the reference configurations selected for

the umbrella windows along the exact same reaction coordinate can significantly affect the

computed free energies, leading to 2-20 kcal/mol differences in the obtained PMF profiles.

Such discrepancies are in line with previous reports on hysteresis,26,60–62 and a dependence of

the computed free energy on initial conditions.59 Because the lack of reproducibility can be

attributed to small differences between the paths, we suggest that sampling multiple paths

simultaneously is needed to obtain reliable free energy estimates.

Sampling multiple pathways can be conveniently achieved with adaptive-biasing ap-

proaches.25,63–67 These methods rely on sampling multiple pathways simultaneously, and

thus can be expected to provide better convergence and smaller errors. In these methods,

the state of the system is coupled to a system parameter, which is a function of the atomic co-

ordinates. This parameter evolves simultaneously with the system following the distribution
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of the assigned probability weight factor - bias. The bias is directly related to the free energy

landscape of the parameter. During the adaptive biasing simulations, the distribution of as-

signed weights is constantly updated based on the simulation history in order to achieve the

target distribution, usually uniform, of the parameter. Indeed, we tested that for two of our

systems, computing the PMF with an adaptive-biasing approach, namely, the accelerated

weight histogram (AWH) method25 by Hess and co-workers, yields consistent and repro-

ducible results. While, as we mentioned above, there are multiple different implementations

of adaptive-biasing methods, including metadynamics,27 adaptive biasing force,28 and many

others,63–67 only the AHW method is supported natively in GROMACS. We additionally

demonstrate that using a shared bias between different simulations is essential.

Thus, our results reveal that the widely accepted practice of performing US simulations

does not lead to reproducible PMFs, and that instead, multiple pathways must be sampled

simultaneously to avoid this problem and provide reliable free energy estimates. However, as

methods that simultaneously sample multiple pathways are not yet fully established, further

benchmarking will be needed to find the optimal parameters for routinely computing PMFs

with those methods.

We anticipate that our results will help others, in particular non-specialists, in selecting

the most suitable method for performing and analyzing PMF computations. For further

methodological development of computational techniques for evaluating ABFE, more reliable

interaction functions,68 and methods are required. This work is focused on the reliability

of the popular approaches for computing ABFEs, rather than on reproducing experimental

estimates, which, we hope, will lead to the further development of methodology.

Methods

We performed multiple repeats of non-equilibrium pulling followed by umbrella sampling to

obtain PMF profiles for the dissociation of three protein-protein, one protein-peptide, and
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one protein-ligand complexes. To show that the results are independent of MD software, we

performed simulations with GROMACS 2021.5 and 2022.4 versions38 and OpenMM.69 To

demonstrate that the results do not depend on the force field used, we ran simulations with

CHARMM3670 and Amber ff99SB-ILDN force fields.71 To sample multiple pathways within

one simulation, we performed multiple simulations with the accelerated weight histogram

(AWH) method25 with GROMACS and the CHARMM36 force field. Here, we provide the

details of the simulation systems, simulation parameters, and procedures for pulling, US,

and analysis.

Simulated systems

We calculated the PMF profiles of the dissociation for the following systems (Figure 1): (1)

barnase-barstar (PDB ID: 1BRS72) (2) HdeA dimer (PDB ID: 1BG873) (3) clpS protease

adaptor with LLL tripeptide (PDB ID: 3G1974) (4) trypsin-benzamidine (PDB ID: 3PTB75)

and (5) amyloid β-peptide Aβ42 (PDB ID: 2BEG76). For all systems, we performed mul-

tiple repeats of US simulations. The AWH simulations were performed for systems 1 and

4. For systems 1-4, the interactions were modeled using the CHARMM36 all-atom force

field (FF).70 Benzamidine in system 4 was parameterized with CGenFF.77,78 For system 5,

the GROMOS96 53A6 parameter set79 was used, as in the earlier work of Lemkul et al.23

Additionally, to rule out bias of the force field, we repeated the simulations of system 3

using the Amber ff99SB-ILDN FF.71 We also ran system 3 with CHARMM36 force field

but with OpenMM software69 to check that discrepancies between repeats are not software-

specific. Systems 1-4 were constructed using the following procedure: (i) The structure for

each protein system 1-4 was obtained from the Protein Data Bank80 and placed in a pe-

riodic rectangular box; (ii) The C- and N-termini were kept charged, and the protonation

states for the titratable residues were selected for pH=7: all Glu, Asp and His deprotonated,

and Lys protonated; (iii) The proteins were oriented in the simulation box such that the

reaction coordinate of the pulling simulation was aligned with the z-coordinate, as in the
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Figure 1: Structures of the simulated systems, for which the PMF of the dissociation was
calculated using umbrella sampling. (1) barnase-barstar 1BRS72 (2) HdeA dimer 1BG873

(3) clpS protease adaptor with LLL tripeptide 3G1974 (4) trypsin–benzamidine 3PTB75 and
(5) amyloid β-peptide Aβ42 2BEG.76 The protein, peptide, or ligand dissociated from the
protein is shown in orange.

earlier work,18,23 and the reaction coordinate was defined either as the vector connecting the

center-of-masses (COMs) of the two proteins or protein and peptide (systems 1-3), or as the

vector connecting the COM of heavy atoms of the ligand and the Cγ atom of Asp-189 (sys-

tem 4) as was proposed in previous work;18 (iv) Systems were then solvated with CHARMM

TIP3P81,82 or TIP3P83 water molecules. Systems were neutralized by adding Na+ and Cl–

ions at 0.15 M concentration. For system 5, the initial structure was an equilibrated snapshot

from the tutorial of Lemkul,84 based on their earlier publication.23

The sizes of the simulation boxes of our systems were: barnase barstar 9x9x15 nm3 box

with ∼38000 waters, HdeA dimer 8x8x15 nm3 with ∼31000 waters, clpS protease adaptor
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6x6x12 nm3 with ∼13500 waters, and trypsin–benzamidine 9x9x12 nm3 with ∼31000 waters.

System 5, the amyloid β-peptide, comprised a box of dimensions 11x10x12 nm3 with ∼42000

SPC85 waters. All input configurations, together with topology and run parameters, are

provided as Supporting Information.

Simulation details

To check the convergence of independent US repeats, we performed simulations of the five

systems described in the previous section, using the umbrella sampling technique of which

the steps are illustrated schematically in Figure 2A. The AWH simulations were performed

for systems 1 and 4, using the schemes illustrated in Figure 2BC. In the following, we describe

the GROMACS38 and OpenMM69 parameters used.

GROMACS

Molecular dynamics Since most of the simulations in this work were performed with the

CHARMM36 force field, we only specify the parameters for those simulations. The input

parameter files for simulations performed with the Amber ff99SB-ILDB and GROMOS96

53A6 force fields can be found in the supplementary archive with all the inputs for simulated

systems.

For the simulations with the CHARMM36 force field, Coulomb interactions were com-

puted using the smooth particle mesh Ewald (PME)86,87 method with a real-space cut-off of

1.2 nm and a grid spacing of 0.14 nm. Van der Waals interactions were modeled with the

Lennard-Jones potential, which was smoothly switched to zero in the range from 1.0 to 1.2

nm. Constant temperature of 300 K was maintained with the v-rescale thermostat88 using

a time constant of 0.5 ps−1. Constant pressure of 1 bar was maintained with the Parrinello-

Rahman barostat89 using a relaxation time of 2.0 ps. For AWH simulations of system 1,

constant pressure was maintained with c-rescale barostat90 with a relaxation time of 5.0 ps.

The leapfrog integrator with a timestep of 2 fs was used, together with the LINCS91 al-
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Figure 2: Visual representation of the steps in the enhanced sampling methods used in this
work. (A) In umbrella sampling, the pathway is obtained by pulling a bound molecule away
from its partner. From the pulling trajectory, N frames are selected as reference points
for N independent restrained umbrella runs. The final PMF is computed by combining
data from all umbrella simulations using the WHAM method. (B) AWH with a single
walker. In an AHW simulation, there is no initial path, but sampling of transitions between
bound (left) and unbound states (right) is enhanced by dynamically updating a biasing
potential at various points along the reaction coordinate, until the trajectory samples a
uniform distribution along that path. The points at which such updates occur depend on
the sampling history. Therefore, after an update happens at point x0, the next updates
can occur at both smaller and larger values of the reaction coordinate, avoiding the uni-
directionality of US. (C) AWH with multiple walkers. With multiple walkers, several AWH
simulations are run in parallel each under the influence of the same single biasing potential,
which is updated by all walkers simultaneously.
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gorithm to constrain lengths of bonds to hydrogen atoms of the solute molecules, and the

SETTLE92 algorithm to constrain internal degrees of freedom of the water molecules. The

aforementioned parameters were the same for pulling, umbrella sampling, and AWH simu-

lations. For the additional simulations with the Amber ff99SB-ILDN and for system 5 with

the GROMOS96 53A6 force fields, the parameters can be found in the input files provided

in the SI.

Prior to production runs with US or AWH, the potential energy of systems 1-4 was

minimized using the steepest descent algorithm, followed by equilibration of 50 ps in NVT

and 50 ps in NPT ensembles. During the NVT and NPT equilibration, position restraints

of 1000 kJ mol−1nm−2 were applied in all directions on the Cα atoms of the proteins and

peptide, and on all heavy atoms of the ligand in system 4. During pulling, one of the protein

chains was restrained and the other chain (either protein, peptide, or lipid) was pulled away

from it. We refer to the restrained protein chain as a fixed one, and to the one which was

pulled away as the mobile one. During pulling, US and AWH simulations of systems 1-4

the following restraints were applied: 1000 kJ/mol/nm2 position restraints in all directions

for the Cα atoms of the fixed protein chain, and orthogonal position restraints in x-,y-

directions with a force constant of 1000 kJ/mol/nm2 for the Cα atoms of the mobile protein

or peptide, or heavy atoms of the ligand. For system 5, following the procedure of Lemkul

and Bevan,23 position restraints of 1000 kJ/mol/nm2 in all directions were only applied to

the Cα atoms of the subunit next to the one dissociated from the aggregate. To test the

effect of position restraints in x,y-directions, we also performed additional simulations for

the trypsin-benzamidine (system 4) using different force constants kxy = 4184 kJ/mol/nm2

and kxy = 0 kJ/mol/nm2

Pulling and umbrella sampling. As the aim was to perform multiple repeats for um-

brella sampling (Figure 2A) and compare the PMF profiles, we first performed multiple

repeats of the non-equilibrium pulling to get initial structures for umbrella windows along
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the dissociation coordinate. Starting from the equilibrated system, the mobile protein, pep-

tide, or ligand was pulled away from the fixed protein along the z-axis. Multiple repeats

(5 repeats for systems 1-4 and 10 repeats for system 5) of pulling for each system were

performed, all starting from the same initial structure but with different initial velocities.

For system 1, barstar was pulled away while barnase was kept fixed, for system 2 the two

monomers of the HdeA dimer are identical, so one of the monomers was kept fixed and the

other one was pulled. For systems 3 and 4, the peptide or ligand was pulled away while the

protein was kept fixed. For system 5, the subunit A was pulled away from the rest of the

protein. In Figure 1 the dissociated parts are shown in orange.

The pulling was carried out as follows: for systems 1-3 slowly over 100 ns, using a pull

rate of 0.000033 nm/ps and a spring constant of 10000 kJ/mol/nm2. For system 4, the

original work18 did not provide details on the generation of initial windows for the US, so

we performed the pulling over 1 ns, using a pull rate of 0.005 nm/ps and a spring constant

of 1000 kJ/mol/nm2. For system 5, we used the values as in the original work,23 namely

a much faster pulling over 500 ps with a pull rate of 0.01 nm/ps and a spring constant of

1000 kJ/mol/nm2.

The starting configurations for the US windows were obtained as snapshots from the

individual pulling trajectories. For systems 1 and 2, 26 umbrella windows were used with a

0.05 nm spacing along the reaction coordinate for the first 1 nm of COM separation between

the proteins and a 0.1 nm spacing for the next 0.5 nm. For system 3, 21 umbrella windows

with a 0.05 nm spacing were used for 1 nm COM separation between the peptide and protein.

For system 4, 25 umbrella windows with a 0.1 nm spacing were used, where the separation

was measured as the distance between the COM of heavy atoms of the ligand on the one

hand, and the Cγ atom of Asp-189 on the other hand. Lastly for system 5, 31 umbrella

windows with a 0.1 nm spacing for the first 1.5 nm separation and a 0.2 nm spacing for the

next 2.0 nm separation, as suggested in the original research of the system.23

For the individual umbrella sampling simulations, a harmonic restraining potential was
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used. For systems 1 and 2, a higher force constant of 10000 kJ/mol/nm2 was used for the

denser windows of the first 1 nm, and a force constant of 1000 kJ/mol/nm2 for the other

windows. For system 3, a force constant of 10000 kJ/mol/nm2 was used for all US windows.

For systems 4 and 5, again following the original works,18,23 we used force constants of

4184 kJ/mol/nm2 = 10 kcal/mol/Å2 and 1000 kJ/mol/nm2, respectively. The lengths of

umbrella sampling simulations for systems 1, 2, 4, and 5 were 10 ns per US window in each

repeat, resulting in a total of 200-300 ns per system. For system 4, simulating 10 ns per

window was ten times longer than in the original work,18 and for system 5, the same as in

the original work.23 For system 3, each umbrella window was simulated for 50 ns.

To estimate the PMF along the reaction coordinate from the US simulations, the weighted

histogram analysis method (WHAM) implemented in GROMACS as gmx wham37 was used.

For the error analysis of the PMF profiles from US simulations, the conventional bootstrap-

ping method with 100 bootstraps was used.

Accelerated weight histogram method In addition to multiple repeats of the US simu-

lations, we also performed multiple repeats of accelerated weight histogram method (AWH)

simulations for systems 1 and 4 (Figure 2BC). For all the AWH simulations, a constant

target distribution was used. The estimated initial error was set to 40 kJ/mol and the input

diffusion constant was set to 2.0×10−5 nm2/ps. The number of steps between the sampling

of the coordinate value, as well as the number of coordinate samples used for each AWH

update, were set to 10. For system 1 the interval for the z-distance was set to 2.3-3.2 nm and

for system 4 to 0.53-2.3 nm. For the AWH with a single walker (Figure 2B), the simulations

were started from the bound state and were run for 1600 ns (system 1) and 800 ns (system 4)

per repeat. In addition, the AWH simulations were repeated using four bias-sharing walkers

(Figure 2C). The starting configurations for the walkers were obtained at regular intervals

along the distance from the pulling simulations, and the same starting configurations were

used for all repeats. Each walker was sampled for 400 ns (system 1) and 200 ns (system 4).
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For the AWH simulations, the same reaction coordinate along z and position restraints in

x-, and y-directions were used as in the US runs.

OpenMM

To check that the discrepancies between independent umbrella sampling repeats are not

software specific, we also performed simulations with OpenMM69 for clpS protease adaptor.

The input files and scripts used to run OpenMM simulations are available at the gitlab page.

Pulling and umbrella sampling The input structure used for pulling simulations with

OpenMM was taken after NPT equilibration run with GROMACS. All the simulations were

performed in the NVT ensemble at 300 K using Langevin integrator with a friction coefficient

of 1 ps−1 and step size of 0.002 ps. Coulomb interactions were computed using the PME86,87

method. Van der Waals interactions were modeled with the Lennard-Jones potential with a

cutoff of 1.2 nm. Constraints were used for bonds to hydrogens.

The pulling simulation was performed with a pull rate of 0.000033 nm/ps and a spring

constant of 1000 kJ/mol/nm2. Frames were saved every picosecond. For umbrella sampling

simulations the distance between protein chains was restrained with the force constant of

10000 kJ/mol/nm2. In all the simulations Cα atoms of the static protein chain were restrained

to their initial positions with the force constant of 1000 kJ/mol/nm2. Cα atoms of the

moving protein chain were restrained to their initial positions with the force constant of

1000 kJ/mol/nm2 in x− and y− directions, as proposed by Doudou et al.18 To estimate the

PMF along the reaction coordinate from the US simulations, the WHAM implementation

from Grossfield lab version 2.0.1139 was used.

Results and Discussion

Here, we present the results of multiple repeats of umbrella sampling for the dissociation

of protein-protein, protein-peptide, and protein-ligand complexes. We show that the PMF
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profiles obtained for each system differ by about 2-20 kcal/mol between individual repeats,

indicating that the common procedure of relying on one repeat of US leads to unreliable

and non-reproducible results. A similar issue was recently discussed for MD in general

by Peter Coveney and co-authors,93 but here we focus specifically on US simulations. We

demonstrate that very small differences in reference structures for the umbrellas can lead to

large differences in the PMF profiles. Adaptive-biasing methods, such as AWH,25 rely on

the sampling of multiple pathways in one simulation, and to understand if the inclusion of

multiple pathways resolves the convergence issues, we also assess the performance of such

simulation techniques for protein-protein and protein-ligand systems.

Multiple independent repeats of the US simulations

In Figure 3, we show the computed PMF profiles for the dissociation of the five systems

described in the Methods section and illustrated in Figure 1 using the US procedure. For

all simulated systems, the PMF profiles differ for individual repeats. Differences in the

PMF depth (∆WR) between repeats lie in the range of ∼2-20 kcal/mol (Table 1), which

is much higher than the PMF errors calculated with the bootstrapping method usually

employed for the WHAM,37 which is in the order of only 0.5-2 kcal/mol. Large differences

in the ∆WR between repeats can be problematic because the binding free energy between

different ligands to a binding site may vary by about the same amount,33 making it difficult

to differentiate between ligands with US. To rule out potential effects of the force field or

software, we additionally calculated the dissociation PMFs for the clpS protease adaptor

complexed with LLL tripeptide (system 3) using Amber99sb-ildn FF71 with GROMACS38

and CHARMM3670 with OpenMM69 software. The differences between the US repeats were

also observed for those simulations (Figure S2).

Repeats, leading to different computed values, often indicate a lack of convergence of the

umbrellas. However, for all simulated systems there is a sufficient overlap between adjacent

umbrella histograms (Figures S3-S7), which is a key requirement for computing PMFs with
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Figure 3: PMF profiles for multiple repeats of umbrella sampling for the simulated systems,
where different colors correspond to different repeats. The different repeats of the US were
generated by performing multiple pulling simulations starting from the same equilibrated
structure, from which the initial snapshots for US windows were taken. The error estimation
from bootstrapping is shown with a lighter color.

WHAM. Additionally, we find that the umbrellas in each repeat are converged in time, as

indicated by the convergence of PMF profiles with simulation length (0-2.5, 0-5.0, 0-7.5, 0-

10.0 ns for systems 1,2,4,5 and 0-10, 0-20, 0-30, 0-40, 0-50 ns for system 3) (Figures S8-S12).

These observations thus suggest that the differences between the PMF profiles of individual

repeats are not due to a lack of convergence in the US simulations of the individual repeats.

Instead, following You et al.,59 we attribute the discrepancies between the PMF profiles

of the individual repeats to differences in the pathways along the reaction coordinate. In

the US method, those pathways are defined by the reference configurations for the harmonic

restraints in each US window. For the HdeA dimer (system 2) and the amyloid β-peptide

A β42 (system 5) differences in pathways were observed for different repeats, as shown in
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Table 1: Estimated PMF depths ∆WR values for the repeats of the US (systems 1-5) and
the multi-walker AWH (systems 1 and 4) simulations. ∆WR was calculated from the PMF
profiles presented in Figure 3 as the mean of the flat region of the PMF (cut-offs of flat
region 3.0, 2.75, 1.7, 1.9 and 3.5 nm for US systems 1-5, respectively, and 3.0 and 1.2 for
AWH systems 1 and 4, respectively.)

system ∆WR from US [kcal/mol] ∆WR from AWH [kcal/mol]

(1) barnase-barstar -22.5/-24.4/-21.1/-27.3/-22.8 -13.8/-13.3/-13.4

(2) HdeA dimer -38.3/-57.4/-53.9/-46.6/-48.0 –

(3) clpS protease adaptor -15.7/-14.5/-15.9/-14.0/-14.5 –

(4) trypsin-benzamidine -23.7/-21.0/-13.2/-15.7/-16.4 -21.3/-21.8/-24.0/-23.1/-22.4

(5) amyloid β-peptide -27.2/-30.2/-20.0/-28.1/-28.9 –
-44.3/-25.0/-27.6/-24.3/-30.0 –

Figures S18 and S19 of SI. However, for all other systems, the root mean square deviations

(RMSDs) between reference structures for the umbrella windows of different repeats were

around 0.1 nm, indicating that the pathways were very similar (Figure S20). Moreover,

exchanging the reference structures between repeats while keeping the initial coordinates

the same, reveals a strong dependency of the PMF on those reference structures (Figure

4). Since the sequence of reference structures defines the pathway for the US, these results

suggest that the PMF is determined to a large extent by the pathway.

Because the HdeA dimer is a partially disordered protein, for which dimer formation and

monomer folding occur simultaneously,94,95 pulling can be expected to yield multiple path-

ways along the same reaction coordinate. In general, a one-dimensional reaction coordinate

is not a suitable choice for systems where binding is accompanied by large conformational re-

arrangements. Some success for such systems has been achieved by using the total number of

contacts between residues that define the state of the system, as the reaction coordinate,95,96

but the analysis of such methods lies beyond the scope of this work.
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As for the amyloid β-peptide A β42 system, the initial configurations for the umbrella

windows were obtained with shorter pulling simulations (0.5 ns) than for all other systems

(1-100 ns), and both pulling and US simulations were performed without any orthogonal

restraints. This is because our main goal for this system was to reproduce and assess the

US protocol published by Lemkul and co-workers more than 10 years ago.23 This protocol

is also used in widely spread GROMACS tutorials,84 which is the starting point for many

users in the area of MD simulations and US. With much faster pulling, the projection of

initial structures onto the reaction coordinate is not uniformly distributed (see Figure S17),

compared to systems that were pulled more slowly (Figures S13-S16). When pulled fast,

the system can sample only a small portion of configuration space, which leads to larger

differences between pathways, as compared to slower pulling.(Figure S20, S21). However,

differences between pathways remain.

These differences can be further reduced by applying orthogonal restraints, which reduces

the RMSD between reference structures for umbrella windows to 0.5 nm for fast pulling and to

0.1 nm for slow pulling (Figure S21). Slow pulling with orthogonal restraints leads to higher

similarity between pathways, therefore avoiding one of the potential reasons for differences

in PMF profiles. The importance of applying orthogonal restraints was recently discussed by

Blazhynska and co-workers,22 who compared PMF profiles obtained from simulations with

geometrical restraints (which according to Doudou and co-workers are similar to orthogonal

restraints18) to those obtained from free simulations. They observed differences of several

kcal/mol between individual repeats of simulations with no restraints, and none of those

repeats converged to experimental values. The authors, however, did not report performing

multiple repeats of restrained simulations. Nevertheless, the value they reported for a single

restrained simulation was in good agreement with experimental values.

We observe that even when pathways are structurally similar (i.e., RMSD below 0.1 nm),

differences between PMF profiles remain, as seen for example for system 4 (Figure 3D).

To take into account the effect of orthogonal restraints, Doudou and co-workers proposed
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Figure 4: Effect of initial structures used for the US windows on the PMF profiles. Two
additional repeats of the US simulations were performed for trypsin-benzamidine (system 4).
In those repeats, we took reference configurations, which are used as the origin of position
restraints for umbrella windows, from repeats 1 and 3 and the initial configurations from
repeats 3 and 1, respectively. The initial configuration did not affect the computed PMF
profiles.

to use two correction terms ∆GV and ∆GR, which reflect the change in the free energy

when restraints are removed for the unbound and bound states, respectively.18 To check

if the differences between individual repeats of the US simulations can be mitigated with

such corrections, we calculated the correction terms for trypsin-benzamidine as in Doudou’s

paper and for HdeA dimer, as an example system with clearly different pathways. For both

systems, the computed correction terms were almost identical for all repeats (Table S1),

suggesting that the differences between the PMFs are not due to the orthogonal restraints.

Another possible reason for non-converged ABFE calculations was discussed by Ansari

and co-workers, who demonstrated that water networks can play a key role in the binding

process of a ligand.31 In the case of the trypsin-benzamidine system, a water molecule in the

binding pocket initiates the ligand release process.31 In the unbound state, there is a water

network replacing the ligand in the binding pocket.97 However, while also in our simulations,

water networks form during the pulling simulations, the structures of these networks differ

19

https://doi.org/10.26434/chemrxiv-2023-2pqls-v2 ORCID: https://orcid.org/0000-0003-2031-4691 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-2pqls-v2
https://orcid.org/0000-0003-2031-4691
https://creativecommons.org/licenses/by/4.0/


significantly between the repeats of the US simulations (Figure S22). In addition, within

a single repeat, the network changes in simulations of the single umbrella windows (Figure

S23). The average number of water molecules around residues Y228 and D189 fluctuates

between the US repeats (Figure S24), pointing to a lack of structural convergence in the

binding pocket, which, according to Ansari et al., can influence the resulting PMF profiles.31

While the wetting/dewetting transition of the binding pocket often plays a key role in

ligand binding,98,99 it is not the only determinant defining the protein-ligand and protein-

protein dissociation.100 Our results, unfortunately, demonstrate that for large biomolecular

systems like protein-protein or protein-ligand complexes, a straightforward application of the

umbrella sampling protocol for a single reaction coordinate, as widely used by the community,

may not always provide reliable binding free energies by itself. Similar results were also

obtained for solute permeation across membrane channels, for which solute pulling in two

directions led to major hysteresis effects.62,101

As a conclusion, despite starting the pulling from the same equilibrated structure and

applying orthogonal restraints, each pulling simulation results in a slightly different pathway

along the reaction coordinate. Such differences in the pathways, even if small, can result

in differences of at least a few, or even tens of, kcal/mol in the resulting PMF. Therefore,

a single set of US using a simple distance-based reaction coordinate is not sufficient for

obtaining a reliable estimate for protein-protein, protein-peptide, or protein-ligand affinities.

Sampling multiple pathways

While performing a single repeat of US along a one-dimensional coordinate has emerged

as the established approach for computing PMFs, our results suggest that this may lead

to an incorrect estimation of binding affinity, as there can be other pathways that lead to

different PMFs. To estimate this effect, multiple repeats are needed. However, when the

differences between PMFs from multiple repeats are large, obtaining meaningful results is

challenging. While averaging PMF profiles is one possibility, as introduced by Niskikawa
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et al.,102 this would assume equal weights for all paths sampled in the repeats. Because

of the differences between the PMFs computed for multiple repeats of US along the same

1D reaction coordinate, we assume that not all non-equilibrium work has dissipated in our

simulations. Therefore, computing the average with equal weights will also overestimate the

free energy difference since the total work exceeds the free energy:103

W ≥ ∆G

with W the total work performed, and ∆G the free energy difference between the states.

As opposed to equal weights, Jarzynsky demonstrated that free energy can be estimated

from nonequilibrium-pulling simulations by computing the exponentially averaged work val-

ues over the repeats.103,104 Non-equilibrium techniques do sample multiple pathways and re-

semble the multiple-US-repeats discussed in this work. However, the US in principle samples

an equilibrium distribution, whereas the repeats in the Jarzynsky approach are always out-

of-equilibrium. Therefore, using exponential averaging may not be directly applicable to the

different PMFs of multiple US-repeats. The third possibility is to compute the Boltzmann-

weighted average of the computed PMF profiles. This weighting approach, however, requires

a sufficient overlap of phase spaces between independent US repeats, which most probably

is not the case due to the large difference in the computed free energy differences.

While none of the aforementioned averaging procedures is ideal, we nevertheless applied

them to estimate free energies from our simulations. The difference between the approaches

is 4.7 kcal/mol, with averaging over the results from the repeats with equal weights providing

the highest estimate (18.2 kcal/mol), while the lowest estimate (13.4 kcal/mol) was obtained

by averaging with the Boltzmann weights. The exponential averaging yields a value of

14.3 kcal/mol (Figure 5). The results of different averaging approaches for the other systems

can be found in Table 2, and the corresponding Figures S25-28.

Additionally, we repeated 1000 rounds of WHAM using umbrella windows along the
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Table 2: Average of the PMF of US repeats for all systems, obtained using equal, exponential
and Boltzmann weighing. The errors are obtained as the standard deviation computed for
10000 randomly selected sets of 5 cross-WHAM repeats (see text).

average ∆WR [kcal/mol]
# system equal exponential Boltzmann

1 barnase-barstar 24.2 ± 1.0 22.1 ± 1.7 22.8 ± 1.5
2 HdeA dimer 49.1 ± 1.6 38.5 ± 2.2 39.4 ± 2.1
3 clpS with LLL tripeptide 16.6 ± 0.9 15.5 ± 1.3 15.9 ± 1.2
4 trypsin-benzamidine 18.2 ± 1.3 13.4 ± 1.8 14.3 ± 1.7
5 β-peptide Aβ42 27.1 ± 2.2 18.4 ± 2.0 19.7 ± 1.9

reaction coordinate selected randomly from the independent repeats of the US runs. This

"mixing" of the umbrella windows, or cross-WHAM, results in new pathways, which are

combined from pieces of the original pathways. Figure 5 shows that cross-WHAM can lead

to lower and higher ∆WR values than for original repeats. We used the cross-WHAM replicas

to estimate the error of each averaging approach. We randomly selected 5 replicas out of 1000

generated and computed averages for those 5 replicas. We repeated this procedure 10000

times and estimated the errors of various averaging approaches as the standard deviation

of 10000 computed averages. The errors were 1.3, 1.8, and 1.7 kcal/mol for equal weight,

exponential, and Boltzmann averaging respectively (Table 2) . These errors were at least

0.9 kcal/mol higher than WHAM bootstrapping error (0.3-0.8 kcal/mol) for the trypsin-

benzamidine system. Similar results for the errors were obtained for other systems (Table

2).

In principle, free energy differences associated with different pathways should be averaged

with some weights, and those weights should depend on the overlap between the conforma-

tional ensembles sampled in the US simulation along the particular pathway. While such

reweighing might be possible, it will require the development of a new formalism and soft-

ware. The simple reweighing techniques discussed here, led to differences in the estimated

free energies of 4.7 kcal/mol, which is below the 12 kcal/mol maximal difference between

repeats. However, the differences between the various reweighing techniques are higher than
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Figure 5: Gray lines show the 1000 PMFs from cross-WHAM combining randomly selected
umbrella windows from different US repeats of the trypsin-benzamidine system. Black lines
show the PMF profiles for the original sets of US, from Figure 3. Red, green, and yellow
lines show the averages of these five PMFs, obtained using equal, exponential, and Boltz-
mann averaging, respectively. On the right-hand side of the figure, the black line shows the
distribution of ∆WR, where each ∆WR is calculated as the average of the flat part of the
PMF, here for distances >2.0 nm. The red, green, and yellow lines show Gaussian distribu-
tions with a σ equal to the standard deviation of the distribution of the averages, computed
for 10000 randomly selected sets of 5 cross-WHAM repeats.

the error for the individual reweighting (≈ 1.5 kcal/mol). Without a physical argument in

favor of a specific reweighting approach, it remains unclear how to extract meaningful free

energy estimates from multiple US repeats.

In contrast, adaptive-biasing methods, which are discussed below, sample multiple path-

ways on the fly according to Boltzmann’s distribution while providing sufficient overlap of

phase space between neighboring states. We therefore, applied such an approach, namely

the accelerated weight histogram (AWH) method by Lindahl et al.,25 to compute the free

energy for protein-protein and protein-ligand binding.
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Adaptive-biasing methods

In adaptive-biasing methods, a system parameter, which is a function of the atomic coordi-

nates, is introduced in (Figure 2B). Typically, the evolution of this parameter is associated

with a transition between different states of the system, for example, a distance between

chains for binding, or a reaction coordinate for a chemical transformation. Because the bar-

riers between the states can be high, sampling all relevant states can be infeasible. Sampling

can be improved by adding a biasing potential to the system. In adaptive methods, the bias

is applied to the system parameter and dynamically updated until a predefined distribution

of the parameter is obtained. Because the parameter is coupled to the coordinates, the bias-

ing potential forces the system to sample the relevant states and the underlying free energy

profile can be directly obtained from the bias.25,63–67 In contrast to US simulations, in which

sampling is restrained along fixed points on a predefined path that connects the end states,

no such path is defined in adaptive-biasing methods. Instead, by applying the bias, a single

trajectory samples the full range of the system parameter along multiple pathways. To fur-

ther speed up sampling, multiple trajectories can be coupled to the same system parameter

and run in parallel (multi-walker simulations) as shown in Figure 2C.105

While several adaptive-biasing methods have been developed, such as metadynamics27 or

adaptive-biasing force,28 and shown to lead to more reproducible results than US, we opted

for using AWH,25 as this method is available in GROMACS. In AWH, the coupling between

the system parameter, called a pseudoparticle, and the reaction coordinate is achieved by

a strong harmonic restraint: Q(ξ, CV ) = 1
2
k(ξ − CV )2, where ξ is the position of the

pseudoparticle, and CV is current position on the reaction coordinate. To ensure that the

reaction coordinate is almost equal to the coordinate of the pseudoparticle, a high value

for the coupling constant k is typically chosen. The pseudoparticle is propagating on the

potential g(ξ) + Q(ξ, CV ), where g(ξ) is the biasing potential. The biasing potential g(ξ)

is constantly updated in order to achieve an uniform distribution of the pseudoparticle.

Due to the coupling between the pseudoparticle and the reaction coordinate, the biasing
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potential indirectly influences the dynamics of the system. The simulation is considered

converged when the pseudoparticle samples a sufficiently uniform distribution. The biasing

potential required to achieve this, is then equal to the PMF. Further details of AWH can be

found in the original publication,25 and instructions are available in the official GROMACS

documentation.106 Additionally, GROMACS provides tutorials on the usage of the AWH

method,107,108 in which the application details are highlighted. We also suggest that readers

interested in using the AWH method in GROMACS follow the BioExcel webinars, in which

both technical and application details of the method were covered.109,110

With the AWH method,25 we computed the dissociation-free energies of barnase-barnstar

and benzamidine-trypsin systems. Figure 6 shows the PMF profiles computed from AWH

simulations for the barnase-barstar complex (system 1), and the trypsin-benzamidine com-

plex (system 4). While with a single walker (Figure 6A, C) the differences between repeats

are smaller than for the US, but still in the order of 5 kcal/mol, this difference reduces

to 1-3 kcal/mol when multiple walkers are applied (Figure 6B, D). The convergence of the

PMF profiles as a function of time for AWH demonstrates a similar trend (Figures S33-

S36). For single-walker simulations, 400 ns is not sufficient to achieve convergence for both

trypsin-benzamidine and barnase-barstar complexes, as the profiles continue to evolve (Fig-

ures S34, S36). In contrast, with four walkers the PMF profiles for both trypsin-benzamidine

and barnase-barstar complexes, converge within 100 ns (Figures S33, S35), demonstrating

the higher efficiency of multiple-walker simulations compared to single-walker ones. Similar

trends have been demonstrated before for pulling solutes across membrane channels and for

characterizing conformational changes in riboswitches.62,101,111

An additional advantage of the multiple walkers is that the bound state is sampled more

extensively as compared to a single walker simulation (Figures S30 and S32). In the single

walker trajectory of the barnase-barnstar complex (Figure S30), the bound state is undersam-

pled and the system does not return to the bound state during the simulation, which affects

the PMF profile (Figure S34). In contrast, we observe that in the multiple walker AHW
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Figure 6: PMF profiles for repeats of AWH simulations. (A) barnase-barstar (system 1)
with a single walker, 1600 ns per replica (B) barnase-barstar with four walkers, 400 ns per
replica (C) trypsin-benzamidine (system 4) with a single walker, 800 ns per replica, and (D)
trypsin-benzamidine with four walkers, 200 ns per replica.

simulations, at least one of the four walkers samples the bound state extensively (Figures

S29 and S31). Thus, based on previous62,101,111 and our results, we consider adaptive-biasing

approaches more robust and reliable than US simulations.

Conclusions

We have performed a systematic assessment of the computation of absolute binding free ener-

gies for protein-protein and protein-ligand systems by means of the umbrella sampling along

a simple 1D reaction coordinate technique, currently one of the most popular techniques

26

https://doi.org/10.26434/chemrxiv-2023-2pqls-v2 ORCID: https://orcid.org/0000-0003-2031-4691 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-2pqls-v2
https://orcid.org/0000-0003-2031-4691
https://creativecommons.org/licenses/by/4.0/


for calculating the ABFE. By demonstrating that independent repeats of US simulations

can lead to significant differences in the PMF profiles, sometimes on the order of the actual

ABFE, we revealed a lack of reproducibility that undermines the reliability of this approach

in practical applications. We could attribute this lack of reproducibility to the inevitable

differences between the pathways. We also demonstrate that for the barnase-barstar and

trypsin-benzamidine systems, adaptive-biasing approaches, which sample multiple pathways

in a single simulation, provide reproducible results and hence more reliable free energy es-

timates. For such approaches to become more widely used, however, further benchmarking

will be needed to find the optimal parameters for running such simulations. We anticipate

that our results will provide an incentive to (i) move away from US based techniques towards

more robust methods (e.g. adaptive-biasing methods) for ABFE computation; and (ii) vali-

date the approach chosen for the calculation by scrutinizing its accuracy, convergence, and

reproducibility.
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– Details on the citations for PMF and MD methods

– US with OpenMM / Amber FF

– Umbrella histograms, convergence of individual US repeats

– Analysis of pulling simulations

– Contributions to the free energy of binding from PMF

– Trypsin-benzamidine pathways

– Cross-WHAM analysis

– Analysis of AWH simulations
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