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Abstract 12 

Sustainable aviation fuels (SAFs) are crucial for addressing carbon emissions in the aviation 13 

industry. With a focus on SAFs, the research aims to establish a quantitative structure-14 

property relationship for polycyclic hydrocarbons (PCHCs) and their net heat of combustion 15 

(NHOC) using the innovative approach of machine learning (ML). The model trained with 16 

support vector machine (SVM) algorithms in ML is selected as it demonstrates superior 17 

performance over other available algorithms with a high coefficient of determination (R2) and 18 

low mean absolute error (MAE) of 27.821 KJ/mol for 20% test data. Using the optimum SVM 19 

model, thirty-five potential PCHCs are identified as SAF candidates from C6 to C15 sourced 20 

from reputable scientific literature and databases.  Furthermore, structural analysis revealed 21 

that high-performance PCHCs typically consist of saturated alkanes with multiple 3, 4, and 5-22 
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membered rings, suggesting that strained energy plays a role in their high energy density. The 1 

model obtained from ML can be employed to screen new hydrocarbons for their suitability as 2 

SAF candidates before costly experiments and ASTM evaluations.  3 

 4 
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Nomenclature 

ICAO       International Civil Aviation Organization                       
ML          Machine Learning 
LTO         Landing and Take-Off                                                         
ρ              Density 
SAFs        Sustainable Aviation Fuels                                                
GUI          Graphical User Interface 
PtL           Power-to-Liquid                                                                 
HED         High Energy Density 
PCHCs     Polycyclic Hydrocarbons                                                    
SVM        Support Vector Machines 
NHOC      Net Heat of Combustion                                                   
KNN         K-Nearest Neighbor 
NHOCG    Gravimetric Net Heat of Combustion                             
RF             Random Forest  
NHOCV       Volumetric Net Heat of Combustion                               
DFT          Density Functional Theory 
QSPR       Quan�ta�ve Structure-Property Rela�onship               
AF            Avia�on Fuel 
R2             Coefficient of Determination                                           
MAE        Mean Absolute Error 
RMSE      Root Mean Square Error                                                   
GC           Group Contribution 

 9 

1. Introduction 10 

The aviation industry is flourishing with the steady growth of air travel worldwide, 11 

driven by factors such as increasing global connectivity, limited time, and expanding tourism 12 

industries, all contributing to heightened demand for fuel to power commercial aircraft. 13 
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According to an International Civil Aviation Organization (ICAO) report, it is predicted that 1 

aviation fuel (AF) consumption will increase by 1.9 to 2.6 times the value of 2018 in 2050 [1]. 2 

Ultimately, heavy reliance on conventional AF such as Jet-A, Jet-A1, JP-4, and JP-5 poses a 3 

significant challenge in the fight against greenhouse gas (GHG) emissions. For instance, as per 4 

the forecast provided by ICAO, emissions from international aviation during both full-flight 5 

operations and landing and take-off (LTO) are anticipated to rise between 2 to 4 times by 6 

2050 compared to the level observed in 2018 [1], highlighting the urgent need for an 7 

alternative source of AF.  Despite the pressing need for alternative, cleaner energy, options 8 

like batteries and hydrogen still need to be viable for immediate implementation in aviation 9 

due to technical and infrastructure limitations [2].  10 

A promising progress in developing alternative source sustainable AF (SAFs) derived 11 

from Power-to-Liquid (PtL) pathways. In the PtL process, H2 is typically obtained through 12 

water electrolysis. The electricity used for electrolysis is often sourced from renewable energy 13 

systems such as solar, wind, or hydropower. As for the carbon source, CO2 is commonly 14 

sourced from various industrial processes, such as power plants, cement production, and 15 

steel manufacturing, where it is emitted as a byproduct, as well as directly from the 16 

atmosphere. The PtL process can help mitigate GHG emissions by converting CO2 into valuable 17 

liquid fuels, thereby contributing to carbon neutrality or even carbon negativity [3]. It was 18 

revealed that the system's electrical efficiency is higher when the solid oxide electrolyzer 19 

operates in co-electrolysis mode compared to the steam mode for many hydrocarbon-based 20 

fuel production systems [3]. The PtL pathways produce synthetic fuels known as eFuel, which 21 

offer a potential solution to decarbonize the aviation industry.  22 

Aviation fuel is a complex mixture of hydrocarbons like alkanes, cycloalkanes, and 23 

aromatics, further complicating the transition to greener alternatives. To enhance the 24 
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efficiency of eFuel and to increase the current 50% blending constraint of SAFs [4], there is a 1 

crucial need to optimize polycyclic hydrocarbons (PCHCs), the building blocks of these 2 

synthetic eFuels. Focusing on the composition and characteristics of PCHCs, one aims to 3 

develop more efficient and environmentally friendly alternatives to traditional AF, paving the 4 

way for a greener future in air travel [2, 5, 6]. eFuel may play a pivotal role in the aviation 5 

industry's imperative to reduce GHG emissions, offering an environmentally responsible 6 

alternative that holds the key to achieving long-term carbon-neutral growth and realizing net-7 

zero targets. 8 

Aviation fuel is subject to strict specifications. Evaluation of the physicochemical 9 

properties of each component in the AF mixture and the blended AF is a complex and 10 

expensive but essential process. First, fuels often comprise diverse components with unique 11 

chemical properties, requiring a comprehensive analysis of the mixture (blend) and individual 12 

components. Next, the physicochemical properties encompass a wide array of characteristics, 13 

including net heat of combustion (NHOC), density at 15◦C, viscosity at -20◦C and -40◦C, flash 14 

point, surface tension at 22◦C, cetane number, and octane number [4, 7]. Evaluating these 15 

properties for individual components in the blended fuel adds complexity. In addition, the 16 

compounds in a blended fuel may interact, leading to synergistic or antagonistic effects on 17 

the properties of the fuel. Third, aviation industries have stringent standards and 18 

specifications for fuel quality and performance. To meet these standards, a blended AF 19 

requires thoroughly evaluating its physicochemical properties. Finally, obtaining precise and 20 

accurate measurements and analysis of the fuel properties needs advanced testing 21 

equipment and methodologies to ensure the reliability of results. All contribute to the overall 22 

complexity and cost of the process. 23 
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The reliability and availability of AF depend on the quantity and composition of the 1 

components in the fuel. SAFs can be achieved by reducing or replacing unwanted components 2 

such as aromatics in conventional AF with strained PCHCs [5, 6] from PtL pathway [2] as 3 

blended fuel, and finally achieve 100% SAF. In the development phase of SAF, data obtained 4 

from measurements, testing, and computer modeling are employed to achieve insight into 5 

the desired properties from known structures of the compounds. For example, the net heat 6 

of combus�on (NHOC) of AF is crucial for understanding a fuel's energy content and 7 

performance characteris�cs for energy efficiency, flight range, and payload capacity of jets 8 

[8]. The NHOC is categorized into gravimetric (NHOCG) and volumetric (NHOCV), and the 9 

former (NHOCG) is suitable for weight-limited aircraft, such as rockets and spacecraft. 10 

Likewise, the latter (NHOCV) helps to reduce the aircraft fuel tank volume. Therefore, for 11 

volume-limited aircraft such as missiles and military aircraft, high NHOCV fuel helps increase 12 

the payload without changing the tank size [9]. AF, such as RJ-4, RJ-5, and JP-10, have already 13 

been developed from PCHCs [10]. 14 

In this study, we developed a machine learning (ML) model from a training set of 15 

diverse hydrocarbons with known proper�es of NHOC and density. The model is then applied 16 

to pre-screen the chemical structures of PCHCs with high-performance for SAF applica�ons. 17 

The present study is an ini�al pre-screen of a mul�level study aiming at ra�onal design for 18 

high-performance SAF from the PtL pathway [2]. The selected high-performance PCHCs will 19 

be studied quantum mechanically using DFT calcula�ons for their quan�ta�ve structure-20 

property rela�onship (QSPR) to iden�fy suitable SAF candidates, followed by synthesis 21 

reac�on pathway and catalyst development, and finalized with a techno-economic 22 

assessment (TEA) for feasibility and costs associated.  23 

2. Methods development 24 
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2.1 General process of ML model 1 

 Developing predic�ve models for fuel proper�es, par�cularly focusing on net heat of 2 

combus�on (NHOC) and density in alterna�ve fuels, involves systema�cally integra�ng 3 

experimental or computa�onal data and machine learning algorithms. Training data collec�on 4 

is a crucial first step, which depends on experimentally measured values. Experimental 5 

measurements u�lize different devices. For instance, calorimeters are the major 6 

measurement devices for accurately and reliably determining the NHOC of alterna�ve fuels. 7 

A bomb calorimeter determines the NHOC by quan�fying the energy released as the fuel 8 

undergoes combus�on, a straigh�orward and popular method [11]. Other calorimeters 9 

include adiaba�c flame calorimeters and oxygen bomb calorimeters [12]. However, prac�cal 10 

constraints such as cost, fuel volume, and �me impede the acquisi�on of experimental data 11 

[4]. 12 

    In addi�on to experimental data, one can also use density func�onal theory (DFT) 13 

[13, 14] computed data for training models, as DFT is a reliable and accurate computa�onal 14 

method. For example, Alibakhshi recently es�mated the NHOC of up to 40 organic molecules 15 

using the more expensive quantum mechanical CCSD-F12b and DSD-PBEB86 methods, 16 

achieving correla�on coefficients of 0.9999 and 0.9998, respec�vely [13]. Similarly, another 17 

recent study calculated the NHOC for as many as 295 sesquiterpenoid high-energy density 18 

(HED) fuels and reported an average absolute error as small as 2.6% [14]. While these methods 19 

ensure high accuracy, they can be resource-intensive and �me-consuming. 20 

   To address the limita�ons of experimental and computa�onally demanding methods, 21 

predic�ve methodologies such as group contribu�on (GC) methods [15, 16] and machine 22 

learning (ML) algorithms [17, 18] offer efficient alterna�ves. Albahri [19] introduced a more 23 

accurate GC method for compu�ng net heat of combus�on (NHOC). This method computes 24 
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32 atom-type structural groups for NHOC in up to 452 hydrocarbons, yielding NHOC 1 

predic�ons with an average absolute error of 0.71% and a correla�on coefficient (R) of 0.9982 2 

[19]. However, this method may be �me-consuming for many hydrocarbons and may be 3 

unsuitable for newly synthesized complex molecules. GC methods are empirical [15, 16], 4 

relying on empirical data and expert knowledge to assign contribu�ons to func�onal groups. 5 

 Machine learning (ML), in par�cular, emerges as a cost-effec�ve op�on for analyzing 6 

large datasets and predic�ng complex chemical proper�es by following the general steps in 7 

Fig. 1. By training models on molecular structures and corresponding descriptors, ML extracts 8 

paterns and rela�onships, facilita�ng the rapid screening of numerous fuel candidates. This 9 

predic�ve capability complements experimental measurements and computa�onally 10 

demanding quantum chemical calcula�ons, enabling the virtual construc�on of desired 11 

molecular structures and significantly reducing the �me and resources required for fuel 12 

screening. This rapid screening iden�fies the most promising candidates, saving significant 13 

�me and resources before future inves�ga�on can be done for NHOC (ASTM D4809) and 14 

density (ρ) at 15°C (ASTM D4052) and other alterna�ve fuel proper�es [4]. The general 15 

process of ML is presented in Fig. 1. 16 

 17 

Fig. 1. Flowchart of model development in ML process in the present study. 18 
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2.2. Data collection and feature engineering 1 

A comprehensive dataset, AFProp(N, M), is utilized in this study as a training dataset,  2 

where N represents the number of fuel properties, and M denotes the number of organic 3 

compounds with known properties. Focusing on two fundamental properties (N=2), NHOC 4 

and density (ρ). For NHOC properties, the dataset AFProp(1, M=452) compiles data on up to 5 

452 pure hydrocarbons, encompassing paraffins, olefins, naphthenes, and aromatics, sourced 6 

from reference [19]. This dataset incorporates NHOC values obtained from experimental 7 

measurements and calculations drawn from the American Petroleum Institute - Technical 8 

Data Book (API-TDB) [20]. Additionally, the dataset AFProp(2, M=486) comprises density (ρ) 9 

properties at temperatures ranging from 15°C to 30°C for up to 486 distinct hydrocarbons, 10 

sourced from the CRC Handbook of Chemistry and Physics [21] and [18]. Up to 17 11 

hydrocarbons were excluded from the NHOC dataset AFProp(1, 452) because they were 12 

identified as duplicates due to sharing identical Simplified Molecular Input Line Entry System 13 

(SMILES) notation [22] for being isomeric hydrocarbons. Furthermore, certain data points 14 

were computed values that displayed significant deviations, as highlighted by Albahri [19] and 15 

were excluded. Hence, the dataset for NHOC becomes AFProp(1, 435), which is the final 16 

training dataset for NHOC. 17 

The chemical structures of the candidate hydrocarbons undergoing screening are also 18 

compiled into a dataset, SAFCan(P, Q), where they are systematically represented using 19 

SMILES notation. The SMILES notations of dataset AFProp(N, M) and 30 existing PCHCs were 20 

directly sourced from Pubchem [23]. Additionally, the SMILES notation for five novel PCHCs 21 

circled in Fig. 5 was generated using the Open Babel toolbox [24], ensuring a compact and 22 

unambiguous representation of each compound's structure. We utilize a Python program 23 
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called GUIDEMOL [25, 26] to derive molecular descriptors from the SMILES representations. 1 

GUIDEMOL leverages the RDKit toolkit for cheminforma�cs [25, 26], offering a range of 2 

func�onali�es, including molecular structure handling, substructure searching, molecular 3 

similarity calcula�on, chemical reac�on handling, and descriptor calcula�on. 4 

2.3. ML configuration and molecular descriptors 5 

     Machine learning (ML) relies on hyperparameters, which are external configuration 6 

settings that cannot be learned directly from the data. These parameters are predetermined 7 

and remain fixed throughout training, influencing the model's behavior and performance. 8 

Precisely adjusting hyperparameters is essential for accurate model predictions and 9 

optimizing predictive precision. To achieve this, hyperparameter tuning techniques such as 10 

GridSearchCV [27] are employed. The optimal parameter obtained in different algorithms for 11 

NHOC and density (ρ) using GridSearchCV refer to Table S1 in supplementary. GridSearchCV 12 

systematically explores a subset of hyperparameters, evaluating the model's performance 13 

through cross-validation of the training data. This approach simplifies the tuning process and 14 

improves predictive accuracy and optimized model performance [27]. 15 

Molecular descriptors or features represen�ng measurable data points' proper�es 16 

were generated using the JRgui graphical user interface (GUI) [25, 28] powered by the Tkinter 17 

package. This tool computes descriptors integrated into RDKit [26] and generates grid 18 

representations of 3D molecular structures [29]. Leveraging the JRgui and RDKit toolkit [25, 19 

28, 29], we extracted a comprehensive set of approximately 200 descriptors. However, a�er a 20 

thorough examina�on, only 6 descriptors for NHOC and 40 for density (ρ) were me�culously 21 

selected from this set to train the models. In other words, the hydrocarbons' proper�es can 22 

be expressed as a func�on of these descriptors, 23 
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑗𝑗, 𝑖𝑖) = � 𝐶𝐶𝑗𝑗𝑗𝑗  𝑥𝑥𝑗𝑗
𝑛𝑛𝑗𝑗

𝑗𝑗=1
+ 𝐴𝐴𝐶𝐶𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗                                                                  (1) 1 

Where AFProp(j, i) presents the aviation fuel compound property j and its descriptor i. In the 2 

present study, j=1, 2 as only two properties, NHOC and density (ρ), are investigated. As a 3 

result, AFProp(1, i=1,2,…,6) for NHOC and AFProp(2, i=1,2,…,40) for density (ρ). PConstj 4 

represents the intercept (constant term) of property j. While xi is descriptors, the index i runs 5 

from 1 to nj (the number of descriptors) for the property j of the compound under study. For 6 

example, for NHOC (AFProp(1, i=1,2,…,6)) property of a compound contains six descriptors 7 

(n1=6), and 40 descriptors (n2=40) for density (ρ) (Prop2). That is, AFProp(1, 6) for NHOC and 8 

AFProp(2, 40) for density. Here, Cji (i=1, 2,…,nj) are the obtained coefficients for property j 9 

obtained from the ML model through the training dataset. Table 1 reports the information of 10 

the six descriptors xi (i=1, 2,…,6) of NHOC, whereas the 40 descriptors and corresponding 11 

coefficients obtained for the density (ρ) property (j=2, n2=40) in the model are given in Table 12 

S2 in the supplementary materials. 13 

Table 1: The descriptors of property NHOC (AFProp(1, i=1, 2,…,6)) in the ML model.* 14 

Symbol AFProp(1, i=1, 2,…,6) Description 
X1 NC Number of carbons 
X2 NH Number of hydrogens 
X3 Num_of Atoms Total number of atoms 
X4 BalabanJ Topological index 
X5 NumAromaticRings Number of aromatic rings 
X6 Kappa3 Coefficient of characteristics 

*Descriptors with a strong correlation to NHOC are highlighted in grey. 15 

As can be seen in Table 1, the three descriptors, NC, NH, and Num_of _Atoms, are 16 

dependent as NC+NH=Num_of_Atoms for hydrocarbons. Theoretically, orthogonal 17 

(independent) descriptors in Equ (1) are preferred because they simplify the interpretation of 18 

the model and reduce multicollinearity, which can lead to instability in the estimates of model 19 

coefficients. However, in practice, it's not always possible to have completely orthogonal 20 
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descriptors. Sometimes, including non-orthogonal variables can improve the fitting for 1 

several reasons. For example, non-orthogonal variables might provide additional information 2 

that improves the model's predictive performance and reduces bias; they can also handle 3 

nonlinear relationships between the descriptors and the target variable, leading to more 4 

accurate predictions. Sometimes, domain-specific tasks need non-orthogonal variables that 5 

are known to be relevant to the prediction task, even if they are correlated with other 6 

variables. Moreover, Equ (1) can also be extended to other organic compounds rather than 7 

hydrocarbons. We are working on developing a new set of orthogonal descriptors for AF 8 

candidates, which are closely related to molecular structures in 3D and energies. 9 

2.4. Machine learning model training 10 

A�er collec�ng and performing feature engineering on the dataset AFProp(N, M) and 11 

SAFCand(P, Q), the subsequent step entails par��oning the dataset AFProp(N, M)  into (80%) 12 

for training and (20%) for tes�ng. Following this par��oning, the next step involves selec�ng 13 

a suitable algorithm and training the model for analysis. This study chooses a supervised 14 

machine learning (ML) training model, as it can accurately predict target properties [30]. 15 

Several commonly used algorithms within the supervised ML training model are considered, 16 

including the support vector machines (SVM) [31], random forest (RF) [32], and k-nearest 17 

neighbors (KNN) [33]. These algorithms are evaluated to determine the most appropriate one 18 

for the task. The model training process is conducted using Google Collaboratory [34], based 19 

on Python 3.10 [35]. This platform offers data exploration and visualization flexibility through 20 

libraries such as Pandas, NumPy, and Matplotlib. Additionally, it seamlessly integrates with 21 

ML libraries like Scikit-Learn, TensorFlow, and PyTorch, providing a comprehensive toolkit for 22 

model development [36].   23 
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In summary, as indicated earlier, the ML training process depicted in Fig. 1 of the 1 

present study begins with data collection from multiple databases and resources. Descriptor 2 

generation follows, utilizing tools like Rdkit and Jugui [25, 28, 29]. Subsequently, a supervised 3 

training model is chosen, employing an appropriate algorithm such as SVM. The output 4 

properties are then validated against a set of properties with available experimental values. 5 

This iterative process continues until the output aligns with the target fuel properties. 6 

3. Results and discussion 7 

3.1. Performance of the algorithms 8 

The performance of three major supervised ML algorithms is considered for training. 9 

That is, the support vector machines (SVM) [31], random forest (RF) [32], and k-nearest 10 

neighbors (KNN) [33]. Evaluation metrics such as mean absolute error (MAE), root mean 11 

square error (RMSE), and coefficient of determination (R2) are employed for the performance 12 

of these algorithms. MEA and RMSE are both metrics used to evaluate the accuracy of 13 

predictions made by an algorithm or model, whereas R2 quan�fies the extent to which the 14 

model's predicted values align with the observed ones [18, 37]. The optimal algorithm 15 

performance is characterized by achieving the maximum value of R2 (0-1) while minimizing 16 

the values of MAE and RMSE.  17 

The 5-fold cross validation (5-fold CV) is a widely used approach for assessing 18 

prediction accuracy and validating machine learning models applied to evaluate their efficacy 19 

[38]. In a 5-fold CV, the data are randomly divided into 5 folds or groups, and the model's 20 

ability is summarized using the sample of model evaluation scores. Moreover, as mentioned 21 

earlier, the dataset was randomly divided into training (80%) and testing (20%) subsets to 22 

ensure robust model development. Additionally, descriptors were standardized to bring 23 
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different units onto a common scale without altering their original units, thus enhancing the 1 

model's performance. Combining these techniques can avoid issues such as overfitting and 2 

underfitting and obtain a sense of how the model will transfer to a different dataset [39]. This 3 

rigorous approach aimed to improve the accuracy of the training data, resulting in more 4 

precise predictions. Fig. 2 compares the performance of the three algorithms, SVM, RF, and 5 

KNN, in the prediction of NHOC at 20% random test data (Fig. 2a) and at 5-fold cross-6 

validation (Fig. 2b). Detailed results can be found in Tables S3 and S4 in the supplementary 7 

materials.  8 

Fig. 2 illustrates the coefficient of determination (R2) of NHOC produced by three 9 

algorithms, SVM, RF, and KNN, all of which are close to 1.0, indicating a high level of 10 

agreement between predicted and observed values. In terms of RMSE values for 20% random 11 

test data (green in Fig. 2a), SVM performs the best NHOC value of 47.237 kJ/mol, followed by 12 

RF with the NHOC value of 97.493 kJ/mol, and KNN with 134.753 kJ/mol. Similarly, the MAE 13 

values (orange in Fig. 2a) are the smallest for SVM at 27.821 kJ/mol again, while RF and KNN 14 

have higher MAE values of 54.058 kJ/mol and 70.472 kJ/mol, respectively. These trends are 15 

consistent in Fig. 2b as well. Overall, the SVM algorithm demonstrates superior performance 16 

compared to RF and KNN, making it the preferred choice for further calculations. The SVM 17 

algorithm is known for its computational efficiency and robust predictive capabilities, 18 

particularly when dealing with limited data availability [40]. 19 
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 1 

Fig. 2. Comparison of the performance parameters R2 (Blue), RMSE (green), and MAE (orange) 2 

of three algorithms, SVM, RF, and KNN prediction of NHOC. (a) 20% random test data, and (b) 3 

5-fold cross-validation.  4 

3.2. Performance of the SVM trained model on NHOC 5 

The SVM algorithm is applied to the training dataset so that the model (i.e., the 6 

coefficients in Equ (1)) is trained and obtained. Table 2 represents the coefficients obtained 7 

from the SVM algorithm used in the machine learning model (see Equ (1) and Table 1).  8 

Table 2: The model (coefficients of Equ (1)) obtained for NHOC property. 9 

Descriptors Coefficients symbol Coefficients Values  
NC C11 509.9569 
NH C12 78.8326 

Num_of Atoms C13 -21.0102 
BalabanJ C14 13.3489 

NumAromaticRings C15 -205.7653 
Kappa3 C16 5.9531 

Intercept  PConst1 0.6981 
 10 

As reported in Table 2, the 6+1 coefficients of the multiple descriptor linear equation 11 

(Equ (1)) are positive except for the total number of atoms (Num_of_Atoms) and the number 12 
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of aromatic rings (NumAromaticRings), which are negative. A positive coefficient suggests 1 

that an increase in the descriptor is associated with an increase in the target property (NHOC), 2 

whereas a negative coefficient suggests that a decrease in the descriptor is associated with 3 

an increase in the target property (NHOC). As a result, if one wishes to enhance the target 4 

property NHOC, the descriptors with positive coefficients in Table 2, including NC, NH, 5 

BalabanJ, and Kappa3, need to be enhanced. For example, the largest coefficient of the 6 

multiple descriptor linear equation (Equ (1)) is NC, the number of carbons, with a coefficient 7 

value as large as 509.9569. Fig. 3 displays the relationship of the NHOC property with the 8 

number of atoms. 9 

 10 

Fig. 3. Impact of positive descriptors on NHOC. (a) NC (Number of carbons), (b) NH (Number 11 

of hydrogens), and (c) Total number of atoms in PCHCs (NC+NH). 12 

However, for AF fuel candidate hydrocarbons, the NC of hydrocarbons can only 13 

increase within a boundary of approximately 6 < NC < 17, although this boundary varies due 14 

to structures and is possible for higher NC hydrocarbons for liquid. If the NC number of a 15 

hydrocarbon compound is up to 17, the maximum number of hydrogens is no more than NH 16 

< NC×2+2 (36) (for n-alkanes, any unsaturated carbons and rings will reduce the number of 17 

hydrogens). As a result, to design novel hydrocarbons with high NHOC, one needs to increase 18 

the structure and topological descriptors, BalabanJ and Kappa3, by designing novel 19 
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hydrocarbon structures. Here, BalabanJ provides essen�al topological insights [41], and 1 

Kappa3 is a third-order molecular connec�vity index that captures crucial informa�on 2 

regarding a molecule's structural topology and connec�vity [41].  3 

In addition, one of these negative coefficients in Table 2, Num_of Atoms, is not 4 

orthogonal, as indicated earlier, which restricts the increase of NC and NH. The other negative 5 

coefficient, NumAromaticRings, is unwanted, as aromatic compounds produced 88% more 6 

soot formation than cycloalkanes due to incomplete combustion [42]. Consequently, the 7 

coefficients reported in Table 2 of the ML model provide rich information for the future 8 

development of the ML model (Equ (1)) with more efficient descriptors and molecular 9 

structures for new candidates.  10 

The accuracy of the SVM-trained model was evaluated by applying it to compute the 11 

NHOC of hydrocarbons in various datasets, including training, testing, cross-validation (5-12 

fold), and combined datasets (training + testing). Fig. 4 illustrates the correlation between the 13 

predicted NHOC values and the measured NHOC values in different datasets, such as the 14 

training dataset 80% of (AFProp(N, M), the cross-validation (5-fold) dataset, the 20% test 15 

dataset of (AFProp(N, M), and the combined dataset (train+test or AFProp(N, M)). The 16 

consistently high R2 values near unity with not less than 0.997 for NHOC indicate the model's 17 

high accuracy in NHOC property prediction. In addition, the SVM algorithm also demonstrates 18 

comparable proficiency in density (ρ) prediction. For more detailed information on the 19 

performance of the SVM model in density (ρ) estimation, please refer to Fig. S1 and S2 in the 20 

Supplementary Materials. These findings highlight the effectiveness of the ML model in 21 

precisely predicting the NHOC and density (ρ) of SAF candidates.  22 
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 The agreement between the predicted and the literature NHOC values of the 1 

compounds is excellent. Most of the compounds are along a straight line except for a small 2 

number of compounds in Fig. 4 (a, b, and d), with minor discrepancies as indicated in the oval. 3 

Specifically, the NHOC of the hydrocarbons in the vicinity of 0.50 - 0.70×104 KJ/mol exhibits 4 

larger discrepancies, which are not seen in the test dataset (Fig. 4c). Further examination of 5 

the datasets reveals that the molecules in training data sets such as 2,3 pentadiene, 2-Methyl-6 

2,4-Hexadiene, 2-Methyl-1,5-Hexadiene, 2,3-Hexadiene, 2,4-dimethylhexane, and 2,3-7 

dimethyl-1-hexene were either with the computed NHOC or large errors in reference data as 8 

highlighted by Albahri [19]. Despite discrepancies from reference data, our SVM-trained 9 

model consistently produces accurate results across various datasets. 10 

  11 

Fig. 4. Predicted versus expected NHOC using the SVM model. (a) Training data (b) Cross-12 

validation (5-fold) data (c) 20% test data (d) All data (Train+Test) 13 

3.3 Screen of liquid hydrocarbons with high NHOC 14 
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The coefficient of the SVM-trained model given in Table 2 is employed to examine the 1 

hydrocarbons in SAFCand(P, N), which shows the structural properties of various 2 

hydrocarbons in Supplementary Fig. S3. The majority of PCHCs in SAFCand(P, Q) align with 3 

currently available hydrotreated esters and fatty acids (HEFA) SAFs, which usually contain C9-4 

C16 carbons [43], and SAFs hydrocarbons produced from biomass or other waste in the range 5 

of C8-C18 [44]. Although squalane (C30H62), a saturated hydrocarbon with an IUPAC name 6 

of 2,6,10,15,19,23-hexamethyltetracosane, is a liquid hydrocarbon with up to 30 carbon 7 

atoms, the majority of liquid hydrocarbons under ambient temperature do not exceed 17 8 

carbon atoms, whereas the number of hydrogens of the potential PCHCs ranges from H6 to 9 

H24, as shown in Fig. 3 (b). Such the numbers of carbons and hydrogens in the compounds in 10 

the SAFCand(P, Q) dataset suggest these hydrocarbons are likely polycyclic with saturated C-11 

C bonds and polycyclic hydrocarbons (PCHCs). Leveraging the structural information will help 12 

to design novel PCHCs with preferred fuel properties, such as high NHOC and high energy 13 

density [45].  Utilizing the SVM-trained model (Equ (1) and Table 2), up to 35 PCHCs are 14 

selected as suitable SAF candidates. Fig. 5 reports the chemical structures of these identified 15 

candidates using Google Collaboratory [34]. Most selected hydrocarbons correspond to 16 

exis�ng compounds, except five PCHCs structures numbered 1 (6377), 2 (250609), 7 (268141), 17 

8 (82630), and 9 (33744) (circled) in Fig. 5, which were designed for HED fuel applica�ons in a 18 

previous study [45]. The remaining 30 polycyclic hydrocarbons (PCHCs) were sourced from the 19 

PubChem database [23]. As shown in Fig. 5, these PCHCs predominantly comprise saturated 20 

cycloalkanes except for ten compounds (28.571%) containing unsaturated C=C bonds. This 21 

observation agrees with the fact that saturated hydrocarbons are often preferred for SAFs 22 

compared to unsaturated ones [4].  The majority (77.143%) of compounds in Fig. 5 exhibit 23 
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pentagon ring configura�on, and nearly half (42.857%) contain triangular rings, consistent 1 

with the outcome reported earlier [45]. 2 

 3 

Fig. 5. Chemical structures of 35 PCHCs obtained from ML screen in the present study. 4 

Structure 12 (exo-Tetrahydrodicyclopentadiene) is the dominant component of aviation fuel 5 

JP-10.  6 

The fuel properties such as gravimetric NHOC (NHOCG), volumetric NHOC (NHOCV), 7 

H/C ratio, and density (ρ) of these liquid PCHCs were obtained using the present ML are 8 

summarised in Table 3. Note that gravimetric NHOC (NHOCG) and density (ρ) are obtained 9 

from ML, and other proper�es/descriptors such as volumetric NHOC (NHOCV), H/C ra�o, and 10 

the total number of rings (Nring) are derived. The total number of rings (Nring) in Table 3 can be 11 

obtained from RDKit [28, 29] or counted manually from the structures. As seen in the table, 12 

almost all these compounds contain either triangular rings or rectangular rings with acute 13 

angles or pentagon rings, indica�ng that they are strained with possibly higher internal energy.  14 
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The PCHCs in the table exhibit required ranges of NHOCG of 42.366-43.277 MJ/kg and NHOCv 1 

of 35.849-52.039 MJ/L. 2 

Table 3. Properties of selected PCHCs for SAF using ML. # 3 

No Hydrocarbon Formula 
CAS No H/C   ρ 

(g/ml) 
NHOCG 

(MJ/Kg) 
NHOCV 

(MJ/L) Nring 

1 6377* C13H18 1.385 1.221 42.620 52.039 5 
2 250609* C12H16 1.333 1.221 42.565 51.972 5 

3 
Pentacyclo 
(6.3.1.0(2,7).0(3,5).0(9,11)) 
dodecane 

C12H16 
82110-70-1 1.333 1.200 42.573 51.087 5 

4 
THTCPD pentacycyclo 
(6.5.1.13,6.02,7.09,13) 
pentadecane 

C15H22 
75172-85-9 1.467 1.192 42.701 50.900 5 

 

5 
Pentacyclo 
(5.4.0.02,6.03,10.05,9) 
undecane 

C11H14 
4421-32-3 1.273 1.165 42.529 49.547 5 

6 
Tetracyclo 
(6.2.1.0(2,7).0(3,5)) 
undecane 

C11H16 
1 777-44-2 1.455 1.093 42.750 46.726 4 

7 268141* C12H18 1.500 1.083 42.780 46.331 4 
8 82630* C13H20 1.538 1.075 42.813 46.024 4 
9 33744* C13H20 1.538 1.058 42.819 45.303 5 

10 Tetracyclo (3.3.1.02,4.06,8) 
nonane 

C9H12 
187-49-5 1.333 1.062 42.646 45.290 4 

11 Dicyclopentadiene C10H12 
77-73-6 1.200 1.018 42.517 43.282 3 

12 Exo-THDCPD (JP-10) C10H16 
2825-82-3 1.600 0.990 42.968 42.539 3 

13 Tricyclo (5.2.0.02,5) 
nonane C9H14 1.555 0.982 42.928 42.156 3 

14 Alpha neoclovene C15H24 
45-45-68-0 1.600 0.972 42.913 41.712 3 

15 Tricyclo (3.2.1.0(2,4)) 
octane 

C9H12 
38310-48-4 1.333 0.970 42.900 41.613 3 

16 Quadricyclane (QC) C7H8 
278-06-8 1.143 0.978 42.492 41.557 5 

17 Spiro (5,6) dodecane C12H22 
181-15-7 1.833 0.957 43.277 41.416 2 

18 Gamma neoclovene C15H24 1.600 0.957 42.913 41.068 3 

19 Tricyclo (3.2.1.02,4) octane C8H12 
13377-46-3 

 
1.500 

 
0.952 42.900 40.841 3 

20 Bicyclopentane C10H18 
1636-39-1 1.800 0.933 43.252 40.354 3 

21 Spiro (4,5) decane C10H18 
176-63-6 1.800 0.931 43.259 40.274 2 

22 Caryophyllene C15H24 1.600 0.928 42.976 39.882 2 
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87-44-5 

23 Prismane C6H6 
650-42-0 1.000 0.941 42.366 39.866 5 

24 4,7,7-Trimethyltricyclo 
(4.1.1.02,4) octane C11H18 1.636 0.927 42.981 39.843 3 

25 Tricyclo (3.2.0.02,4) 
heptane 

C7H10 
28102-61-6 1.429 0.929 42.834 39.793 3 

26 Tricyclo (4.1.0.02,4) 
heptane 

C7H10 
187-26-8 1.429 0.927 42.845 39.717 3 

27 Premnaspirodiene C15H24 
82189-85-3 1.600 0.915 42.970 39.318 2 

28 Valencene C15H24 
3-07-4630 1.600 0.912 42.975 39.193 2 

29 Bicyclobutyl C8H14 
7051-52-7 1.750 0.897 43.214 38.763 2 

30 Norbornadiene C7H8 
16422-76-7 1.143 0.895 42.608 38.134 2 

31 Ethylnorbornene C9H14 
2146-41-0 1.556 0.884 43.005 38.016 2 

32 5-Ethylnorbornane C9H16 
2146-41-0 1.778 0.860 43.254 37.191 2 

33 Benzvalene C6H6 
659-85-8 1.000 0.875 42.404 37.104 4 

34 Camphane C10H18 
464-15-3 1.800 0.851 43.256 36.811 2 

35 Pinane C10H18 
473-55-2 1.800 0.829 43.243 35.849 3 

#The NHOCG of jet fuels is 42.20-43.98 MJ/kg and NHOCv is 32.26-39.64 MJ/L [10]. *Ref [45] 1 

(no CAS numbers available). 2 

There exists a linear positive relationship between NHOCG and the H/C ratio of the 3 

PCHCs. That is, the larger the H/C ratio, the larger the NHOCG. For example, Spiro (5,6) 4 

dodecane (No 17) exhibits the largest NHOCG of 43.277 MJ/Kg among the set of PCHCs with 5 

an H/C ratio of 1.833, whereas Prismane (No 22) displays the smallest NHOCG of 42.366 KJ/kg, 6 

as detailed in Table 3, is characterized by an H/C ratio of 1. A larger H/C ra�o suggests a 7 

preference for saturated hydrocarbons with more C-H bonds, aligning with the fact that 8 

composi�on standards of SAFs are characterized by a higher H/C ra�o [46]. However, the H/C 9 

ra�o should not be overstated, as molecular electronic configura�on and chemical bonding 10 

play an essen�al role in molecular proper�es.  11 
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SAF candidates also need to exhibit balanced properties. The op�mal SAF candidates 1 

in Table 3 are not necessarily those showing the largest NHOCG nor the largest NHOCV, as it is 2 

o�en unlikely that the hydrocarbons with large NHOCG also have large NHOCV or vice versa. 3 

Achieving the op�mal balance between NHOCG and NHOCV requires a holis�c approach 4 

considering specific aircra� requirements, such as opera�onal condi�ons and technological 5 

advancements. The present study employs a high energy density (HED) avia�on fuel JP-10 as 6 

the fuel reference. The density of JP-10 is 0.940 g/ml, with a high NHOCG of 42.200 MJ/kg and 7 

an NHOCV of 39.640 MJ/L [10].  8 

The NHOCG of SAF candidates in Table 3 is above the reference (i.e., the NHOCG of JP-9 

10 42.200 MJ/kg). As a result, it is important to examine the density and NHOCV proper�es of 10 

these SAF candidates. Fig. 6 plots NHOCV and density of these PCHCs, which varies significantly 11 

from as low as 35.849 MJ/L to as high as 52.039 MJ/L due to the density varia�on. For new 12 

SAF candidates with higher density (>0.94 g/ml) and larger NHOCV (39.64 MJ/L), the preferred 13 

PCHCs need to be on the right-hand side of the ver�cal orange dash line and above the 14 

horizontal orange dash line (north-east or phase I). Up to 20 PCHCs in this region in Fig. 6 fit 15 

these criteria and, therefore, can be excellent candidates with superior density and NHOCv 16 

than JP-10 to proceed with the development.  17 
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 1 

Fig. 6. Rela�onship between NHOCV and density of SAF candidates in Table 3. The 20 preferred 2 

candidates are No 1-No 19 and No 23 PCHCs. 3 

The results show that proper�es such as NHOCV and density of PCHCs are more 4 

sensi�ve to the molecular structure of the PCHCs than NHOCG. Further structure analysis of 5 

these PCHCs reveals that the preferred PCHCs (25 out of 35) possess 3-5 rings. NHOCV and 6 

density are likely related to the number of rings in the structures. For example, compound (No 7 

1, C13H18) in Table 3 with 5 rings has the largest NHOCV of 52.039 MJ/L, whereas the majority 8 

of the PCHCs possessing 2 rings are at the botom of the list. JP-10 fuel (dominated by exo-9 

THDCPD C10H16) possesses 3 pentagon rings (See Structure 12 in Fig. 5) with a density of 10 

0.990 g/ml, NHOCG 42.968 MJ/kg, and NHOCV 42.539 MJ/L, likewise THTCPD pentacyclic 11 

(6.5.1.13,6.02,7.09,13) pentadecane (C15H22) possesses 5 pentagon rings analogy to the 12 

structure of JP-10 (See Structure 4 in Fig. 5). The predicted properties for this compound 4 are 13 

density 1.192 g/ml, NHOCG 42.701 MJ/kg, and NHOCV 50.900 MJ/L, which indicate that 14 

THTCPD is a highly promising compound for SAF with a potential as an HED fuel for military 15 

aircraft as well as the substitute for aromatic components in conventional aviation fuels.  16 
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3.4. Structure-property relationship for hydrocarbons in SAF 1 

Understanding the structural characteristics of these PCHCs provides insight for the 2 

QSPR for future design and development of SAFs. Among the 35 PCHCs screened from the ML 3 

model, Structures 1- 11 in Table 3 exhibit superior NHOCv and density properties than the 4 

HED JP-10 aviation fuel. Examination of the characteristics of these hydrocarbons in Table 3 5 

reveals that they share the following features: 6 

1. Compact molecular structure: the obtained PCHCs have a compact molecular structure 7 

with multiple fused rings. This compactness allows for efficient packing of molecules, 8 

leading to higher energy density per unit volume. 9 

2. Ratio of H/C: NHOC of PCHCs is predominantly determined by the ratio of H/C. Selection 10 

and design of new PCHCs for SAFs can be advanced by prioritizing these influential factors. 11 

However, the number of total atoms descriptors, which is not independent, may be 12 

removed for new descriptor development for SAF. 13 

3. Multiple C-C bonds: PCHCs contain several C-C bonds within their fused ring structures. 14 

These bonds store large amounts of energy during combustion reactions, producing high 15 

heat release rates and enhanced energy output. 16 

4. Ring strain: The presence of fused rings in PCHCs often leads to significant ring strain, 17 

which arises from the forced bending or distortion of C-C bonds to accommodate ring 18 

fusion. This strain imparts high reactivity to the molecule, facilitating rapid combustion 19 

and efficient energy release. 20 

5. Saturation vs unsaturation: PCHCs may be both saturated and unsaturated. Saturation 21 

dominates the PCHCs and contributes to the stability and thermal resistance of the 22 

molecule, while unsaturation enhances reactivity and combustion efficiency.  23 
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6. Substituents: Functional groups or substituents attached to the polycyclic ring system can 1 

further modulate the properties of a hydrocarbon, such as polarity, solubility, and 2 

reactivity. For example, alkyl groups may increase the hydrophobicity and stability of the 3 

molecule, while polar functional groups may enhance interactions with other molecules 4 

or surfaces. 5 

7. Steric hindrance: The three-dimensional (3D) arrangement of atoms of the compounds 6 

can introduce steric hindrance, affecting the molecule's interactions with surrounding 7 

molecules, surfaces, or catalysts. This can influence factors such as combustion kinetics, 8 

reaction rates, and product distributions. 9 

4. Conclusions 10 

The study focused on developing a machine learning (ML) model that efficiently 11 

estimates critical fuel properties like net heat of combustion (NHOC) and hydrocarbon 12 

density. Using the supervised support vector machines (SVM) algorithm, models with six and 13 

forty descriptors were trained for NHOC and density, respectively, ensuring accuracy and 14 

reliability. These models were then applied to screen molecules from literature and database, 15 

identifying 35 high-energy density polycyclic hydrocarbon (PCHCs) molecules suitable for 16 

sustainable aviation fuel (SAF) applications. Interestingly, around 70% of these PCHCs 17 

exhibited NHOCv values comparable to or better than JP-10 jet fuel. Notably, the optimal 18 

PCHCs favored multiple rings with C-C single bonds and a high H/C ratio. However, this pre-19 

screening step is just the beginning, as further steps involve developing quantitative 20 

structure-property relationships (QSPR), selecting or developing suitable catalysts for PCHCs 21 

synthesis, blending the PCHCs into aviation fuel, and assessing the impact on fuel properties 22 

according to ASTM specifications. Feasibility studies, techno-economic analyses, and 23 

environmental impact assessments are also crucial aspects of fuel development. 24 
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