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Abstract: The efficacy of neural network potentials (NNPs) critically depends on the quality 
of the configurational datasets used for training. Prior research using empirical potentials has 
shown that well-selected liquid-solid transitional configurations of a metallic system can be 
translated to other metallic systems. This study demonstrates that such validated 
configurations can be relabeled using density functional theory (DFT) calculations, thereby 
enhancing the development of high-fidelity NNPs. Training strategies and sampling 
approaches are efficiently assessed using empirical potentials and subsequently relabeled via 
DFT in a highly parallelized fashion for high-fidelity NNP training. Our results reveal that 
relying solely on energy and force for NNP training is inadequate to prevent overfitting, 
highlighting the necessity of incorporating stress terms into the loss functions. To optimize 
training involving force and stress terms, we propose employing transfer learning to fine-tune 
the weights, ensuring the potential surface is smooth for these quantities composed of energy 
derivatives. This approach markedly improves the accuracy of elastic constants derived from 
simulations in both empirical potential-based NNP and relabeled DFT-based NNP. Overall, 
this study offers significant insights into leveraging empirical potentials to expedite the 
development of reliable and robust NNPs at the DFT level. 
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1. Introduction 
Machine Learning (ML) has significantly propelled advancements across numerous scientific 
and engineering disciplines.1-6 Utilizing ML in computational models for materials screening 
can expedite the development and design of new materials, such as alloys, pharmaceuticals, 
and polymers or proteins.7-9 While numerous hurdles remain in transitioning from 
computational discovery to the actual synthesis and application of these materials, the initial 
discovery phase remains a crucial step.10,11 Recent advances in physics-based computational 
atomistic modeling and simulations with techniques provide a novel avenue for exploring 
hypothetical materials to narrow the design space for materials with desired target 
properties.12,13  
 
Recent advancements in machine learning-based interatomic potentials (MLIPs) have shown 
that they can predict potential energy surfaces (PESs) for atomic configurations with 
accuracy on par with ab initio electronic structure methods yet operate several orders of 
magnitude faster. 14-17 Neural network potentials (NNPs), a subset of MLIPs, employ neural 
networks to model interatomic interaction energies.18  These potentials have rapidly emerged 
due to their flexibility, accuracy, and efficiency.  
 
Reliable and robust NNPs can advance the materials discovery and screening more efficiently. 
However, NNPs, like other MLIPs, usually perform poorly outside their training domain and 
typically fail to predict unseen configurations without appropriate data. The active learning19 
can alleviate the problem by improving the accuracy and exploring new structural data by 
combining NNPs with enhanced sampling methods.20 However, continuously acquiring more 
data and re-training still incurs significant computational costs. Therefore, it is highly 
desirable to efficiently sample configurations cover wide range of chemical and physical 
states such as phases, temperature, pressure, and strain.  

The Multiorder-Multithermal (MOMT) ensemble molecular dynamics, an advanced variant 
of the multicanonical ensemble method,21-23 is capable of sampling potential transition states 
between solid and liquid phases while accurately estimating the density of states.24 However, 
such enhanced sampling typically necessitates extended simulation durations, which are 
impractical for density functional theory (DFT) calculations due to their high computational 
demands. A previous study has shown that configurations sampled using the MOMT 
ensemble can effectively encompass a variety of temperature states and different crystal 
structures through empirical potentials. Furthermore, the study indicates that carefully chosen 
configurations can be applicable to different types of metals.25  

This study investigates the use of empirical potentials (low-fidelity) to develop neural 
network potentials (NNPs) that achieve the accuracy of density functional theory (DFT) 
calculations (high-fidelity). While the concept appears straightforward and feasible, it has not 
yet been successfully demonstrated in previous research. Notably, there are existing methods 
that employ transfer learning to elevate from DFT calculations to more complex 
computational levels.26  However, these approaches often fall short when it comes to 
incorporating more intricate configurations, underlining that DFT calculations alone may not 
provide comprehensive coverage with enhanced sampling. Consequently, there is a pressing 
need to develop a methodology that efficiently derives high-quality configurations for high-
fidelity models using sampling at the empirical potential level. 
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Figure 1 illustrates the comprehensive workflow used to enhance NNPs by combining low-
fidelity data sampling with relabeled high-fidelity data. The process starts with collecting a 
substantial amount of low-fidelity data using empirical potentials, in this study, specifically 
employing the EAM potential for the nickel FCC system.27,28 By leveraging techniques such 
as the MOMT ensemble molecular dynamics, this dataset encompasses a wide spectrum of 
states essential for capturing the diverse behaviors of materials. This extensive data is then 
refined through active learning and data distillation processes to effectively train NNPs. 
These NNPs are thoroughly evaluated for their predictions of energy, force, and stress, 
alongside essential physical properties like elastic constants derived from simulations. 
Following this, selected data is relabeled through high-fidelity DFT calculations to obtain 
DFT-based NNP. In our study, we identified limitations with both DFT and EAM-based 
NNPs in predicting shear modulus from the initial dataset, leading us to design specific new 
sampling strategies aimed at enhancing data crucial for calculating this modulus and 
verifying its effectiveness using EAM. This framework allows for adaptation based on 
different applications and sampling strategies through empirical potentials first, facilitating 
continuous improvements in NNP performance within this iterative cycle. 

 
2. Method 
2.1 Data and Sampling 
2.1.1 Multiorder-Multithermal Ensemble Molecular Dynamics 
The dataset was created in a prior study25 using MOMT ensemble molecular dynamics (MD) 
with the Wang-Landau algorithm. 29   The EAM potential27 for nickel was employed in these 
simulations. MOMT MD simulations were conducted with 32 and 108 nickel atoms, utilizing 
order parameters defined by reciprocal vectors.24  This technique effectively samples both the 
liquid and solid phases of silicon and MgO.23,30 A notable advantage of this method is its 
ability to enhance random-walk sampling of energy and defined order parameters. For a 
comprehensive explanation of the methods, please refer to the previous study.24 The number 
of total data is 20,000 for each 32 and 108 atoms system, sampled through MOMT MD 
simulations. We only utilized the last 2,000 data from 32 atoms system for the initial training 
and fine-tuning. The other 18,000 data from the 32 atoms system and 20,000 data from the 
108 atoms systems are utilized as a test set to evaluate the generalization of EAM-based 
NNPs.  
 
2.1.2 Molecular Dynamics Simulation for Uniaxial and Shear Deformation 
The molecular dynamics simulations were conducted using the LAMMPS package.31 To 
obtain configurations related to uniaxial and shear deformations for calculating elastic 
constants, we specifically designed this sampling approach. We found that the 32-atom 
system provided sufficient coverage of the configurations, so we retained it. Initially, the 
structure was relaxed through energy minimization. We then made only the lx (uniaxial 
component) and xy (shear component) dimensions deformable in the cell. The system was 
further relaxed at 300K and sampled configurations every 100 steps at 300K over 200 ps with 
a 1 fs timestep, resulting in a total of 2,000 configurations. This sampling was designed to 
improve the elastic constants and different from MOMT the section 2.1.1, which covers both 
solid and liquid phases.  
 
2.1.3 Data Distillation through Active Learning 
Uncertainty quantification (UQ) of the NNPs is a crucial aspect of active learning, as it helps 
identify valuable data that are likely to be informative and worth labeling with new 
calculations. In this study, we use an ensemble-based approach,32  employing the same NNP 
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structure but different training and validation sets for each model.25 The energy predictions 
from each model are used to estimate the standard deviation, serving as a measure of UQ. 
This process was only applied to the 2,000 configurations sampled from the new sampling 
design described in 2.1.2. Based on the UQ from five models trained through the MOMT data 
set (Section 2.1.1), we trained the NNP with five models. For each model, the atomic energy 
predictions were obtained, and the standard deviation of these predictions was used as the UQ 
measure. Configurations with atomic UQ values greater than μUQ + 3σUQ were selected for 
further training. About 500 configurations were selected based on the defined criterion.  
 
2.1.4 Density Functional Theory 
The selected configurations were relabeled through DFT calculations using Quantum 
Espresso (QE).33,34 The pseudopotentials library was employed,35 utilizing the projector 
augmented-wave (PAW) method36 with the Perdew-Burke-Ernzerhof (PBE) functional.37 An 
energy cutoff of 50 Ry was set for the plane waves. The Brillouin zone was sampled using 
3x3x3 Monkhorst-Pack grids for the 32-atom system. The convergence threshold for self-
consistency was set to 1e-8. Gaussian smearing was applied with a Gaussian spreading of 
0.022 Ry. We utilized ASE library38 to collect the energy, forces, and stress term from QE 
outputs, and the smearing contribution in the total energy from the output was subtracted.  
 
 
2.2 Neural Network Potential 
2.2.1 Neural Network Structure 
We employed the ANI-type neural network potential (NNP) using the TorchANI library.39 
The neural network structure used in this study is detailed in Table 1. We applied the 
Gaussian error linear unit (GELU) activation function, as it has been shown to improve the 
stress-strain behavior of graphene. The atomic environment vectors (AEV), also known as 
symmetry functions,40  capture the atomic environment features for the neural network input. 
We adopted the AEV parameters from the ANI-2x model,41 with the exception of using a 
longer radius cutoff of 6.9 Å and additional Gaussian centers.  

For the initial training, 80% of the data was used to train the model, while 20% was reserved 
for validation, with a mini-batch size of 64. The data was shuffled during loading. 

The loss function is defined as follows: 
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   (3) 
,where E, F, V, and σ are energy, forces, volume, and stress, respectively. α , β, and γ control 
the contributions of the defined loss from energy, force, and stress. 
 
2.2.2 Initial Training 
The maximum number of epochs was set to 400, and we selected the best parameters based 
on the root mean square error (RMSE) of energy in the validation set during training. For the 
initial training, the hyperparameters α, β, and γ were set to 1.0, 0.1, and 0.025, respectively. 
When training the model without the stress term, γ was set to zero. 

The Adam optimizer, with weight decay for the weights42,43 (decays of 1e-5 and 1e-6 for the 
two hidden layers, respectively, and default values for others), was used alongside stochastic 
gradient descent (SGD) 46 for the biases, with a learning rate of 1e-4. The weights were 
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initialized using Kaiming initialization47 with a normal distribution, and the initial values of 
the biases were set to zero. 

A learning rate scheduler ("ReduceLROnPlateau" in PyTorch) was applied for both Adam 
and SGD optimizers, with a factor of 0.5, patience of 100, and a threshold of 0. However, the 
learning rate did not change significantly during the 400 epochs. 

2.2.3 Transfer Learning for Fine-Tuning 
The trained model can be further refined using a smaller learning rate and transfer learning, 
which can improve the accuracy of energy, force, and stress terms. Although it is possible to 
design training with a much larger number of epochs and control the contribution weights 
using an optimization scheduler, we propose transfer learning for the fine-tuning process. 
After the initial training described in Section 2.2.2, the model was further trained with the 
input and output layer weights and biases fixed. 

In this phase, α, β, and γ were adjusted to 0.2, 0.4, and 0.4, respectively. When the stress term 
was excluded from the loss function, γ was set to zero and β to 0.8. The goal of these 
adjustments was to increase the contribution from the derivatives of energy (forces and 
stress) to fine-tune the model while fixing feature extraction from the symmetry function and 
the output layer to avoid overfitting to the derivative terms. The scheduler plays a more 
crucial role in this stage than in the initial training. The learning rates for the inner layers 
were set to 1e-4 for weights and 1e-5 for biases. A learning rate scheduler with a factor of 0.8, 
patience of 50, and a threshold of 0 was used for 1,000 epochs and select the best model 
based on the RMSE of the stress term.  

We found that this approach maintained generalization, even when using a combined training 
and validation set from the initial training phase as the training and validation set during this 
transfer learning. This method is particularly effective with smaller datasets because it 
leverages the initial model's generalization capabilities while refining its accuracy with 
additional focused training. By keeping the feature extraction layers fixed, the model avoids 
overfitting to the data, ensuring robust performance across different configurations. The 
validation of the training process was conducted using the entire dataset, including 
configurations of 32 atoms and 108 atoms obtained from MOMT ensemble MD with the 
EAM potential. 
 
 
2.3 Elastic Constants 
To evaluate the NNPs, we performed structural optimization and computed the elastic 
constants using LAMMPS. For both the EAM and NNP, we prepared a 32-atom system and 
performed energy minimization. To avoid starting from a pre-relaxed structure, we expanded 
the FCC structure by 2-3%, resulting in more than 100 steps for structural optimization. 
Based on the obtained lattice parameters, the elastic constants were then measured assuming 
orthotropic symmetry, calculating C11, C22, C33, C12, C13, C23, C44, C55, and C66.44  

For the DFT calculations, we prepared an 8-atom system with increased K-sampling to 
6x6x6. To ensure consistency in calculating elastic constants, we used a previously developed 
interface20 between Python and LAMMPS to employ Quantum Espresso (QE) through the 
ASE library, allowing us to compare the elastic constants calculated with LAMMPS using the 
same process.45 The deformation strain was set to ±1.0%. 
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We report only C11(which is similar to C22 and C33), C12 (similar to C13 and C23), and C44 
(similar to C55 and C66), as other components were close to zero. The similarity of some 
elastic constant values is due to the inherent symmetry in the crystal structure, leading to 
equivalent elastic responses along different directions. 

 

3. Results and Discussions 
 
We selected the last 2,000 data points from a full dataset of 20,000 configurations, which 
were sampled using empirical potentials and the Multiorder-Multithermal (MOMT) ensemble 
molecular dynamics. The MOMT ensemble MD facilitates enhanced random-walk sampling 
across an expanded order-enthalpy space, increasing in diversity with continued sampling. 
Notably, the previous research initiated data distillation through active learning using the 
initial 2,000 data points.25 In contrast, our findings indicate that the last 2,000 data points 
sampled offer superior performance than the initial 2,000, highlighting the effectiveness of 
late-stage data in capturing the various configurations of the system. 

Therefore, we trained the selected 2,000 configurational data points to establish our initial 
model, integrating the stress term in the loss function to improve the accuracy and robustness 
of our predictions (refer to Methods section for details). Utilizing an ensemble approach, we 
developed five distinct models using varied combinations of training and validation sets. We 
then selected the best-performing model based on its force accuracy, a crucial indicator for 
mitigating overfitting, as highlighted in previous studies.46 The initial results, depicted in 
Figure 2a, demonstrated that the predictions for energy, force, and stress were closely aligned 
with the reference data, affirming that the NNPs adeptly captured the essential physics of the 
metallic systems. However, despite these promising indications, the subsequent calculation of 
elastic constants from the trained NNPs did not yield satisfactory accuracy. 

To address this, we implemented a transfer learning strategy aimed at fine-tuning the model 
to emphasize force and stress terms more effectively, while the weights of the input and 
output layers were fixed, focusing the training efforts on the hidden layers (refer to Methods 
for detailed setup). In this phase, the contributions of force and stress errors in the loss 
function were increased to 0.4 each from 0.1, and the contribution from energy was reduced 
to 0.2 from 0.9. We initialized the weights using those from the previously trained model, and 
the starting learning rate was set to be ten times smaller than that used in the initial training. 
During this process, we continuously adjusted the learning rate based on a predefined 
schedule, selecting the best model based on its performance on stress-related terms. This 
approach was designed to refine the estimation of the potential surface, enhancing its 
accuracy and smoothness by strategically adjusting learning rates and incorporating 
derivative information, such as force and stress, during the fine-tuning process. 

Figure 2b demonstrates marked improvements in model performance with reduced MAE 
errors of all energy, force, and stress. During the fine-tuning phase, we maintained the 
hypothesis that generalization would remain robust, even when utilizing the full dataset, 
because the input and output layers were fixed. However, this assumption requires further 
verification. Here, the benefits of using a low-fidelity model, specifically the EAM potential, 
become evident. It's important to note that our 2,000 data points represent only 10% of the 
total sampled data. We can further validate this hypothesis using the remaining 90% of the 
data. If the outcomes are consistent, it would suggest that the designed training/finetuning 
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processes are sufficiently robust with just 2,000 data points, based on the EAM results. This 
implies that using re-labeled data from DFT calculations on these points could be considered 
reliable. 

Figure 3 illustrates the performance of the trained NNP using re-labeled data from DFT 
calculations. We observed a similar improvement in accuracy through the fine-tuning process. 
While the MAEs are slightly higher compared to those from EAM, this outcome is expected; 
EAM values are derived from analytic potentials within a specified cutoff, whereas DFT 
calculations account for electronic density effects over distances extending beyond these 
cutoffs. Nonetheless, the close alignment in the results confirms that the radius cutoff 
approximation remains effective in capturing the behavior of metallic systems. 
 
Based on these results, we aimed to evaluate the impact of including stress terms in the loss 
functions. To do this, we replicated the training and fine-tuning processes, this time omitting 
the stress term from the loss function. In compensation, we increased the weight of the force 
contribution to 0.9 from 0.1 and decreased the energy contribution from 1.0 to 0.1, selecting 
the model that performed best in terms of force error. The results, displayed in Figure 4 after 
fine-tuning, reveal a significant increase in the MAE of stress terms—approximately 2 to 3 
times larger—while force errors are substantially reduced. This outcome underscores that 
excluding stress terms can lead to overfitting of the force terms, which is likely a primary 
cause of instability in ML-based potentials during MD simulations, as was clearly 
demonstrated in a previous study.47 
 
We conducted a detailed comparison of the lattice parameters, elastic constants, and 
mechanical properties for models trained using both EAM and DFT, as presented in Tables 2 
and 3. Both models displayed similar trends; however, the accuracy of the shear modulus (G) 
was notably poorer compared to other elastic constants. Additionally, an evaluation of the 
NNPEAM model using the remaining 90% of the data, as shown in Figure 5a, revealed clear 
issues with some data points of the stress term near zero. This observation motivated an 
additional design of our sampling strategy, which is depicted in Figure 5b.  
 
Since our MOMT sampling was limited to cubic cells at high temperatures—the reference 
temperature being 2000K, though the MOMT ensemble is capable of sampling across a wider 
temperature range—we opted to fix the cell at the equilibrium lattice constant and conducted 
conventional MD sampling at a lower temperature (Methods). During this sampling, we 
permitted deformations only along the lx and xz axes. Following this, we collected 2,000 data 
points from this new additional sampling using EAM. From these, we then selected 
approximately 500 configurations through data distillation, employing a high-uncertainty 
quantification strategy that utilized the atomic energy predictions from five previously trained 
models.25 Additionally, only these 500 configurations were re-labeled using DFT calculations. 
 
Figure 5b illustrates the performance of the initially fine-tuned models using the additional 
data. While the energy and force predictions appear satisfactory, the stress predictions for 
both EAM and DFT data are inadequate. This discrepancy further underscores that the 
accuracy of energy and force alone is not enough to uncover the limitations of the models. 
Consequently, we incorporated these 500 new configurations into the dataset and 
retrained/fine-tuned the models using both EAM and DFT data. The enhanced performance is 
depicted in Figure 6. Here, Data1 represents the initial dataset, while Data2 consists of the 
additional data. The previously observed anomalies in the stress term with Data2 have been 
completely resolved, and the overall accuracy for Data1 has also shown improvement.  
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The elastic constants for the models have also shown significant improvement (Tables 4 and 
5), validating our hypothesis regarding the models' limitations and demonstrating the 
effectiveness of the newly designed sampling approach (Also see Tables S1-S4 to compare). 
It is important to note that this sampling strategy was not our initial attempt; we tested other 
sampling and ultimately selected the most effective one based on the EAM potentials. Once it 
met our objectives, we then re-labeled these selected configurations through DFT calculations. 
 
Finally, we confirmed the generalization of the trained NNP based on EAM by evaluating it 
with the other 90% of the MOMT-sampled configurations, as shown in Figure 7a. Compared 
to the earlier discrepancies observed in the stress term in Figure 4a, the mismatches near the 
lower stress values have been resolved. One significant advantage of using empirical 
potentials is their computational speed. We conducted tests using a MOMT-sampled 
configuration with 108 atoms for the nickel FCC structure under very similar conditions. The 
performance of the model was assessed using data that was never included in the training 
phase. As depicted in Figure 7b, the performance was commendable, confirming that the 
models are well-generalized. 
 
The results effectively showcase how sampled and selected configurations using empirical 
potentials can be directly utilized for DFT calculations, leading to significant improvements 
in NNPs derived from both EAM and DFT data. The methodology applied here, particularly 
with the FCC nickel crystal, would be effective for examining the transition temperatures 
between liquid and crystal phases and assessing elastic properties. However, this model may 
not adequately capture phenomena such as dislocation dynamics, plastic deformation, or 
mechanical failure, as configurations pertinent to these processes might be excluded from the 
training set. Typically, these properties demand larger system sizes and extended timescales.  
 
Nonetheless, employing EAM allows for the development of efficient and straightforward 
methods to sample such configurations for NNP training, as demonstrated in this study. 
Additionally, like other empirical potentials, EAM calculates atomic energy directly, 
providing a basis for comparing trained atomic energies. Instead of relying solely on 
uncertainty quantification, the difference in atomic energy could serve as a more effective 
indicator for selecting new configurations. While this study focuses on a single metal type, 
the approach has the potential to expedite the development of NNPs for more complex 
systems, including binary and ternary alloys as well as metal oxide-type materials. 
 
 
4. Conclusion 
In summary, this study has demonstrated the robustness and versatility of neural network 
potentials (NNPs) trained on empirical potential data and further refined through density 
functional theory (DFT) calculations. Our findings underscore the critical importance of 
including stress terms in the loss function to avoid overfitting and enhance model stability 
during molecular dynamics simulations. Through strategic data distillation and fine-tuning 
processes, we significantly improved the predictive accuracy of NNPs, particularly in 
capturing the mechanical properties of metallic systems, as evidenced by the elastic constants. 
The successful application of these models to a large percentage of additional MOMT-
sampled data further validated the generalization capability of our approach. By optimizing 
sampling strategies and leveraging both low- and high-fidelity data, we have developed 
NNPs that not only meet computational efficiency demands but also maintain high accuracy, 
making them valuable tools for advancing materials science research and development. 
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Table 1. The neural network structures for Ni in this study used the Gaussian error linear unit (GELU) 
activation function48 to introduce non-linearity between the AEV-1st, 1st-2nd, and 2nd-3rd layers. 
The radius cutoff for the radial part was set to 6.9 Å. 

 

Table 2. Elastic constants and the lattice parameter of FCC obtained from the initial NNPEAM model.  

 

Table 3. Elastic constants and the lattice parameter of FCC obtained from the initial NNPDFT model. 

 
Table 4. Elastic constants and the lattice parameter of FCC obtained from the final NNPEAM model. 

 

Table 5. Elastic constants and the lattice parameter of FCC obtained from the final NNPDFT model. 

 

 

NN Model 1st 2nd 3rd Output 
(Energy) 

Ni 224 192 160 1 

 la (Å) C11 (GPa) C12 (GPa) C44 (GPa) K (GPa) G (GPa) ν 

EAM 3.516 214.4 158.9 124.9 177.4 27.7 0.426 

NNPEAM 3.511 219.2 202.6 133.3 208.1 8.3 0.48 

Error (%) -0.14 2.24 27.50 6.73 17.31 -70.04 12.68 

 la (Å) C11 (GPa) C12 (GPa) C44 (GPa) K (GPa) G (GPa) ν 

DFT 3.511 284.1 188.3 131.2 220.4 48.0 0.399 

NNPDFT 3.522 250.8 193.7 129.4 212.8 28.5 0.436 

Error (%) 0.31 -11.72 2.87 -1.37 -3.45 -40.63 9.27 

 la (Å) C11 (GPa) C12 (GPa) C44 (GPa) K (GPa) G (GPa) ν 

EAM 3.516 214.4 158.9 124.9 177.4 27.7 0.426 

NNPEAM 3.515 192.9 154.3 122.1 167.2 19.3 0.444 

Error (%) -0.03 -10.03 -2.89 -2.24 -5.75 -30.32 4.23 

 la (Å) C11 (GPa) C12 (GPa) C44 (GPa) K (GPa) G (GPa) ν 

DFT 3.511 284.1 188.3 131.2 220.4 48.0 0.399 

NNPDFT 3.512 280.4 197.6 130.6 225.2 41.4 0.413 

Error (%) 0.03 -1.30 4.89 -0.46 2.18 -13.75 3.51 
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Figure 1. Workflow for enhancing neural network potentials (NNPs) through data processing and 
training. The process begins with low-fidelity, large-quantity data from empirical potentials, which 
undergoes data distillation through active learning to refine and enhance its utility. This distilled data 
is then used for training NNPs, followed by an evaluation against high-fidelity DFT calculations. The 
workflow is based on the cycle of using targeted application scenarios for new sampling design, 
feeding into the training process, and validation to ensure the accuracy and robustness of the NNPs. 
The integration of low and high-fidelity data ensures a comprehensive approach to reliable and 
efficient development of high-fidelity NNPs for complex metallic systems. 
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Figure 2. Comparative evaluation of NNPs trained by EAM potentials before and after transfer 
learning (fine-tuning). (a) presents the initial training results of NNPs, with scatter plots comparing 
the predicted energy per atom, forces, and stress against empirical potential estimates. Each plot 
includes mean absolute error (MAE) metrics for training and validation sets. See Table S1 for lattice 
parameters and elastic constants. (b) illustrates the outcomes after fine-tuning through transfer 
learning, where increased contributions of forces and stress in the loss function with a learning rate 
schedule, significantly enhance model performance, as shown by reduced MAEs and improved 
alignment in the total data set. These graphs underscore the effectiveness of transfer learning in 
refining the predictive capabilities of NNPs. See Table 2 for lattice parameters and elastic constants. 
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Figure 3. Validation of NNPs using DFT data before and after transfer learning. (a) displays the 
initial comparisons between DFT-calculated and NNP-predicted values for energy per atom, forces, 
and stress. See Table S2 for lattice parameters and elastic constants. (b) shows the results after the 
transfer learning (fine-tuning), applying the same strategy of increased contributions of forces and 
stress in the loss function, along with a learning rate schedule. This approach demonstrates consistent 
performance improvements, indicated by reduced MAEs and better alignment of the predicted values 
with high-fidelity DFT data, affirming the efficacy of transfer learning. See Table 3 for lattice 
parameters and elastic constants. 
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Figure 4. Performance evaluation of NNPs excluding the stress terms in the loss function during the 
initial training and transfer learning. (a) presents results from NNPs trained and fine-tuned without 
stress terms, using EAM potential for energy per atom, forces, and stress. (b) displays the 
corresponding results using DFT data, following the same training process. Both panels demonstrate 
the impact of excluding stress terms, with notably higher MAEs, particularly in stress predictions, 
illustrating that including stress terms in the loss function is crucial to prevent overfitting and ensure 
the accuracy and generalizability of NNPs. See Tables S3 and S4 for lattice parameters and elastic 
constants from the models. 
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Figure 5. (a) Performance evaluation utilizes all available data (20,000 points) from the EAM 
potential, plotting the NNPs' predicted energy per atom, forces, and stress against EAM-calculated 
values. Notably, stress predictions show deviations, especially at lower values, indicating potential 
issues with model accuracy in these regions as confirmed by suboptimal elasticity calculations in 
Tables 2. (b) A new sampling design focused on shear and uniaxial deformation from energy-
minimized structures, aimed at enhancing model training in these specific scenarios. The results 
reveal persistent challenges in accurately representing stress terms in both EAM and DFT frameworks, 
highlighting the need for further model optimization to address discrepancies in stress prediction 
across newly sampled configurations. 
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Figure 6. (a) compares NNPs' predictions against EAM data, showing two distinct datasets: Data1, 
the initial model dataset consisting of ~2000 points, and Data2, an additional ~500 points from newly 
designed sampling scenarios. (b) demonstrates a similar analysis using DFT data, where the inclusion 
of the new dataset (Data2) results in significant improvements in model performance, particularly 
evident in the reduced MAEs for Data2 from 521MPa (Figure 5) to 16.1MPa. This enhanced 
performance correlates with improved elasticity properties, detailed in Tables 4 and 5, illustrating the 
efficacy of integrating specifically designed samples through initial training and subsequent processes. 
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Figure 7. (a) illustrates the performance of the final NNP model trained using EAM potentials on the 
full dataset (20,000 points) comprising full 32 atoms. The model demonstrates strong predictive 
accuracy for energy, force, and stress, as indicated by low MAEs across all metrics. Also, a limitation 
observed in Figure 5a was resolved (b) extends the evaluation to a larger system of 108 atoms (never 
included in the training), showcasing that the NNP maintains high accuracy in predicting physical 
properties. Although these data were not derived from DFT, the consistency in performance across 
different system sizes suggests that similar transferability can be expected when applying the model to 
DFT-based systems. 
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Table S1. Elastic constants and the lattice parameter of FCC obtained from the initial NNPEAM model 
without fine-tuning. 

 

 

Table S2. Elastic constants and the lattice parameter of FCC obtained from the initial NNPDFT model 
without fine-tuning. 

 

 

 

 

 

 

Table S3. Elastic constants and the lattice parameter of FCC obtained from the initial NNPEAM model 
without stress contribution in the loss function after fine-tuning. 

 

 

Table S4. Elastic constants and the lattice parameter of FCC obtained from the initial NNPDFT model 
without stress contribution in the loss function after fine-tuning. 

 

 la (Å) C11 (GPa) C12 (GPa) C44 (GPa) K (GPa) G (GPa) ν 

EAM 3.516 214.4 158.9 124.9 177.4 27.7 0.426 

NNPEAM 3.534 184.7 129.4 126.1 147.8 27.7 0.412 

Error (%) 0.51 -13.85 18.57 0.96 -16.69 0.0 -3.29 

 la (Å) C11 (GPa) C12 (GPa) C44 (GPa) K (GPa) G (GPa) ν 

DFT 3.511 284.1 188.3 131.2 220.4 48.0 0.399 

NNPDFT 3.536 230.3 181.4 109.9 197.7 24.4 0.441 

Error (%) 0.71 -18.94 -3.66 -16.31 -10.30 -49.19 10.53 

 la (Å) C11 (GPa) C12 (GPa) C44 (GPa) K (GPa) G (GPa) ν 

EAM 3.516 214.4 158.9 124.9 177.4 27.7 0.426 

NNPEAM 3.527 204.3 189.6 124.4 194.5 7.34 0.481 

Error (%) 0.31 -4.71 19.32 -0.4 9.64 -73.5 12.91 

 la (Å) C11 (GPa) C12 (GPa) C44 (GPa) K (GPa) G (GPa) ν 

DFT 3.511 284.1 188.3 131.2 220.4 48.0 0.399 

NNPDFT 3.526 283.7 219.4 118.5 240.9 32.1 0.436 

Error (%) 0.43 -0.14 16.52 -9.68 9.3 -33.13 9.27 
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