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Abstract 

Copper-based electrocatalysts, which hold great promise in selectively reducing CO2 into 

multicarbon products, have attracted a lot of recent interest, both experimentally and 

theoretically. While many studies have suggested a strong dependence of catalytic selectivity 

on the concentration of the *CO reaction intermediate on Cu surface, it remains challenging 

for a direct experimental probe of the CO coverage. This necessitates a reliable computational 

method that can accurately establish the theoretical coverage-dependent phase diagram of CO 

adsorbates on the catalyst. Here we propose a scheme composed of density functional theory 

(DFT) calculations, machine-learning force fields (MLFF) and graph neural networks (GNN) 

as a solution. This method enables a fast screening of 7 million adsorption configurations based 

on a small set of DFT data, with a balance between accuracy and efficiency tuned by the 

combinatorial use of MLFF and GNN models. We have investigated 8 different Cu facets, and 

discovered that the high-index facets such as (310), (210) and (322) exhibit a much higher CO 

coverage than the low-index counterparts such as (111), leading to an increased opportunity for 

C-C coupling for the former. Our results can provide a new perspective for the understanding 

of the fundamental role of CO coverage on Cu surface for electrochemical CO2 reduction. 
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Introduction 

In the realms of surface science and catalysis, the interactions between surfaces and 
adsorbates are foundational for understanding catalytic processes and crucial for catalyst 
design and discovery.1-6 With the rapid advancement of computational and theoretical 
chemistry, particularly the extensive application of Density Functional Theory (DFT), 
researchers can now calculate the adsorption energy of adsorbates on surfaces with 
unprecedented accuracy, playing an indispensable role in catalyzing the design and innovation 
process.6-12  

The study of lateral interactions among adsorbates and their impact on catalytic activity, 
selectivity, and surface stability, such as in CO2RR, NORR, COOR, and the Fischer-Tropsch 
synthesis, has gained increasing attention.13-36 These interactions, especially those modulated 
by varying adsorbate coverage, are vital for precisely controlling the catalytic reaction process, 
making a deep understanding of lateral adsorbate interactions and coverage effects crucial for 
optimizing catalyst design and enhancing performance. However, exhaustively calculating 
coverage-dependent adsorption energies using DFT alone often proves impractical due to the 
combinatorial growth of adsorption configuration spaces with coverage and site types, and the 
substantial computational cost of a comprehensive analysis. Various methods have been 
proposed to address this, including cluster expansion, multi-order lateral interaction models, 
graph theory, and machine learning approaches.5, 35-51 The combination of graph theory and 
machine learning has been regarded as one of the most effective means to analyze coverage-
dependent adsorption energies: graph theory tools for automating the enumeration of vast 
adsorption configurations, and machine learning models for predicting adsorption energies 
across the entire configuration space based on a limited DFT dataset.44, 47-48, 52 However, graph-
based enumeration algorithms encounter significant computational bottlenecks at the stage of 
isomorphism comparison of configurations, as graph isomorphism comparison is an extremely 
time-consuming NP problem, exponentially growing with the number of atoms in adsorption 
configurations.53-54 Since the differences between adsorption configurations mainly depend on 
the occupation of different adsorbate sites, symmetry-based methods often offer a more 
efficient evaluation of adsorption configurations with multiple site occupations. Machine 
learning approaches, especially deep learning methods based on neural networks, have been 
primarily divided into two strategies for accelerating the prediction of adsorption energies in 
vast configuration spaces: (1) direct prediction of stable state adsorption energies from initial 
configuration guesses using neural networks (NNs), and (2) acceleration of the geometry 
optimization process using machine learning potentials (MLPs).35-36, 47-48, 52 While neural 
network methods are highly efficient in prediction with negligible computational cost, their 
accuracy depends not only on the model quality but also on the size of the training dataset.55 
In contrast, MLP methods require significantly less DFT computational data for training and 
can obtain both stable configurations and more accurate adsorption energy predictions. 
However, the optimization time needed for MLP methods far exceeds the prediction time of 
NN methods, though it still represents a substantial saving in computational cost compared to 
direct DFT calculations. Each strategy has its strengths, and they contribute from different 
perspectives to the exploration of coverage-dependent adsorption energies. Yet, all these 
methods can only consider the optimization of a limited number of configurations, facing 
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insurmountable computational burdens when confronted with potentially hundreds of 
thousands or millions of configurations. 

In this work, we have developed a "structure enumeration + MLP + NNs" approach for 
efficiently exploring adsorbate-adsorbate interactions, enabling the rapid exploration of nearly 
ten million configurations. By rapidly enumerating and deduplicating adsorption 
configurations through a "geometry + graph theory + symmetry" approach, we generated an 
approximately 7 million configuration guess space. Then, using a designated sampling method, 
we selected a very small set of configurations (~1592) for DFT structural optimization to obtain 
optimization trajectories for training a machine learning force field (MLFF) based on Deep 
Potential Molecular Dynamics (DPMD). Subsequently, the MLFF was used to perform 
structural optimizations on an expanded sampling space (~186,000) to obtain corresponding 
stable adsorption energies. Finally, we trained a graph embedding network model (GEN) using 
the configuration-energy data, which considered non-bonded adsorbate interactions in feature 
construction and efficiently predicted energies across the entire target configuration space. 
Applied to the Cu-CO system, our method achieved results qualitatively consistent with 
experiments at 3 orders of magnitude lower computational cost than pure DFT calculations: 
the adsorption strength of CO on Cu surfaces exhibited a minimal change in energy at first, 
followed by a significant increase with coverage; high-index Cu surfaces often exhibited higher 
catalytic activity due to more low-coordination Cu sites. These findings undoubtedly 
demonstrate the effectiveness and efficiency of our method and its power in exploring vast 
configuration spaces. 

Results and Discussion 

At high coverage, the configurations of adsorption not only experience an explosive 
increase in number due to the enumerated surfaces and the geometric structures and binding 
modes of the adsorbates but also become almost unpredictable due to the complex interactions 
between the adsorbates. This signifies that the enumeration methods relying solely on expert 
experience fail under these circumstances.42 By integrating expert knowledge with deep 
learning technologies, a programmable scalable agent model can provide interpretable and 
reliable analysis and predictions for the vast configuration space. 

Workflow 

Our study focuses on the adsorption configurations of CO on eight different Cu surfaces 
at varying coverage levels. As illustrated in Figure 1a, taking the 100 surface as an example, as 
the CO coverage increases, the distance between the adsorbed CO molecules gradually 
decreases, along with an increase in the interaction between the adsorbates. The number of 
configurations shows a trend of initially increasing and then decreasing (Table S4). Ultimately, 
nearly 7 million adsorption configurations are generated for the eight Cu surfaces (Table S5), 
representing an extremely large configuration space.  

We propose a simple and efficient framework capable of rapidly and accurately predicting 
the CO adsorption energies of all stable configurations. The workflow is illustrated in Figure 
1b, which depicts our comprehensive computational exploration of the configuration space. 
Initially, the entire configuration space is sampled randomly twice to obtain the first and second 
sampling spaces, respectively, with both sampling steps covering all surface coverage levels. 
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Subsequently, configurations from the more concise second sampling space undergo DFT 
structural optimization to obtain the CO adsorption energies of stable configurations, along 
with the trajectory of configuration optimization and the corresponding energies. Using these 
trajectories and energies as a dataset, a machine learning force field based on the DPMD deep 
potential architecture is trained, which effectively fits the interaction between adsorbates at 
different coverages.56 The fitted force field is then used to optimize the structures of the larger 
first sampling space to obtain the CO adsorption energies of stable configurations. The 
resulting configuration-adsorption energy data can train a well-performing graph embedding 
network model, capable of accurately predicting the stable CO energies of approximately 7 
million adsorption configurations in the target configuration space, despite using very simple 
feature combinations. 

 

 

Figure1: Configuration Space and Workflow for CO Adsorption Energy Prediction on Cu Surfaces. 

(a) Schematic representation of CO adsorption configurations on Cu(100), Cu(110), and Cu(111) surfaces 

illustrating different CO coverages. The configurations exhibit varying distances between adsorbed CO 

molecules in relation to the coverage density, culminating in a broad spectrum of nearly 7 million 

configurations across eight Cu surfaces, as indicated by the expansive configuration space. (b) Depiction of 

the workflow: starting with a random selection of 186,000 potential configurations (Sample space 1), it 

narrows down to 1,592 configurations (Sample space 2) for DFT optimization. These optimized 

configurations train a DPMD-based ML force field, which is then used to predict adsorption energies for the 

initial sample space, allowing the graph embedding network to estimate stable-state energies for the 

extensive configuration space. 

 
Compared to the total configurational space, the computational framework requires a 

significantly lower volume of initial data from DFT calculations, differing by three orders of 
magnitude, even though DFT calculations are generally considered to be highly resource-
intensive. By introducing a machine-learned force field (MLFF) model with DFT accuracy, we 
have substantially enriched the training dataset for the adsorption energy prediction model. 
This approach cleverly circumvents the costly active learning process while enabling the 
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assessment and exploration of the complete, complex configurational space in a cost-
measurable manner—a capability not present in previous studies.5, 35-36, 45, 47 Moreover, this 
scalable framework for high-coverage configurational exploration can be flexibly defined and 
upgraded according to the user's needs. 
 

Independent Adsorption Configuration Enumeration 

To acquire the global stable structures of adsorption configurations, researchers typically 
enumerate and construct sets of configuration guesses that closely approximate local stable 
structures based on prior knowledge before DFT geometric optimization.42-44, 48 These initial 
guesses often share similar or identical atomic bonding relationships with their corresponding 
local stable structures. After geometric optimization, the local stable structures with the lowest 
energy are usually considered the global stable structures of the adsorption configuration; in 
other words, the global stable structures are a subset of the collection of local stable structures. 
However, this manual enumeration method for guessing adsorption configurations is not 
suitable for the high-coverage adsorption configuration systems in our study, due to the 
richness and combinatory nature of adsorbable sites on the modeling surface.42, 48 In this case, 
we must introduce an automated enumeration process for configuration guesses based on prior 
experience and conditional constraints. Since our research focuses on the impact of interactions 
between adsorbates on CO adsorption energy, the variability of adsorption sites is a key 
consideration in our enumeration of adsorption configuration guesses. Additionally, the global 
stable structures we focus on do not involve complex changes such as interface reconstruction 
or adsorbate desorption, at most only changes in the CO adsorption sites on the surface 
compared to the initial configuration guesses after geometric optimization, although studies 
have shown that high coverage of adsorbates can trigger surface reconstruction and 
significantly change the surface's catalytic properties.34-36 For potential adsorbate desorption 
issues after geometric optimization, we can avoid them by introducing an empirical distance 
threshold in the initial guess modeling before optimization, effectively reducing the 
computational cost of unreasonable configuration guesses. In our studied systems, the 
differences in adsorption energy between adsorption configurations primarily depend on the 
adsorption sites, so enumerating the combination space of adsorption sites on the surface 
conveniently yields our target configuration guess space, which can be quickly achieved for a 
finite-sized slab.  
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Figure 2: Enumeration of unique CO Adsorption Configurations. A three-step method for defining 

unique CO adsorption configurations on Cu surfaces. Initially, Step 1 identifies 68 distinct adsorption sites 

using graph theory to capture surface atom arrangements. Step 2 demonstrates the systematic filling of CO 

on these sites while adhering to spatial constraints, yielding approximately 44 million preliminary 

configurations. Step 3 applies symmetry operations to distill these down to around 7 million unique 

configurations, streamlining the dataset for further computational exploration. 

 

The enumeration of adsorption configuration guess space is conducted on eight Cu 
surfaces, including (100), (110), (111), (210), (221), (310), (311), and (322), which are 
considered to be worth exploring by researchers.57-61 As shown in Figure 2, the enumeration 
process is divided into three steps: surface site search, adsorption configuration enumeration, 
and deduplication of equivalent configuration guesses. In the site search part, we define the 
collection of Cu atoms on the surface that can bond with adsorbates and their surrounding 
environment as a site. Therefore, the types of sites depend on the size of the Cu atom collection 
and its local environment. Here, we abstract sites and their local environments into graphs 
using graph theory methods and determine the uniqueness of sites by judging whether the site 
graphs are isomorphic. Using graph theory methods, we conveniently identified 68 unique sites 
from the 8 Cu surfaces and used a combination letter naming method to distinguish different 
site types, for example, the "Bb" site type, where "B" indicates the site has a coordination 
number of n=2, and "b" indicates it is the second graph structure among sites with the same 
coordination number, and so on. This purely geometric definition of sites does not restrict the 
morphology of the sites, reducing the damage that biased understanding may cause to 
constructing a complete configuration guess space.42-43 Its generality and scalability make it 
convenient to apply to the construction of configuration guesses in other high coverage 
systems.21, 29, 62 The graph-theoretical site comparison method allows for a simple and rapid 
quantitative description of differences between sites. 

After detecting all adsorption sites on the Cu surfaces, we used a method of filling CO 
molecules on the clean Cu surface with distance limitations to achieve the enumeration of 
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configuration guesses, with the main requirements being: CO adsorbs monodentately on the 
Cu surface with only C contacting Cu atoms; the orientation of CO molecules is set to the 
vector sum of the direction vector from its coordinating Cu atom to the C atom; the filling 
distance limitation requires that the interatomic distance between different CO molecules must 
not be less than 2.3 Å. Consequently, we obtained approximately 44 million initial adsorption 
configuration guesses, with the number of configurations enumerated on different index faces 
increasing with CO coverage before decreasing (Table S4). Based on the site type naming 
method, we named the adsorption configuration according to the combination types of sites 
they belong to, for example, "Aa2Ab1Da1Dc2" site combination type, indicating 2, 1, 1, 2 CO 
molecules adsorb on "Aa", "Ab", "Da", "Dc" types of sites, respectively. Moreover, we defined 
a simplified site combination type, such as the simplified type for "Aa2Ab1Da1Dc2" being 
"AD". Subsequent configuration data sampling calculations will be based on these two types 
of site combinations. Notably, the previous enumeration process did not consider the intrinsic 
symmetry of different Cu surfaces, for example, the Cu(111) surface corresponds to the p3m1 
plane group (Table S8).63-65 The existence of such planar symmetry results in a large number 
of duplicate structures in the enumerated configuration guesses. Through symmetry operations, 
we obtained approximately 7 million independent initial adsorption configuration guesses from 
the 44 million, significantly narrowing the target configuration space range. Compared to the 
graph-theoretical deduplication algorithm, this method not only has a crushing advantage in 
comparison speed but also can theoretically overcome the limitations of the graph isomorphism 
algorithm in comparing periodic crystal structures.42 Overall, this enumeration process of the 
configuration space allows for a more comprehensive consideration of the adsorbate sequence 
space, thereby reducing the errors associated with energetics-based configuration sampling.35, 

42 
 

Machine Learning Force Field 

Given the vast adsorption configuration space spanning across eight different Cu surfaces, 
it is imperative to leverage artificial intelligence to navigate this extensive configuration space. 
Two research approaches are considered viable: The first involves constructing machine 
learning force fields through the rich trajectory data obtained during the first-principles 
geometric optimization of a small set of adsorption configurations, followed by using the 
trained force field model to optimize the remaining adsorption configurations.52 The second 
approach entails developing a deep learning model capable of directly predicting the steady-
state adsorption energy from initial configuration guesses.47, 49 Given that the construction of 
force fields can significantly utilize data from the structural optimization process, the initial 
DFT (Density Functional Theory) calculations required for the first strategy are considerably 
less. However, using the force field model to optimize the remaining configurations is also a 
time-consuming task, especially considering the configuration space volume closes seven 
million. Additionally, selecting a small number of representative configurations for DFT 
calculations from a vast and unevenly distributed sample space, particularly among high-index 
surface configurations, poses a challenging problem. 

Therefore, after considering both the predictive accuracy of machine learning force fields 
and the prediction speed of deep learning models, we designed an integrated solution that uses 
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MLFF (Machine Learning Force Field) as a data augmenter for the adsorption energy 
prediction model. Initially, for low-index surfaces such as Cu(100), Cu(110), and Cu(111) 
depicted in Figure 1b, where the enumerated configuration count is low, we randomly select 
20% of the unoptimized adsorption configurations for DFT calculations. For higher-index 
surfaces, we perform a primary sampling based on adsorption site combination types, followed 
by a secondary sampling based on simplified adsorption site combinations. The configurations 
obtained from secondary sampling undergo DFT structural optimization (S1.1). Subsequently, 
we train a force field model for the Cu-CO system with accuracy close to DFT calculations 
using the open-source and user-friendly deep learning architecture DPMD, which has been 
proven to have high simulation accuracy and efficiency in vast Si atomic systems.56, 66 This 
force field model is then applied to optimize the remaining low-index surface configurations 
and those from the primary sampling. By expanding the training dataset with adsorption 
configurations using machine learning force fields, we can significantly address the issue of 
data scarcity faced when constructing deep learning models, thereby substantially improving 
model quality.55 

 

 
Figure 3: Evaluation of Machine Learning Force Field (MLFF) Accuracy. (a) Comparing the initial CO 

adsorption configuration with those optimized by DFT and MLFF, showing the MLFF's ability to replicate 

DFT-level structural accuracy on Cu surfaces. (b) Histogram of Cu-C bond lengths from stable-state 

configurations, highlighting the close match between MLFF and DFT results, with bond length discrepancies 

averaging less than 0.01 Å. (c) Scatter plot of the energy predictions, demonstrating the MLFF's high 

accuracy, with an RMSE for energy within 1 meV/atom, as validated against DFT calculations. (d) 

Corresponding force predictions plot, where the MLFF achieves an RMSE of less than 0.03 eV/Å, indicating 

the model's precision in capturing the forces in the Cu-CO system across a vast configuration space. 
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As shown in Figures 3c-d, our trained force field exhibits high accuracy, with RMSE 

(Root Mean Square Error) values for energy and force being <1 meV/atom and <0.03 eV/Å, 
respectively. The optimization of 1592 initial configuration guesses in the secondary sampling 
space using the well-fitted force field further assesses the force field quality: the steady-state 
adsorption configurations obtained from force field optimization almost perfectly match those 
obtained from DFT optimization (Figure 3a). Moreover, analyzing the distribution of Cu-C 
bond lengths in the steady-state adsorption configuration set reveals that the distribution from 
MLFF optimization closely aligns with that from DFT optimization (Figure 3b), with an 
average Cu-C bond length discrepancy of <0.01 Å. This demonstrates that the MLFF can 
achieve near-DFT calculation accuracy for adsorption configurations across eight Cu surfaces. 
The high-quality force field is attributed not only to the superior machine learning force field 
architecture but also to the effective sampling method—ensuring the sampled configuration 
guesses, i.e., the starting points for DFT geometric optimization, are as diverse as possible, 
facilitating a rich optimization trajectory that benefits model learning of more complex multi-
body interactions. 
 

Graph-Based Model for Adsorption Energy Prediction  

In recent years, graph neural network models have shone brightly in material design and 
performance prediction, leveraging graph embeddings of materials for various predictive 
tasks.67-70 One of their key advantages over other deep learning models lies in the natural 
suitability of graph structures for describing chemical and material structures, with nodes and 
edges representing atoms and their interactions, respectively. Hence, extracting high-quality 
graph data from materials is crucial. In our study, the interactions among CO molecules affect 
their adsorption energy on Cu surfaces, especially at high coverages. Previous research often 
overlooked non-bonding interactions beyond hydrogen bonds when constructing graph data, 
failing to accurately characterize adsorption structures.47, 50 We propose an adsorption 
configuration graph data extraction method that effectively captures the impact of CO 
interactions on their adsorption energy, as shown in Figure 4a. The first step involves searching 
for atoms in contact with a CO molecule on the Cu surface, considering it as the central CO, 
within the van der Waals radius to form a neighbor atom set, including first-order neighbor 
COs in contact. The second step continues the search for atoms in contact with these first-order 
neighbor COs and builds local subgraphs for multiple neighbor sets centered on CO. The third 
step merges the central CO and its neighboring COs' local subgraphs into a feature graph 
representing the adsorption environment of the central CO. Different interaction types in the 
feature graph are assigned distinct indicator vectors during encoding, including non-bonding 
interactions between CO molecules, akin to the encoding of hydrogen bonds in previous 
research.47, 50 
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Figure 4: Graph Neural Network Model for CO Adsorption Prediction. (a) The graph data extraction 

method for CO adsorption configurations, detailing the steps from detecting neighboring atoms under van 

der Waals conditions to merging local subgraphs into a feature graph that accurately represents the adsorption 

environment of CO molecules on Cu surfaces. (d) The comparison of the GNN model's predictive 

performance between using only the DFT calculation dataset corresponding to (b) and using the DFT+MLFF 

calculation dataset corresponding to (c). (e) The computational efficiency gains of the DFT+MLFF+GNN 

workflow compared to traditional DFT and DFT+MLFF methods, showcasing a significant reduction in 

computational cost and time, thus enabling the study of vast adsorption configuration spaces with enhanced 

efficiency. 

 
Leveraging this graph feature extraction method, our trained graph neural network model 

demonstrated excellent predictive accuracy and generalization ability across eight index 
surfaces at varying coverages (Figure S2). The model's superior performance stems partly from 
more accurate graph descriptors. Unlike models that ignored CO non-bonding interactions 
when constructing graph data, our model significantly improved performance (Figure S3). 
Additionally, it benefited from the richness of training graph data, thanks to the expansion of 
training data via machine-learned force fields (MLFF), presenting an advantage over models 
trained solely on data from density functional theory (DFT) calculations. Using an expanded 
training set (about 186,000) under the same model architecture, our model outperformed the 
one trained only with DFT data (1,592), with a 16% increase in R2 and a 28% reduction in 
RMSE (Figure 4d). Moreover, compared to direct DFT calculations or combined DFT+MLFF 
approaches for exploring target configuration spaces, our DFT+MLFF+GNN methodology 
significantly reduces computational costs by three and one orders of magnitude, respectively, 
greatly enhancing research efficiency in vast adsorption configuration spaces (Figure 4e). This 
acceleration allows for exploring extensive configuration spaces within a foreseeable short 
period, a capability previously unattainable.35, 42, 44, 47 This dual-speed framework, integrating 
high-precision machine learning force fields with advanced graph representation learning, is 
also applicable to other catalytic systems with large search spaces, such as catalytic reaction 
path searches, stable adsorbate motif determination and protein-ligand structure prediction.44, 

71-72  
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Coverage-Dependent Adsorption Energy on Different Indexed Surfaces 

Leveraging our trained model for predicting adsorption energies, we calculated the steady-
state CO adsorption energies for approximately 7 million configurations within the target 
configuration space, plotting CO adsorption energy versus coverage spectra for eight Cu 
crystallographic surfaces (Figure 5a). It was observed that each of the eight Cu surfaces 
corresponds to a unique CO coverage threshold, within which the adsorption energy of the 
most stable adsorption configurations changes minimally. Beyond this coverage threshold, the 
adsorption energy of the most stable configurations decreases significantly with increasing 
coverage. This trend aligns with physical intuition: at low coverages, the CO molecules in 
steady-state adsorption configurations are widely spaced, making non-bonding interactions 
between CO molecules negligible; however, at medium to high coverages, the surface 
arrangement of CO molecules in steady-state configurations becomes more compact, 
increasing molecular repulsion and thus increasing the system's potential energy, leading to 
decreased adsorption energies for CO molecules. Furthermore, aside from the (100) and (111) 
surfaces (where all surface atoms have the same coordination number), CO molecules 
preferentially occupy lower-coordination Cu sites that are energetically less favorable, and with 
increasing coverage, gradually cover higher-coordination Cu sites (Figure S4). At the same 
time, the average coordination number of Cu atoms occupied by CO at each coverage level 
remains lower than the average coordination number of surface Cu atoms, indicating a clear 
lowest-energy orientation for CO adsorption. These computational results are consistent with 
previous research findings.40-41, 73 Understanding the ease of C-C coupling on different Cu 
surfaces is crucial for developing Cu-based nanometal catalysts with high selectivity for C2+ 
products in CO2RR reactions, as easier C-C coupling between CO molecules leads to higher 
selectivity for C2+ products. 16, 18-20, 74 

 

 
Figure 5: Coverage-Dependent CO Adsorption Energies on Cu Surfaces. The vertical axis corresponds 

to the average adsorption energy of CO, while the horizontal axis represents the number of CO molecules 

per unit area. The darker the bar color, the greater the average adsorption energy of CO. 
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Here, we employed two straightforward metrics to evaluate the ease of C-C coupling on 

Cu surfaces. The first metric is the Mean Minimum C-C Distance (MMCD) within the set of 
most stable adsorption configurations at various coverages (see S4.1), which serves as an 
indicator of the probability of C-C coupling. A smaller MMCD suggests a higher likelihood of 
coupling. The second metric is the characteristic coverage of the surface: taking the densely 
packed (111) surface as a reference and using its maximum adsorption energy as a threshold, 
the maximum coverage achievable by other surfaces without falling below this adsorption 
energy threshold is deemed their characteristic coverage. To facilitate successful C-C coupling, 
CO must exhibit sufficient adsorption strength on Cu surfaces to prevent the reactants from 
desorbing, which would interrupt the coupling reaction. Moreover, compared to the MMCD, 
the surface's characteristic coverage offers a more macroscopic dimension for representing the 
probability of C-C coupling, providing a holistic view. As illustrated in Figure 5b, we analyzed 
these two metrics across eight Cu surfaces and found that the (310) surface exhibits the best C-
C coupling performance, while the (111) surface performs the worst. The performance ranking 
of (310) > (210) > (311) > (100) > (111) is largely in agreement with experimental 
observations.59, 73 High-index surfaces tend to have smaller MMCDs and greater characteristic 
coverages, indicating a higher probability of C-C coupling and better selectivity for C2+ 
products. This finding aligns with our current theoretical and experimental research, which 
shows that high-index surfaces offer a richer variety of surface sites and an abundance of low-
coordination surface Cu atoms. These features provide more stable adsorption sites and a 
superior surface electronic environment conducive to C-C coupling.75-77 Additionally, the (322) 
surface emerged as a potential candidate due to its MMCD and characteristic coverage closely 
approaching those of the (310) surface, which has been experimentally proven to exhibit 
excellent selectivity for C2+ products.59 
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Figure 6: Correlation between C-C Distance and Coverage for Cu-Catalyzed Coupling. Surfaces like 

Cu(310) with smaller C-C distances and higher characteristic coverages are identified as optimal for C-C 

coupling, enhancing selectivity for C2+ products in CO2 reduction reactions. The inset illustrates the surface 

model of Cu(310). 

 

Conclusions 

In conclusion, our investigation into the adsorption configurations of CO on Cu surfaces 
unveils critical insights into the mechanisms underlying electrocatalytic reactions. By 
leveraging advanced computational techniques, we have mapped out the energy landscapes of 
nearly 7 million configurations, identifying key trends in CO adsorption energies across 
different surface indices and coverages. Our findings underscore the importance of surface 
coverage in dictating the stability and activity of adsorption configurations, with implications 
for the efficiency of CO2RR processes. The development and application of a machine learning 
force field, complemented by a graph-based adsorption energy prediction model, have 
significantly enhanced our ability to predict and understand the complex interactions at play. 
The discernment of high-index Cu surfaces as favorable for C-C coupling not only aligns with 
experimental observations but also opens new avenues for the design of catalysts with 
heightened selectivity for C2+ product formation. This work not only advances our theoretical 
understanding of catalytic mechanisms at high coverage but also sets the stage for future 
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research aimed at optimizing catalyst designs for sustainable energy conversion technologies. 
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