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Abstract
The advancement of computational methods in drug discovery, particularly through the use
of machine learning (ML) and deep learning (DL), has significantly enhanced the precision of
binding affinity predictions. Despite progress in computer-aided drug discovery (CADD)
accurate prediction of binding affinity remains a challenge due to the complex, non-linear
character of molecular interactions. Generalizability continues to limit these models, with
performance discrepancies noted between training datasets and external test conditions.
This study explores the integration of molecular dynamics (MD) simulations with ML to
assess its predictive performance and limitations. In particular MD simulations offer a
dynamic perspective by depicting the temporal interactions within protein-ligand complexes,
potentially bringing additional information for affinity and specificity estimates. By generating
and analyzing over 800 unique protein-ligand MD simulations, we evaluate the utility of
MD-derived descriptors based on time series in enhancing predictive accuracies. The
findings suggest specific and generalizable features derived from MD data and propose
approaches to augment the current in silico affinity prediction methods.
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Introduction
The quest for efficient drug discovery is critically dependent on the precision of binding
affinity predictions, an area where computational methods have both flourished and found
limitations [1]. Computer-aided drug discovery (CADD) techniques have made an impact on
the pharmaceutical industry by enhancing the efficiency of the drug development process,
reducing time, cost, and labor. Despite these advancements, accurate prediction of binding
affinity continues to pose a considerable challenge, often bottlenecked by the inherent
complexities of molecular interactions [2,3].
Rapid and continuous progress in machine learning (ML) and deep learning (DL) has shown
promise in overcoming some of these hurdles [4–6]. They have improved our ability to
interpret and utilize large datasets, revealing intricate non-linear patterns and relationships
that are crucial for the stability of protein-ligand complexes. Current state-of-the-art methods
achieve Pearson correlation coefficient (Rp) around 0.7-0.85 in the CASF2016 benchmark
[7,8], which is a significant improvement compared to the classical scoring functions used
previously. Despite this achievement, challenges remain, particularly with the generalizability
of these models, which often perform well on training datasets but show diminished accuracy
on external test sets or in individual studies. There are many hints of why this plateau has
occurred and is difficult to overcome. One important consideration is, while useful, traditional
static computational approaches like molecular docking only provide a limited view by
capturing snapshots of molecular complexes without their temporal dynamics [9,10].
Molecular dynamics (MD) simulations, although not without their own hurdles, introduce a
vital temporal dimension to protein-ligand complex studies, offering a dynamic perspective
that is more reflective of the actual biological processes. Such simulations allow for more
detailed observations of how drug molecules interact with biological targets over time, which
can be essential for understanding both the affinity and specificity of interactions [11–13].
This dynamic insight helps in recognizing conformational changes during binding and
unbinding events, which are essential in many applications of the drug design process.
The integration of MD simulations with ML and DL has been hinted as an attractive path to
achieve an improved level of predictive performance. Over the last years it has been tested
and applied with varying success in different drug discovery tasks and specific campaigns.
Riniker [14] developed and applied Molecular Dynamics Fingerprints (MDFP) to the problem
of solvation free energies prediction. The ML models were trained with distribution properties
of potential-energy components, radius of gyration (Rg), and solvent-accessible surface area
(SASA) extracted from 5ns MD simulations performed on 426 small molecules derived from
the FreeSolv database [15], for the prediction of solvation free energies as well as different
partition coefficients. MDFP showed predictive performance useful for computer-aided lead
optimization and analogue prioritization. In the case of affinity prediction, Ash and Fourches
in 2017 [16] analyzed 87 ERK2- docked ligand complexes by computing chemical
descriptors derived from 20ns molecular dynamics (MD) trajectories. They showed that
models trained on MD derived descriptors were able to distinguish the most active ERK2
inhibitors from the moderate/weak actives and inactives. They claimed that the descriptors
extracted from MD trajectories are highly informative and, having little correlation with
classical 2D/3D descriptors, could augment chemical libraries screening tasks, candidate
design and lead prioritization. A similar concussion was presented by [17], who performed
molecular docking of 43 compounds associated with caspase-8, with consecutive 10-ns MD
simulations of top scoring complex for each ligand. They investigated 770 2D and 115 3D
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descriptors together with 4 descriptors extracted from MD simulations: solvent accessible
surface area (SASA), radius of gyration (Rg), potential energy and total energy, in the form
of mean and standard deviation (8 descriptors in total). They reported that ML models
trained on MD data had the most balanced accuracies and AUC values, compared to the 2D
and 3D descriptor models, and that models using a combination of 3D and MD descriptors
had the best performance. A counter experiment was performed by [18] using the BCR-ABL
tyrosine-kinase and 15ns MD simulations of Imatinib and a large series of its derivatives. In
conclusion they stated that incorporating time-series-based MD matrices could not improve
the binding affinity prediction ability of the DNN and random forest (RF) QSAR models.
However, their models did have reduced prediction error, indicating that the MD trajectories
contain both useful information and noises, with the negative effect from the noises
becoming stronger as the number of snapshots increases. An approach to compare different
ML models trained on descriptors obtained from MD trajectories was presented by [10].
Using three different targets and a maximum of 433 complexes predicted by docking per
target, the results for MD augmented approaches were greatly dependent by target. The
paper concludes the use of MD does not generally improve screening results and may only
be justified in certain cases. Given that the models for MD data were trained for descriptors
generated from each frame, this may have been a challenge for simple ML models due to
the small amount of data. In addition, the low MM/PBSA and Glide scores suggest that the
analyzed collections were rather difficult.
Current research indicates the complexity of leveraging molecular dynamics (MD) data,
suggesting it is target specific and can depend on the noise to signal ratio, e.g. number of
frames, the length of MD simulation, etc. It is difficult however to draw definite conclusions
as only a handful of targets have been tested so far. Given the structural diversity of the
ligand-protein complexes, it is far too few to assess the overall usefulness of MD simulations
in large scale prediction of activity. Can the non-linear features of P-L complexes extracted
from MD data be used to enhance the predictive accuracy of binding affinity prediction? Can
it lead to the identification of novel features useful for such prediction?
To answer some of these questions, in this study we have generated the largest set of MD
simulations to date, encompassing a broad array of protein-ligand complexes. Constructing
a large representative set of MD simulations is challenging due to the high computational
cost and difficulty associated with molecular system preparations. In addition, given the
small number of training examples (complexes suitable for conducting simulations) and a
large amount of MD data from each simulation, careful filtering and feature selection is of
utmost importance. Therefore we generated a comprehensive set of descriptors that utilize
various aspects of MD-derived data, and implemented a rigorous feature selection
mechanism to tailor the number of features to the analytical methods employed. By training
ML models on MD-derived data from over 800 unique protein-ligand complexes, we seek
answers to the feasibility of greater accuracy. In this work we ask the following questions: 1)
What are the complex specific and simulation specific features influencing models’ affinity
prediction outcomes? 2) Whether MD-derived simulation data is beneficial and how it
generalizes on a large scale? 3) Can the MD-derived descriptors augment and/or replace
current crystallographic derived descriptors? Based on our findings we present general
guidelines and suggestions on how to augment the in silico affinity prediction pipelines in the
context of MD simulations treated as time series.
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Materials and methods

Dataset compilation
The study utilizes protein-ligand crystallographic complexes sourced from the PDBBind
collection v2020 [19]. The effort was to compile a diverse dataset with the goal to minimize
various ligand- and target based biases. With this in mind, the selection criteria considered
only complexes with well-defined active sites paired with ligands with unambiguous,
experimentally determined affinity values (in the form of negative log Ki, Kd and IC50
values). Criteria for exclusion included peptide ligands, multi-chain, protein complexes,
trans-membrane proteins, and any proteins where a metal ion is present in the active site
(defined as 6A away from any ligand atom). To maintain diversity, a cap was set at 18
protein complexes per target, identified by a common UniProt identifier. All complexes were
required to have all amino acids crystallized and identified.

Ligand diversity
There are 862 complexes in the MDD dataset, around half of them with a single ligand, 71
targets with 2 to 5 ligands, 31 with 6-10 and 22 with than 10 (Figure 1, A). The affinity range
of ligands in the MDD dataset is described roughly by a normal distribution (Figure 1, B)
when the logarithm scale is used (i.e. pKi/pKd/pIC50). If we consider 1uM affinity (6 on the
logarithmic scale) as a threshold for defining active/inactive classes, the MDD dataset shows
an almost equal distribution of active and inactive compounds (420 ligands below 6, and 444
equal or above 6). From the physicochemical point of view 96% of MDD ligands comply with
RO5 (Figure 1, C-H). The structural diversity of the MDD ligands was measured with the
ECFP4 (1024 bits) fingerprint. Considering all ligands in the dataset, the mean Tanimoto
distance between them is Tc=0.11, showing a low overall structural similarity of the whole
small molecule space. Similarity of ligands within their targets is also low, the mean Tc
distance is 0.30.
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Figure 1: Ligand physicochemical features distribution in the MDD dataset. Selected
ligand descriptor distributions are compared to the protein-ligand part of the PDBBind
dataset. Ligand per target depicts the fraction of targets with a given number ligand
complexes.

Target diversity
The MDD dataset comprises 231 targets, compared both from a functional and structural
perspective. Roughly around ⅔ of the MDD targets are enzymes with an assigned EC
number, with hydrolases and transferases composing over ½ of the MDD. Around ⅓ of the
MDD targets are non-enzymatic proteins, with the largest group described as “transport
proteins” by GO Biological Process keywords. More details of the functional composition of
MDD are available in Supplementary materials file: MDD_targets.ods
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Figure 2: Functional characterization of MDD targets. The “Non-enzymatic” part of MDD
(⅓ of the targets) are described on the right chart with 5 distinct biological processes (GO
annotation). Around 10% of all MDD targets are non-enzymatic proteins with other functions.

Binding site similarity was assessed with DeeplyTough [20], and presented on Figure 2. We
chose this method as it combines both structural similarity and ligand preference similarity
into a single comparison value which, after normalization, is easy to interpret and process.
The median similarity score between all MDD targets is equal to 0.62 (after normalization),
showing rather low binding pocket similarity (Figure 3, A). In detail, around 8.5% of the
compared structural pairs are highly similar (comparison value greater >= 0.95) and 23% of
pairs are dissimilar (values < 0.5). Target binding sites were also compared with respect to
hydrophobic residues, size (area), and mobility (RMSF) (Figure 3, B-D). Overall the MMD
targets show a good balance of the above features with close to normal distributions. We
note the RMSF values are mostly between 0,5-1,5A, suggesting the MDD targets do not
experience major conformational changes, at least during 200ns MD simulations with their
ligands.
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Figure 3: Comparison of binding site properties of MDD targets. Comparison with
respect to structural similarity and ligand preference similarity (DeeplyTough), hydrophobic
residues, size (area), and mobility (RMSF).

MD simulation procedure
All protein-ligand complexes selected for molecular dynamics simulations were prepared
following a standardized protocol. Missing atoms in the protein structures were added using
the PDBFixer tool [21]. Protein targets were parameterized using the AMBER99SB-ILDN
force field, while ligand parameterization was conducted with the ANTECHAMBER module
within the ACPYPE tool [22]. For the ligands, partial charges were derived to match the
quantum-mechanically generated electrostatic potential via the Restrained Electrostatic
Potential (RESP) method [23], and the remaining parameters were aligned using the GAFF2
force field. The aim of this procedure was to provide a generic method for complex
parameterization applicable to a wide variety of protein-ligand complexes.
Molecular dynamics simulations were executed using the GROMACS [24]. The simulations
were set up in a cubic simulation box with periodic boundary conditions, employing a TIP3P
water model within an electrostatically neutral environment. The simulation protocol included
an initial minimization cycle, followed by temperature equilibration in the NVT ensemble and
pressure equilibration in the NPT ensemble. Production simulations were conducted over a
200 ns timeframe, with a timestep of 100 ps.
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Representation
Given the relatively small data set, we decided to use simple ML methods. In addition, for
the same reason, we tried to limit the number of features used in the learning process as
much as possible. Another important aspect in the selection of the input set of features was
the choice of features that would describe the target-ligand complex as from different
perspectives, hence we used descriptive types features: physicochemical properties,
geometries and compositions of the ligands, as well as the binding pocket together with
features describing the target-ligand interactions. In the case of molecular dynamics data we
calculated features describing the movement of the active site and the ligand, at the same
time bearing in mind to use as few features as possible. Taken together we calculated 29
ligand descriptors (calculated with [25,26], 23 pocket descriptors (with [25,27], 13 interaction
descriptors (calculated with PyLIF [28]) and 8 motion descriptors (derived from [27]). Details
of the specific types and calculations are attached in the Supplementary Materials section
“List of descriptors”.

In this work we use two types of structural data from the same experimentally determined
structures: the “crystallographic poses” (single frame data), and the 200ns MD simulation
frames (saved every 100ps - multiframe data). For the multiframe data we can use tsfresh
[29] to calculate time series features for each descriptor. A multistep procedure was
executed:

1. For each decryptor (which can be represented in a time series), we calculate all 788
time series descriptors (ts_descriptors) supported by tsfresh package (v. 0.20.1).

2. For each ts_descriptor, its p-value is determined in terms of statistical significance
against experimentally determined affinity (source from PDBBind), using a univariate
test,with FDR set to 0.001 (see Figure 4).

3. Next, a trimming procedure is used. For each of the 75 features types (see: tsfresh
features), the ts_descriptor with the lowest p-value is selected. Some ts_descriptors
are parametric in nature, using different thresholds one can generate several
versions of the same ts_descriptor. For such a group, also the one with the lowest
p-value was selected. At this stage, there could be a maximum of 75 ts_descriptors
per complex descriptor.

4. To avoid caveats in training, such as correlation between predictive features,
correlation trimming was applied. All descriptors and ts_descriptors were tested for
correlations with each other. Correlated descriptors were dropped if PCC was >= 0.8.
Among a group of correlated ts_descriptors, the one with the highest cardinality was
left.

5. In the final filtering step, for each descriptor, the ts_descriptor with the highest mutual
information score (MI SC) between itself and the experimentally determined affinity
value was selected. As a result, each descriptor is described with at most one
ts_descriptor (Figure 4, bottom left).

In total, for the crystallographic set we calculated a maximum of 63 descriptors (ligand,
target, and interaction, some might be removed due to cross-correlation, see point 4, above)
together with the ECFP4 fingerprint (1024bits). For the MD set we calculated the same 63
descriptors, 7 motion descriptors and up to 51 ts_descriptors.
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Figure 4. Flowchart of descriptors and ts_descriptors selection procedure. Color
code: light green - crystallographic set descriptors, light blue - multiframe MD set descriptors
and ts_descriptors, light orange - ligand descriptors. See section “Representation” for more
details.
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Data splits, training and testing
Two different ways of splitting the target data were used: random split and target split. In the
random split, complexes were randomly allocated to the training and test sets, at a ratio of
4:1 (80% of complexes to the training collection, 20% to the test collection). In the case of
target split, UniprotIDs were utilized to split the complexes, in the same proportions as for
the random split. The latter split is more difficult as there should not be any similar training
and testing examples (i.e. no identical protein targets between train and test sets). The
target split can therefore be used to approximate the generalization potential.
Scaffold split, implemented in DeepChem [30] was used to split ligand structures deposited
in MDD. ScaffoldSplitter DeepChem package divides molecules into groups, based on their
Bemis-Murcko scaffold, and puts the smallest groups into the test set. Such a division is fully
deterministic; the rarest scaffolds always constitute the test set. This type of scaffold split is
more challenging than random splits as it tests more thoroughly the generalizability to new or
less abundant areas of chemical space.
Model parameters were selected using 5-fold cross-validation (CV) on the training set. Three
different models were trained using the MDD dataset; Random Forest and SVM with [31]
and XGBoost with [32]. The models were fitted to the training sets and evaluated on the test
sets. The whole split and training procedure was repeated 20 times. Throughout this work
the test set results are reported as boxplots, with mean (triangle) and median (horizontal line
inside the boxplot) values.

Results

Dataset establishment
In order to test our hypothesis that MD descriptor-augmented machine learning models may
improve affinity prediction tasks, a proper selection of training examples was needed. On the
one hand one wants to compile a large dataset with diverse target-ligand complexes to avoid
skewed feature distributions. Skewed distributions can have an impact both on training
procedures, generalizability and may result in improper assessment of performance [33]. On
the other hand short MD runs do not usually account for allosteric changes, substantial pose
alterations, etc. Therefore a set of filters were applied to over 19K target-ligand structures
deposited in the PDBBind database. Briefly, using the procedure described in the Material
and Methods section, we selected medium size globular proteins complexed with ligands
having unambiguous, experimentally determined affinity values (pKi, pKd, pIC50). We use
PDBBind as the primary source of structures, affinity measurements, and binding site
definition.

Next we introduce an automatic MD procedure (see Materials and Methods section “MD
simulation” for details). In general we wanted our procedure to be as generic as possible,
without the need of any structural alterations or expert knowledge. This would in theory
assure such procedure is transferable and generalizable, and could be used for other related
tasks such as SBVS, or de novo design. To decrease the chance of errors in the automatic
MD procedure we excluded targets with missing AA, cofactors and ions in the binding site.
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After the filtering step, the remaining complexes were prepared for conducting MD
simulations. Targets were parameterized with AMBER99SB-ILDN force field [ref], while
topology parameters for organic chemical compounds were generated with ACPYPE [22]. If
there were errors in the ACPYPE procedure such a complex was generally rejected; in a few
cases we were able to manually rescue the PDB structure by small fixes. Finally, we arrived
at 876 complexes for which we could perform 200ns MD simulations and collect simulation
data. We call this set the “Molecular Dynamics Dataset” or MDD for short.

Baseline performance
To assess the difficulty of the MDD, affinity prediction performance was calculated with
selected models for which code and training procedures were available in public repositories
(Table 1). To conduct a fair comparison with minimized data leakage events, all models were
trained on the PDBBind dataset (v2016) with 862 MDD complexes excluded.

Data type and
model

PCC RMSE features

OnionNet2 0.75 1.26 defined in [6]

PLEC-NN 0.72 1.40 defined in [34]

RF-Score v2 0.63 1.58 defined in [4]

RF-Score v1 0.59 1.67 defined in [4]

NN-Score 0.59 1.66 defined in [35]

Vina 0.49 - defined in [36]

Table 1. Performance of selected affinity prediction methods on the MDD subset.
Pearson correlation coefficient (model vs experimental affinity).

We compared the MDD results (Table 1) to published assessments done with CASF2016
(Table 2). Various methods with increasing complexity and time necessary for training are
displayed in Table 1 and Table 2, from simple classical scoring functions such as Vina,
through machine learning models, up to sophisticated deep- and graph neural networks. The
MDD results show a consistent and rather equal drop in performance compared to published
results, independent of the tested methods. The observed decrease in performance may be
multifacet: CASF2016 is a relatively small dataset (216 complexes) so it might be easier to
optimize for performance. Also, the MDD has around four times more compleses than
CASF2016; excluding MDD targets might decrease the availability of information needed for
high affinity prediction performance. Importantly, Table 2 shows the performance of a model
based on descriptors selected with our procedure: “descriptor model (XGB)” (see Materials
and Methods Representation section and Figure 1, orange and green elements). Its affinity
prediction is on par with some of the best, highly sophisticated methods. The results
highlight that a relatively simple ML model can show a similar level of performance
compared to specialized neural networks.
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Model name Description PCC RMSE Trainin
g size

References

OnionNet2 CNN trained on contact
descriptors

0.86 1.16 [6]

TopBP Topological Descriptors
with GBT

0.86 1.19 3 767 [37]

SS-GNN Graph Neural Network 0.85 1.18 15 394 [38]

Descriptor model (XGB) XGBoost 0.85 1.202 12 866

DCML Dowker complex based
machine learning

0.84 1.25 3 772 [39]

OPRC-GBT Ollivier persistent Ricci
curvature

0.84 1.25 3 772 [40]

PLANET Graph Neural Network 0.82 1.24 15 616 [41]

KDEEP Convolution Neural
Network

0.82 1.27 3 767 [42]

PLEC-NN Extended Connectivity
FP & Neural Network

0.82 1.25 [34]

OnionNet Convolutional Neural
Network

0.82 1.27 11 906 [43]

RF-Score v1 Random Forest 0.80 1.39 3 767 [4]

Pafnucy Convolution Neural
Network

0.78 1.42 11 906 [5]

Vina Hybrid empirical
scoring function

0.60 - - [44]

Table 2: Affinity prediction performance using models of increasing complexity, tested
with CASF2016 benchmark. The use of simple models on crystallographic data can yield
comparable results to the use of complex neural networks based models.

Encouraged by these results we sought to explore the relatively simple ML based models,
trained both on descriptors extracted from crystallographic and from MD simulation
experiments, to assess the potential benefit of such an approach in the task of large scale
affinity prediction.

Simulation length vs model performance

To determine what is the optimal length of MD simulations for information extraction in our
setup, we defined 5 timescales between 10ns up to 200ns, and trained 3 types of models:
RF, XGB and SVM with increasing MD lengths. The results for all three models were very
similar (data not shown), therefore for further work the RF model was chosen, due to its
simplicity and low tunability. Figure 5 summarizes the results obtained from the described
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above experiments. The results show varying correlations, both with random and target
splits. The best overall performance for both types of splits is achieved for a 20ns simulation
length, as measured with PCC, r2 and mse values. In the following sections, all analyses
refer to the RF models trained on 20ns molecular dynamics, unless mentioned otherwise.

Figure 5: Dependence of MD simulation length on model performance. RF models
trained with trajectories of different lengths (from 10ns to 200ns) tested on two types of data
splits: random (green) and target (yellow). Increasing the length of the MD simulation does
not improve the model performance results. 20ns trajectories show good overall
performance for both random and target splits, therefore were used for subsequent training
and analyses.

To assess which features could be responsible for the gain in performance of models trained
on 20ns compared to 200ns we analyzed individual time series descriptors (ts_descriptors).
The results show a significant gain in around 40% of tested ts_descriptors (14 out of 36, with
Δ > 0.1). Comparable correlations are registered for 12 ts_descriptors (Δ < 0.03). Taken
together our results suggest that longer MD runs may contain more noise vs information
useful for the affinity prediction problem. In the assessed timescale, this may indicate that
short MD simulations may be enough to capture useful steric conformation changes. Similar
results have been present in works of others, concerning single targets [10,16,17].
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Figure 6: Correlations between affinity prediction and time series descriptors of the
protein-ligand complexes. ts_descriptors derived from 20ns (light blue) and 200ns (dark
blue) molecular dynamics simulations.

MD augmented representation
To understand the influence of time based descriptors on the model performance we tested
two types of models with respect to affinity prediction tasks. In particular, we assessed the
overall performance of a model trained with crystallographic descriptors only, and
augmented with MD derived ts_descriptors, with respect to different target and ligand data
splits. The results are shown on Figure 7. For randomly split data there is no clear difference
in performance; both models achieve comparable results with respect to PCC, r2 and similar
SD. However, in the case of a more challenging target split, an advantage of the model
trained on dynamic descriptors can be seen, along with a smaller SD. A similar trend is even
more visible with scaffold split, both with PCC and r2. Here the Bemis-Murcko scaffolds are
used to split ligands into groups, next the test set is formed from the least abundant scaffold
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groups. Such an approach is more challenging than random splits, with a more thorough test
on generalizability, especially with respect to uncharted chemical space.

Figure 7: Affinity prediction performance of models trained on crystallographic-only
data and models augmented with MD data. RF model trained on static descriptors
(derived from crystallographic data: green), and augmented with dynamic and time series
descriptors (derived from MD simulations: red). Triangle: mean; horizontal line inside box:
median. Scaffold split for a given ligand dataset is deterministic in nature, therefore only a
single measurement point is visible.

Features of a representation (i.e. descriptors) may have varying impact on many prediction
tasks. Here we compare the correlations of each descriptor derived from crystallographic
data, and the ts_descriptors derived from MD simulations, to assess how they influence the
affinity prediction task. Figure 8 shows that the application of molecular dynamics results in
increased correlations within almost all decryptors (with the exception of the Anionic term). In
the group of pocket geometric descriptors, the correlation values are comparable. In this
case of pocket descriptors, ts_descriptors resulted in multiple correlation increases. For
example, the pocket_C descriptor has a Pearson correlation of 0.00, compared to 0.57
obtained by its ts_descriptor: benford_correlation. The individual performance of the
ts_descriptors however does not seem to add up to the final model performance (Figure 7).
This effect is probably due to non-linear cross-correlations present between ts_descriptors.
Such nonlinearity is difficult to filter beforehand. Figure 8 clearly shows that with the right
procedure for feature selection, the use of MD can introduce relevant information not present
in the crystallographic structures.
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Figure 8: Pearson correlation coefficient of six types of descriptors expressed by the
absolute value of the descriptor in relation to affinity. The green color represents the
results obtained by descriptors calculated from crystallographic structures, blue with their
corresponding ts_descriptors as calculated from the MD simulations (20ns), used in the
model.

Ablation studies
Ablation studies involve removing or disabling elements of a model, such as features or
parameters, to understand their individual contributions to overall performance or behavior.
Table 3 provides a summary of such studies done with both models on two types of splits.
Overall, the MD-derived model performs better in nearly all comparisons. For the target split,
the differences between the crystallographic and the MD-derived model performance are
higher than for the random split, confirming previously observed better generalizability of the
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latter model. It is worth noting that MD-derived model has a lower variance in almost all
cases.
The crystallographic model performs very well when trained only on pocket descriptors.
However, in the case of a target split, the crystallographic model trained only on the pocket
descriptors performs significantly lower than the MD-derived model from which it was
superior on the random split. One explanation of this result is the interdependence of pocket
and ligand descriptors. Since pocket descriptors are calculated with respect to the ligand
position, ligand information is also implicitly contained.
An interesting result was achieved by the models trained only with ECFP4 and ligand
properties. These models have an elevated performance in affinity prediction, suggesting
they learn certain biases and random relationships in the data rather than predict affinity as a
function of both target and ligand complex. Similar conclusions in the context of
protein-ligand affinity have been noted in other work as well [45–47]

Random Split Target split

PCC r2 PCC r2

Descriptors MD Crystal MD Crystal MD Crystal MD Crystal

Base (all
desc.)

0.733
(0.045)

0.727
(0.050)

0.529
(0.057)

0.513
(0.064)

0.598
(0.066)

0.576
(0.102)

0.318
(0.104)

0.294
(0.136)

ligand prop.
+ ECFP4

0.691
(0.036)

0.691
(0.036)

0.463
(0.044)

0.463
(0.044)

0.522
(0.088)

0.522
(0.088)

0.212
(0.134)

0.212
(0.134)

pocket
desc.

0.679
(0.043)

0.714
(0.044)

0.453
(0.054)

0.501
(0.058)

0.544
(0.074)

0.524
(0.073)

0.257
(0.103)

0.229
(0.103)

motion
desc.

0.582
(0.051)

- 0.331
(0.058)

- 0.532
(0.073)

- 0.239
(0.103)

-

Interaction
desc.

0.509
(0.050)

0.463
(0.059)

0.250
(0.050)

0.196
(0.052)

0.450
(0.084)

0.257
(0.141)

0.147
(0.107)

-0.01
(0.103)

ligand
geometry

0.507
(0.060)

0.493
(0.061)

0.249
(0.061)

0.230
(0.063)

0.437
(0.114)

0.417
(0.106)

0.119
(0.171)

0.100
(0.152)

pocket
geometry

0.585
(0.044)

0.583
(0.054)

0.334
(0.050)

0.329
(0.066)

0.531
(0.072)

0.526
(0.083)

0.234
(0.088)

0.225
(0.124)

Table 4. Ablation studies of the crystallographic and MD-derived models. The
‘Descriptors’ column describes the sole group of descriptors on which the model has been
trained. Standard deviation values are given in brackets.

Conclusion
The application of molecular dynamics in the context of protein ligand affinity prediction may
offer advantages. One of the important conclusions derived from this work is that the length
of the MD simulation did not substantially improve affinity prediction (Figure 7). The results
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show that within the tested length (10-200ns), there is a slight performance gain from 10ns
to 20ns, both for random and target splits, however conducting more lengthy simulations did
not prove useful for the predictive models. In addition, when correlating time series
descriptors to affinity, significantly higher Pearson correlation values for multiple descriptors
were observed for the 20ns model compared to 200ns. One possible explanation is longer
simulations also introduce more variational noise, difficult to filter by the simple ML models.
This conclusion might change however with longer timescales, other types of targets or
setups but when testing narrow time windows (under 0,2ps), a short simulation is enough to
extract relevant dynamic features. This conclusion brings hope to the inclusion of MD
simulation into protocols concerning diverse chemical library screening and hit prioritization
and is also consistent with some previous works done on specific targets [10,16,17].
It is important to note the observed better generalization potential of the MD augmented
models (Figure 7). In this context generalization refers to the ability of a model to perform
well on unknown targets, not present in the training dataset. In this work this is ensured by
splitting the data using Uniprot ID rather than PDBID. Indeed for such challenging splits the
models trained on MD-derived descriptors show performance advantage and importantly a
substantially lower variance in the form of a smaller SD. Moreover the better generalization
potential is obtained despite a much lower number of MD training examples compared to
crystallographic examples. The difference is not observed with randomly split data, where
both models achieve comparable performance (Figure 7).
In the case of novel feature representation, the two models consider different descriptors to
be most relevant; ligand descriptors for the crystallographic model and the descriptors
directly derived from motion for the MD-derived model. Interestingly, we noted a number of
time series derived descriptores with significantly better correlations compared to their static
counterparts (Figure 8). Their summarized influence however did transfer only slightly to
improved affinity prediction performance. Given the cross-correlation filtering was conducted,
this would suggest a lot of non-linear dependence decreasing the overall performance. The
ablation analysis and Shap studies further confirms these findings, showing the two models
employ different types of descriptors. Despite the difference, results of both models are quite
similar for random splits. However for the target splits, an advantage of MD-derived models
can be observed. This may indicate generalizability advantages of the time series
descriptors, further highlighting their potential for further application.
In conclusion, we have developed the largest, publicly available dataset of molecular
dynamics simulations of protein ligand complexes simulations. We treat the MD-derived data
as time series in order to extract meaningful statistics and other characteristics of the data
that would improve the task of affinity prediction. We found that using simple ML models in
combination with a relatively small number of descriptors yields results comparable to highly
complex models based on neural networks, with a large number of parameters. We highlight
that short (~10ns) molecular dynamics simulations provide relevant information for affinity
prediction and that elongation of the simulations does not improve predictive power. Finally,
we conclude that models based on MD-derived data treated as time series do not achieve
significantly better results compared to models based on crystallographic data, although they
appear to be better at generalization. It should be emphasized that the analyzed set, despite
being the largest in the currently available literature, is still relatively small and the
conclusions should be tested against a larger body of structures.
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