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Computational crystal structure prediction (CSP) is an increas-
ingly powerful technique in materials discovery, due to its abil-
ity to reveal trends and permit insight across the possibility
space of crystal structures of a candidate molecule, beyond sim-
ply the observed structure(s). In this work, we demonstrate the
reliability and scalability of CSP methods for small, rigid or-
ganic molecules by performing in-depth CSP investigations for
over 1000 such compounds, the largest survey of its kind to-
date. We show that this highly-efficient force-field-based CSP
approach is superbly predictive, locating 99.4% of observed ex-
perimental structures, and ranking a large majority of these
(74%) as among the most stable possible structures (to within
uncertainty due to thermal effects). We present two examples of
insights such large predicted datasets can permit, examining the
space group preferences of organic molecular crystals and ratio-
nalising empirical rules concerning the spontaneous resolution
of chiral molecules. Finally, we exploit this large and diverse
dataset for developing transferable machine-learned energy po-
tentials for the organic solid state, training a neural network
lattice energy correction to force field energies that offers sub-
stantial improvements to the already impressive energy rank-
ings, and a MACE equivariant message-passing neural network
for crystal structure reoptimisation. We conclude that the ex-
cellent performance and reliability of the CSP workflow enables
the creation of very large datasets of broad utility and explana-
tory power in materials design.
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Introduction
The discovery of new materials is important for addressing
many critical societal needs, including energy production and
storage, pollution remediation and healthcare. Research en-
deavours aimed at improving the success and efficiency of
functional materials discovery, based on traditional efforts
developing our understanding of the rules of crystal packing
and, more recently, applications of machine learning, have
benefited greatly from the availability of databases of stable
crystal structures.
A major resource for such efforts has been the growth of ac-
cessible, curated databases of crystal structures and (some
of) their properties. The most general and widely-used in-
clude the Cambridge Structural Database (CSD) (1) for or-
ganic and organometallic systems, and the Inorganic Crystal
Structure Database (2). These resources are unparalleled in
their volume of experimental crystal structure information,

but do not currently offer information about calculated or hy-
pothetical structures. Historically, such data was limited to
specialised areas (such as the Atlas of Prospective Zeolite
Structures (3)), though recent developments have made re-
markable progress in generalising this concept, including ex-
tensions to the Crystallography Open Database (COD)(4–7)
and the Materials Project (8). In the field of organic molecu-
lar crystals, however, much of our understanding of the rules
of crystal packing derive from databases of experimentally
observed structures.
Modern computational chemistry, employing both molecular
and solid-state simulation techniques, can add significantly
to the information that is available from experimentally de-
termined crystal structures, and identify previously unverifi-
able trends. Computational studies of polymorphism(9–13)
have evaluated the typical lattice energy differences between
crystalline polymorphs of organic molecules, studies of con-
formations of flexible molecules (11, 14) in their observed
crystal structures have improved understanding of the lim-
its of molecular strain in stable structures, and studies of the
thermodynamics of co-crystallisation (15–18) have aided in
rationalising a complex phenomenon with ramifications for
experimental design.
A more complete and, crucially, predictive view of organic
crystal packing can be obtained from crystal structure pre-
diction (CSP) (19, 20). A core concept in CSP is the crys-
tal energy landscape (or CSP landscape) – the set of plausi-
ble crystal packings for a chemical species (or combination
thereof), representing an exploration of the crystalline con-
figuration space to identify candidate structures predicted to
be stable (which ideally includes any observed structures),
ranked in terms of this stability. These CSP landscapes are of
great utility in understanding and rationalising the thermody-
namic and kinetic behaviour of crystal systems; multiple low-
energy minima that are close-lying on a CSP landscape may
be indicative of a significant risk of polymorphism, while dy-
namical simulations exploring these landscapes give insight
into the kinetic trapping of metastable forms(21) and the ob-
served absence of other predicted forms (22, 23).
Moreover, the energy landscape forms the foundation of
the energy-structure-function maps that have in recent years
demonstrated great power in materials discovery (24–27). By
associating computed properties (e.g. gas uptake, charge car-
rier mobility) with hypothetical crystal structures from the
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CSP landscape, it becomes possible to predict whether a
molecule is a promising candidate for creating new functional
materials, i.e. if it has one (or more) favourably-ranked crys-
tal structures which are predicted to achieve the desired prop-
erty.
The techniques and challenges in the field of organic CSP
have been reviewed (19, 20); we provide a brief overview for
the sake of context. CSP is typically considered a combina-
tion of two broad challenges: efficient and thorough sampling
of the configuration space of crystal packing, and accurate,
cost-effective structural optimisation, ranking, and property
calculation.
The sampling of hypothetical crystal packing arrange-
ments is made extremely difficult due to the “curse of
dimensionality“—the number of independent degrees of free-
dom to sample creates a vast configurational space. As a
result, simple grid-based sampling approaches must be es-
chewed in favour of more sophisticated techniques, such as
low-discrepancy quasi-random sampling (28, 29) and genetic
algorithm approaches.(30)
Meanwhile, the optimisation and ranking methods must be
accurate enough to describe the fine balance of different inter-
molecular interactions (electrostatics, dispersion, hydrogen-
bonding, etc.), resolving lattice energy differences often
smaller than a kJ mol−1, while sufficiently cost-effective to
be applied to very large numbers (»105) of trial crystal struc-
tures. Historically, this has entailed the use of simple em-
pirical force fields, but modern developments often employ
tailor-made force fields (18, 31) or machine-learned poten-
tials derived from ab initio calculations. Still, empirical force
fields retain their power even today due to their efficiency and
broad transferability, often being the initial step of a hierar-
chy of increasingly accurate (and expensive) energy models
employed in one CSP workflow.
Despite these two broad and ongoing challenges, organic
CSP has demonstrated enormous success in diverse ap-
plications, crucially proving itself to be a truly predic-
tive technique, guiding synthesis and discovery of novel
forms of porous materials (24), highly-flexible pharmaceuti-
cal molecules (31), co-crystals (32), simple molecules previ-
ously thought to be monomorphic (33) and templating of pre-
dicted metastable polymorphs.(34) A recurrent landmark in
the field is the series of Cambridge Blind Tests of CSP, show-
casing the diversity of methods (and success rates thereof)
employed within different CSP techniques to predict exper-
imental crystal structures without any knowledge beyond
the molecular chemical diagram (35). Recent iterations of
the Blind Test have demonstrated that CSP method devel-
opment is successfully keeping apace with the complexity
of molecules and crystal structures specifically selected to
stress-test it.
Some of the most consequential recent developments in CSP
have employed machine learning (ML) techniques in one
form or another (36). Among the most intuitive applications
is the use of ML to learn relationships between the structure
and lattice energy, either by learning the difference (i.e. ∆-
ML) between lattice energies computed at a lower level of

theory to those at a higher level,(37–40) or to learn the re-
lationship between the lattice energy and the ML descriptors
directly through the training of ML potentials (41, 42). These
approaches have achieved high accuracy predictions at a frac-
tion of the cost of the full periodic density functional theory
(DFT) reference calculations – particularly significant given
the latter’s ubiquity in recent Blind Test entries.
That said, ML techniques have further applications in CSP
beyond improved optimisations and energy rankings. In par-
ticular, ML and related approaches applied to databases of
experimental crystal structures and properties have demon-
strated success in predicting NMR chemical shifts (43) and
in formulating models of molecular hydrogen bond propensi-
ties within crystals (44). Recent work by Cersonsky (45) has
demonstrated machine-learning of the relationship between
crystal lattice energies and the relative contributions to these
by different chemical functional groups, paving the way for
data-driven insights into new crystal engineering techniques.
ML also been shown to have potential to enhance the anal-
ysis of crystal energy landscapes, by identifying structure-
function relationships that might evade simple inspection but
nevertheless offer explanatory and predictive power (46).
Our aims in this work are threefold. Firstly, we seek to
demonstrate the capability of our method for efficient, large-
scale rigid-molecule organic CSP by presenting the results
of the largest to-date CSP study, applying the methods to
over 1000 molecules with observed crystal structures in the
CSD. Secondly, we in turn assess the quality and reliability
of our method by evaluating how often the experimental crys-
tal structures of these molecules are reproduced in our CSPs,
and how well they are ranked energetically compared to hy-
pothetical structures on their CSP landscapes. Finally, we
demonstrate example applications of this dataset, including
assessing the distribution of CSP-derived space group prefer-
ences as a function of predicted lattice energy, spontaneous
resolution of chiral molecules and the training of transferable
machine-learned energetic models from a very large set of
CSP landscapes.

Computational Methods
Molecule Selection. We used the CSD’s ConQuest soft-
ware and Python API (1) to search the CSD for crystal struc-
tures of rigid molecules to which our CSP methods could
be applied on a very large scale. Restricting our search to
solved crystal structures (i.e. with coordinates for all atoms
in the asymmetric unit) of single chemical species (no co-
crystals, solvates, inclusion compounds), we additionally fil-
tered structures based on the following criteria: containing
only elements from C, H, N, O, F; Z′ ≤ 1; molecular weight
less than 230; and importantly containing no rotatable bonds
(as defined by the CSD’s internal criteria).

Molecular Geometry Optimisation. For each molecule,
we began by extracting its in-crystal conformation from the
corresponding CSD entry (where there is more than one en-
try, we select only the first listed in the database). This molec-
ular conformation was optimised in DFT (as implemented in
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Gaussian(47)), using the PBE0 (48, 49) exchange-correlation
functional, a Pople-type 6-311G** basis (50), and Grimme’s
D3 dispersion correction (51) with Becke-Johnson damping
(52).
Distributed multipole analysis (DMA,(53, 54) using the
GDMA package) was performed on the resulting molecular
conformers’ charge densities to obtain atom-centred multi-
poles, as part of the model potential applied during lattice
energy minimisation of trial crystal structures; multipoles up
to hexadecapole were calculated for all atoms. The MUL-
FIT (55, 56) software was used to fit atomic point charges
for each molecule to best describe the molecular electrostatic
potential. The resulting molecular conformers and their sets
of multipoles are then used as the inputs to CSP, with each
unique molecule represented by a single conformer and cor-
responding set of atomic multipoles and charges.

Crystal Structure Generation and Optimisation. CSP
was performed using the Global Lattice Energy Explorer
(GLEE) package,(28) which uses quasi-random sampling of
crystal packing variables to generate trial crystal structures
uniformly distributed across the lattice energy landscape, fol-
lowed by rigid-molecule lattice energy minimisation using an
anisotropic atom-atom intermolecular force field. All result-
ing local energy minima are treated as possible crystal struc-
tures of the molecule.
Space group symmetry is used to reduce the dimensional-
ity of the search space, so that only the position and ori-
entation of molecules in the asymmetric unit are sampled,
with all other molecules in the unit cell generated by symme-
try. In this study, we restrict ourselves to generating crystal
structures with one independent molecule in the asymmetric
unit (Z′ = 1). We sampled the 26 most commonly observed
space groups for organic molecular crystals (listed in Sup-
porting Information); these space groups cover over 99.4% of
Z′ ≤ 1 structures in the CSD. These space groups were sam-
pled equally, irrespective of their observed frequency in the
CSD: quasi-random structures are generated and lattice en-
ergy minimised until 10,000 successfully energy minimised
crystal structures were found in each space group (260,000
structures per molecule). The CSP process is highly paral-
lelisable, as each crystal structure structure is independent.
Trial crystal that passed geometric checks were lattice
energy-minimised in three stages. Non-electrostatic inter-
actions (principally intermolecular dispersion and exchange-
repulsion) were described by the FIT exp − 6 force field
(57, 58), supplemented by fluorine parameters from Williams
and Houpt.(59) At the final stage of optimisation, performed
using DMACRYS,(58) the FIT potential was applied with
atomic multipole electrostatics. Full details are provided in
Supporting Information.
It is commonplace that multiple unique initial configurations
optimise to the same local energy minimum. We remove
these duplicates by fast comparison of simulated powder X-
ray diffraction patterns, followed by structural comparisons
using the COMPACK (60) algorithm as implemented in the
CSD Python API.

Locating Experimental Structures on the Landscapes. To as-
sess our CSP workflow’s performance, comparison of the
known experimental crystal structures to the sets of predic-
tions was automated using the COMPACK algorithm be-
tween the experimental crystal structures of these molecules
and every unique crystal structure of that molecule in the CSP
set.

Machine Learned Interatomic Potentials. To investigate
the potential of the CSP dataset to train data-derived mod-
els, a subset of the predicted crystal structures with ener-
gies within 8.0 kJ mol-1 of the global energy minimum on
their CSP landscape was selected for training a lattice energy
correction to the FIT+DMA force field. The subset was de-
termined by active learning via query-by-committee using a
committee of eight high-dimensional neural network poten-
tials (NNPs), with selected structures evaluated by DFT+D
single points at the B86bPBE+XDM level. From this, a
dataset of the crystal structures and the corresponding energy
correction between the FIT+DMA and B86bPBE+XDM lat-
tice energies (∆E) was created. B86bPBE+XDM lattice en-
ergies were calculated as the total energy less the energies of
the isolated molecules from the unit cell calculated with the
same basis set and tolerances.
The initial dataset (before the active learning iterations) was
generated by randomly selecting up to 10 low energy pre-
dicted crystal structures for each compound, resulting in a
dataset of 10,249 structures approximately evenly distributed
across the compounds. To evaluate transferability, the to-
tal dataset was partitioned into a training dataset consist-
ing of the CSP structures for a randomly selected ca. 85%
of the compounds and an extrapolation test set consisting
of CSP structures for the remaining compounds. A fur-
ther in-domain test set was formed by randomly extract-
ing one structure per compound from the training set. The
NNPs were then trained on the remaining training dataset to
yield a ∆-ML model capable of predicting the lattice en-
ergy correction. The standard deviation between the en-
semble of NNPs was used to estimate the uncertainty of
predictions, and was exploited in the active learning itera-
tions to add high uncertainty candidates from the remaining
low energy predicted structures of the training compounds,
which overall added a further 1000 structures to the training
set. Corrected CSP landscapes were calculated using the fi-
nal model by adding predicted lattice energy corrections to
the FIT+DMA energies (FIT+DMA+∆-ML). Additionally,
for performing unconstrained geometry optimisations MACE
equivariant message-passing neural network (MPNN) mod-
els were trained using a dataset derived from that of the NNP
correction model. Further details of the datasets and machine
learning models are provided in the supporting information.

Results
Diversity of Survey Set. Our aforementioned search crite-
ria yielded 1007 distinct molecules crystallising in 1040 crys-
tal structures observed in the CSD. The constraint of no rotat-
able bonds necessarily limits chemical diversity, but despite
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Fig. 1. Molecular diagrams and crystal structure CSD reference codes for (top
three rows) a random selection of the 1007 molecules included in the large-scale
CSP study. The bottom three rows show molecules in the set with the largest dif-
ferences between in-crystal and optimised molecular geometries (as measured by
all-atom RMSD); the CSP landscapes for these molecules were re-optimised using
the transferrable MACE model (final section).

functional functional functional
group count group count group count

benzene 418 ether 572 ester 134
pyridine 76 amide 297 carbonyl 702

imidazole 35 imide 43 imine 13
furan 22 lactone 91 secondary amine 405

piperdine 51 epoxide 73 tertiary amine 537
urea 22 ketone 269 halogen (F) 240

Table 1. Total counts of selected functional groups across the full set of molecules,
as assessed by RDKit(61) from SMILES strings.

this our candidate set still displays a variety of chemical func-
tionalities and molecular structures, as seen in Figure 1 and
Table 1. A complete list of molecules, including formulae,
CSD refcode identifiers, SMILES strings, and systematic and
common names is available in the Supporting Information.

Deviation between experimental and gas-phase conforma-
tions. Despite restricting our set to molecules containing no
rotatable bonds, this does not preclude molecular flexibil-
ity entirely. More complex collective motions cannot be de-
scribed in terms of a single torsional angle about a covalent
bond, and so molecules displaying such conformational flex-
ibility are present in this candidate set – the prototypical ex-
ample is a ring “flip” or buckling, such as the boat-chair in-
terconversion of cyclohexane rings.
As a measure of the typical deviation in molecular geome-
try between the observed crystal structures and the DFT op-
timised molecules used in CSP, we present in Figure 2 the

Fig. 2. A histogram of the RMSD between all atomic positions in the gas-phase
optimised CSP candidate molecules, relative to their initial in-crystal conformations.
The red portions of each bar indicate the molecules in that bin with spiro carbon
centres.

histogram of all-atom root-mean-squared deviations (RMSD)
in atomic positions between the gas-phase conformers used
in CSP and their in-crystal initial conformations as extracted
from the CSD.
As might be expected from such rigid molecules, the aver-
age RMSD after gas-phase optimisation is very small – ap-
proximately 0.11 Å, which corresponds to e.g. adjusting the
C-H bond lengths in fluorobenzene by 0.16 Å. While the dis-
tribution is skewed towards small conformational changes,
the outliers with larger RMSD values demonstrate the lim-
itations of defining molecular flexibility in terms of rotat-
able bonds alone. The largest RMSD values correspond
to systems where changes in ring conformation cause large
overall molecular changes – the largest observed RMSD
of 0.60 Å occurs in 7-oxa-1-azaspiro(4.4)non-1-en-6-one
1-oxide (CSD reference code: DOBYOJ), in which a 5-
membered saturated ring can twist about a spiro carbon cen-
tre. The highest molecular RMSD values are largely associ-
ated with molecules containing spiro carbon atoms (denoted
by the red portions of bars in Figure 2).
Regardless, the overall inflexibility displayed by this set
serves as a strong indicator that our assumption of a single,
near-crystalline conformer of each molecule is reasonable,
and unlikely to be a systematic source of error in predicting
many known structures of molecules in this set.

Crystalline diversity. Figure 3 shows a comparison of the
distribution of crystallographic space groups for most small
molecules in the CSD to the rigid-molecule subset selected
for our CSP survey. There is no significant difference in
the relative occurrence of different crystalline symmetries
between the two sets, though the relative ordering of space
groups by frequency varies slightly. For example, space
group 15 (C2/c) is observed slightly more frequently in our
rigid set and space group 2 (P 1̄) slightly less so. Regard-
less, our rigid molecule set is reasonably representative of the
range of crystal packing symmetries observed in the CSD.
In contrast, our rigid molecule set displays a diminished fre-
quency of hydrogen bonding (H-bonding) in the observed
crystal structures compared to the CSD more generally, as
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Fig. 3. The relative frequency of space groups observed for crystal structures
(where Z′ ≤ 2) of molecules in the CSD with a molecular weight under 230 (black)
and the subset (blue) of these molecules with no rotatable bonds selected for our
CSP surveys. The distributions are presented for only the 20 most common space
groups (of the general molecule case) for clarity.

might be expected by excluding rotatable bonds. 26.7% (277)
of crystal structures of molecules in our subset contain at
least one intermolecular H-bond. This compares to 62.3%
of structures of molecules of similar size without rotatable
bond restrictions, demonstrating the bias introduced by the
omission of common H-bonding groups due to their flexibil-
ity, including alcohols ( – OH), carboxylic acids ( – COOH),
and primary amines ( – NH2). However, the proportion of
H-bonded systems is still significant enough that meaning-
ful H-bond chemistry is incorporated in our survey, albeit
underrepresented. Consequently, our set in turn overrrepre-
sents chemistry such as π-π stacking and “weak” (i.e. more
isotropic, less localised) interactions, and assessments of our
CSP energy model’s performance must be made with these
biases in mind.

Quality Assessment of the CSP Results. We propose
that the dataset of predicted crystal structure landscapes
across a large, diverse set of molecules is valuable for the
development of future predictive models. To evaluate the
quality of the dataset, we assess three aspects: complete-
ness of the landscapes; how well, geometrically, the CSP
calculations reproduce the known crystal structures of these
molecules and the quality of the relative energies of the pre-
dicted structures.
The 26 space groups included in our standard search include
those with an observed frequency above 0.05 % in the CSD.
Naturally, in a very large survey of molecules, we include
some that crystallise in less frequent space groups; for these
8 cases, we added the space group of the observed crystal
structure to the search. In 3 additional cases, the symmetry
of the observed structure means that it could not have been
sampled without performing CSP with multiple independent
molecules (Z’ > 1); in these cases, we include the datasets in
our study, knowing that the observed crystal structures could
not have been located. Of those that could have been located,
the searches find matches for 1034 of the 1040 observed crys-
tal structures: reasons for the 6 missed matches are discussed
below.

Fig. 4. An example CSP landscape for a single molecule – the set of predicted
lattice energy minima from our CSP workflow. Each point represents a local energy
minimum, and thus a stable hypothetical crystal packing. The blue square point is
the global energy minimum, which in the absence of experimental information is
taken to be the most likely crystal structure. If the red circled point is a match to the
experimentally-observed crystal structure, ∆E is the difference in energy between
it and the global minimum, the energy rank used in this work as a measure of the
quality of the calculated energies.

Fig. 5. A histogram of the frequency (blue bars) with which our CSP workflow
achieves a match to the experimentally-known structures of our molecule set,
grouped by the relative energy of that match compared to the CSP global mini-
mum (0.5 kJ/mol bins). The red dashed line relates to the secondary (right) y-axis,
the proportion of known structures located successfully as a function of the relative
energy at that bin and below. Note the broken x-axis; the highest-energy bin (blue
hatching) encompasses all matches with relative energy greater than 10 kJ/mol.

A main assumption in CSP is that the observed crystal struc-
tures of a molecule correspond to the lowest energy possible
structures. We use this assumption to assess the quality of the
calculated energies. Figure 5 summarises the energetic rank-
ing of experimentally observed crystal structures within the
CSP landscapes via the distribution of ∆E, the energy differ-
ence between the prediction matching the experimental crys-
tal structure and the global lattice energy minimum crystal
structure on their parent molecule’s CSP landscape; an exam-
ple landscape is shown in Figure 4. In the case of molecules
with chiral centers and only one stereoisomer present, ∆E is
calculated only among Sohncke space groups (those whose
symmetry elements contain only translations, rotations and
rototranslations).
Of the 1034 experimentally determined crystal structures
where a matching structure was identified on the CSP land-
scape, 424 (41%) correspond to the global lattice energy min-
imum from CSP. Those that do not correspond to global en-
ergy minima could be due to inaccuracy of the model po-
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Fig. 6. A histogram of the geometric deviation between experimentally-determined
crystal structures and the corresponding matching structures from CSP. The devia-
tion is measured as the RMSD in atomic positions within 30-molecule clusters from
experimental and CSP structures. Note the broken x-axis – the largest-deviation
bin (green hatching) includes all matches with RMSD30 greater than 1.0 Å.

tential (FIT+DMA), neglect of other contributions to the lat-
tice free energy or where the kinetics of crystallisation favour
a metastable structure. Nyman and Day found that, for
crystals of rigid molecules, lattice vibrational contributions
to room temperature free energy differences between poly-
morphs rarely exceed 2 kJ/mol(9, 10); 767 (74%) of observed
crystal structures are found within 2 kJ/mol of the global en-
ergy minimum – the estimated error introduced by neglecting
lattice vibrations and thermal expansion in the CSP calcula-
tions.
Furthermore, the known structure(s) almost always lie within
8 kJ/mol of the global lattice energy minimum (1011,
97.8%, of the observed crystal structures), consistent with
the observation(10) that known polymorphic pairs of small,
rigid molecules are rarely separated by more than this en-
ergy difference. Thus, the energy model used here, com-
bining empirically parameterised repulsion-dispersion with
atomic multipole electrostatics, provides energy ranking of
crystal structures that is consistent with observed polymor-
phism, within the limits of temperature-free lattice energy-
based predictions.
We quantify the geometric quality of the predictions using
an all-atom RMSD within 30-molecule clusters (RMSD30)
from experimentally-determined crystal structures and their
corresponding match within the CSP sets. A histogram
of RMSD30 (Figure 6) shows that geometric agreement is
generally very good: RMSD30 is below 0.4 Å in 78.9%
(816) of matches. As a visualisation of this level of
agreement, Figure 7 shows an overlay of the X-ray de-
termined crystal structure of (1aR,2aS,5aS,5bS)-perhydro-
4H-oxireno(3,4)cyclopenta(1,2-b)furan-4-one(62) (CSD ref-
erence code SIBJIX) and the predicted global lattice energy
minimum, with RMSD30 = 0.393 Å. As a reference for these
values, consider the RMSD30 between structural determina-
tions of the same crystal structure at ambient and low tem-
perature: RMSD30 = 0.204 Å between neutron diffraction
crystal structures of naphthalene at 5 K and 295 K, and
RMSD30 = 0.160 Å between 20 K and 330 K crystal struc-

Fig. 7. Overlay of 30-molecule clusters from the X-ray determined crystal structure
(atoms coloured by element, CSD reference code SIBJIX) with the matching predic-
tion (blue) – the global energy minimum structure for (1aR,2aS,5aS,5bS)-perhydro-
4H-oxireno(3,4)cyclopenta(1,2-b)furan-4-one. For this match, RMSD30 = 0.393
Å.

tures of form I paracetamol(63). 327 matches have RMSD30
below 0.204 Å, i.e. have geometric deviations that are of a
magnitude that can be explained by the temperature-free na-
ture of structural optimisations used in CSP. While known
crystal structures are reproduced very well by CSP in most
cases, there are a small number where agreement is less sat-
isfactory: in 32 cases (3 % of structures), RMSD30 > 1
Å. Despite what might be assumed, we find no significant
correlation between the RMSD30 of the experimental match
and the molecular RMSD of the parent gas-phase conformer
used for CSP. Assuming an experimental match is found, the
geometric quality of the match is only weakly sensitive to
the difference in the molecular conformation used for CSP;
even the most extreme outlier in molecular conformational
change (the aforementioned DOBYOJ) achieves a reasonable
geometric match to the experimental crystal structure, with
RMSD30 = 0.654 Å.
It is evident that an overwhelming proportion of such rigid
molecules can successfully be treated with the CSP work-
flow implemented here. Our sampling procedure followed
by a cost-effective, approximate minimisation method suc-
cessfully locates the vast majority of observed crystal struc-
tures with excellent geometric agreement to the experimental
structure, and routinely ranks them as among the most stable
structres on the landscape.

Analysis of individual outliers. The cases where no match
whatsoever is found to the experimental structure are limited
– approximately 0.5% of the experimental structures consid-
ered.
One missed match was for the molecule 4,8b-
dihydropyrrolo[3,4-b]indole-1,3(2H,3aH)-dione (CSD
reference code BUVGAC), which displays a large deviation
in molecular geometry between the observed crystal and the
gas phase optimised geometry used in CSP. Flexibility in the
fused ring system allows the molecule to “fold up” in the
gas-phase optimisation, sufficiently to change its packing
behaviour. As a result, the experimental crystal structure
is not a minimum on a CSP landscape derived from the
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gas-phase conformer.
In the case of DNNEPH10 (1,8-dinitroso-naphthalene), we
fail to find the experimental structure despite an apparently
rigid, planar molecule that changes very little in the gas-phase
optimisation. However, even optimising the known crystal
structure using our FIT+DMA energy model results in a final
structure that does not match, i.e. the experimental structure
appears to be unstable at our level of theory. This may in-
dicate a failure of our energy model for a case of somewhat
unusual chemistry.
Two of the missed matches are unusual cases in which a
refcode “stem” (the initial six letters, typically shared by
a “family” of multiple CSD entries of the same species) is
used by crystal structures containing distinct chemical bond-
ing arrangements. Our procedure takes a single representa-
tive of a CSD refcode family as the source for the molecular
connectivity, which was assumed to stay fixed. In the case
of refcodes XUGHUD/XUHGUD01, there is a tautomeric
difference, which led to no match with XUHGUD01. For
IHEPUG/IHEPG02, the subject molecule is a diastereomeric
fused ring system, which exists in an anti configuration in
IHEPUG, but a syn configuration in IHEPUG02. It is ar-
guable that these crystal structures should not be considered
part of the same “family”, as these distinct bonding arrange-
ments are not interconvertible. CSP was performed with the
isomer found in IHEPUG, so no crystal structure matching
IHEPUG02 was located. These two systems demonstrate a
shortcoming of our approach, in that we assumed that a given
CSD refcode “stem” always denotes the same molecular con-
nectivity, including protonation states. Fortunately, these are
the only instances of this assumption failing in the entire set.
Our final missed match occurs for QIBCEK,
benzo(f)phthalazin-4(3H)-one, another rigid planar
molecule. However, upon inspection, we posit that
there are flaws in the experimental determination of this
structure as held in the CSD – there are extremely close
hydrogen contacts (<1.4 Å) and an unsatisfied potential
hydrogen-bonding arrangement despite a 1:1 donor-acceptor
availability. While we retain it as a missed match for the
purposes of conservatively asssessing our CSP method’s
performance, we also emphasise that such a large-scale,
unbiased workflow has potentially identified an incorrect
experimental structure simply through its absence from the
CSP landscape.

Revisiting Empirical Rules. Large databases of experi-
mentally determined crystal structures have been analysed
to uncover trends in the packing preferences of organic
molecules. The availability of high quality crystal energy
landscapes should allow organic solid state researchers to
gain deeper insight into these preferences and, we hope, to
discover new rules that will benefit the field of crystal engi-
neering. We give two examples here: the unequal frequency
with which molecules occupy the possible space groups and
the spontaneous resolution of chiral molecules.

Space Group Preferences. There are strong space group
preferences for experimentally observed crystal structures:

over 80% of molecular crystals occupy 5 of the 230 three-
dimensional space groups. Having applied an approach in
generating trial crystal structures that is unbiased in the how
the 26 space groups included in our searches are sampled, we
analyse the results of CSP to investigate space group prefer-
ences within the low energy structures on the set of crystal
energy landscapes.
We preface our analysis by emphasising that the space group
frequencies presented in Figure 8 are those for the CSP land-
scapes, i.e. only those of structures generated using an asym-
metric unit containing a complete molecule (in these single-
species systems, Z′=1) and without detecting and assign-
ing additional symmetry after the minimisation. In contrast,
those of the observed crystal structures in the CSD are the
full, maximal-symmetry space group (allowing fractions of
molecules in the asymmetric unit, i.e . Z′ ≤ 1). Hence. the
space groups enumerated for the CSP set can be thought of as
“lower bounds” on the symmetry – higher-symmetry space
groups may be assignable if the molecules present internal
symmetry.
The global lattice energy minimum for each molecule is
the energetically preferred packing; the distribution of space
groups among the global minima structures are highly con-
sistent with the observed statistics – perhaps as expected, as
CSP has been demonstrated in this work to often identify ob-
served structures of these molecules as global minima.
Space group frequencies are often explained by close packing
arguments: the commonly observed space groups have com-
binations of symmetry elements that facilitate close pack-
ing of irregular shapes.(64) Examining the space group dis-
tribution amongst the densest predicted crystal structure for
each molecule gives a similar distribution to that from global
energy minima; minimising energy and maximising density
lead to similar space group preferences. However, there are
differences after the three most popular space groups: the
next few have almost equal frequencies among high density
structures, suggesting that they are equally good at promoting
close packing and that observed differences between these
space groups relate to subtler influences of symmetry on lat-
tice energy.
Considering hypothetical structures higher on the CSP en-
ergy landscape (up to the usual energy limit of polymor-
phism, 7.2 kJ mol−1, in the bottom right panel of Figure 8),
we see a further flattening of the distribution, and an over-
representation of space group 15 (C 2/c) compared to global
energy minima structures. These changes in distribution with
energy, which we do not examine in deeper detail here, are
only available from access to complete energy landscapes and
are relevant in the discovery of high energy, metastable mate-
rials, which have sometimes been observed to have attractive
properties.(24, 65) Thus, we feel that large datasets of CSP
landscapes hold potential for generalising our understanding
of symmetry preferences in molecular crystals.

Spontaneous Resolution of Chiral Molecules. As a second
example of insight that can be gained from large numbers
of crystal energy landscapes, we examine the tendency for
spontaneous resolution of chiral molecules. It is generally ac-
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Fig. 8. The relative frequencies of space groups of crystal structures. Light blue (top left) are those of rigid molecules in the CSD (as in Figure 3), while the rest are obtained
from CSP landscapes at the global density maximum (purple, top right), at the global energy minimum (blue, bottom left), and within 7.2 kJ/mol of the global energy minimum
(orange, bottom right). The ordering of space groups on the x-axis is chosen to match that in Figure 3. Only the 20 most common space groups for rigid molecules are
presented for clarity.

cepted that crystallisation from a racemic solution of a chiral
molecule more frequently yields racemic crystals rather than
undergoing spontaneous resolution into a mixture of crys-
tals, each containing a single stereoisomer.(66) However, in-
formation in structural databases alone is limited: knowing
whether crystals were grown from racemic or enantiomer-
ically pure solution is necessary to interpret the incidence
rate of spontaneous resolution and the molecular charac-
teristics that influence this behaviour. Furthermore, where
enantiomers separate upon crystallisation, it is not possible
to grow racemic crystals, so that comparison of racemic vs
enantiomerically pure crystal structures is not possible. Com-
puted crystal energy landscapes make it possible to compare
the structures and relative energies of the alternative crystalli-
sation outcomes.
In Figure 9, we show the difference in stability and den-
sity between the energy minimum across all Sohncke (i.e.
enantiopure) space groups and the minimum across enantio-
genic (i.e. racemic) space groups for the 356 molecules in
our set containing at least one chiral centre. This energy dif-
ference represents the propensity for spontaneous resolution
of a racemic solution compared to a racemic crystal of both
enantiomers.
In general, there is a slight but consistent lattice energy
penalty to enantiopurity – the average difference in lattice
energy between the enantiopure global minimum and the
racemic global minimum is 2.7 kJ/mol, favouring the race-
mate. Of the 356 chiral molecules, racemic crystallisation is
preferred in 86% (305) of molecules and spontaneous reso-
lution is predicted to occur for approximately 14% (51) of

Fig. 9. The difference in lattice energy (∆Elatt, top red histogram) and relative
density (∆ρ, right blue histogram) between the energy minimum in Sohncke (enan-
tiopure) space groups and that in racemic space groups, for all molecules in our
set containing at least one chiral centre. The scatter plot (center) displays the rela-
tionship between these values for each comparison (red and blue lines indicate the
origin, i.e. no change in either quantity).
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molecules, although those with small lattice energy differ-
ences could be influenced by thermal contributions that are
not included here. Moreover, this is accompanied (or perhaps
driven) by improved packing in the racemate – on average,
optimal enantiopure structures are 2.3% less dense than op-
timal racemic structures, consistent with the empirical Wal-
lach’s rule (67, 68).

Machine Learned Interatomic Potentials. One of the
more straightforward applications of machine learning in
CSP is for the prediction of high quality lattice energies, to
reduce the cost of geometry optimisations or of the final en-
ergy ranking of structures.(69) Such approaches have been
demonstrated in molecular organic CSP by training models
on the landscapes of individual molecules.(37, 39, 40) The
CSP dataset developed in this work has significant poten-
tial for training data-derived models for organic crystals that
could be applied more broadly.

Transferable ∆-ML lattice energy corrections. To illustrate
the use of CSP to train transferable machine-learned en-
ergy models, we trained a committee neural network po-
tential using atom-centred symmetry functions(70, 71) for
lattice energy corrections to the force field used in this
work (FIT+DMA), correcting the lattice energies to the
B86bPBE+XDM level. An initial model was trained on 7950
selected crystal structures from ca. 85% of the CSP land-
scapes (up to 9 crystal structures per landscape), randomly
selected from within 8 kJ mol-1 of the global energy mini-
mum of each landscape. This corresponds to just under 5%
of the crystal structures (166,395) within this energy range
for these landscapes. One crystal structure per landscape was
withheld as an in-domain test set, while 10 crystal structures
per landscape from the remaining CSP landscapes are used
as an extrapolation test set. Following initial training, ac-
tive learning was applied to identify crystal structures from
the training landscapes with highest uncertainty in the lattice
energy correction. After two iterations (adding 1000 training
structures), a slight decrease in errors was observed in the test
set, but no improvement in the extrapolation set (see Support-
ing Information), so training was halted. We also tried a third
iteration of active learning with a wider energy window on
each landscape, potentially including more diverse structures,
but this did not lower the errors on the test or extrapolation
sets. Consequently, we decided to proceed with the model
after two iterations of active learning.
The performance of the resulting model on the held out
test set shows remarkably low errors (Figure 10), returning
an MAE of just 0.93 kJ mol-1. Moreover, a similarly low
MAE of 1.57 kJ mol-1 is achieved on the extrapolation test
set, which contained crystal structures of compounds not in-
cluded in the training of the correction. Compared to the
errors for the baseline FIT+DMA, which returned MAEs of
7.80 and 7.95 kJ mol-1 on the test set and extrapolation set re-
spectively, the correction offers a marked improvement in ac-
curacy. The fact that the errors for the correction are slightly
higher on the extrapolation set shows that there are limita-
tions to the transferability of the correction. We expect that

better transferability can be achieved as we increase the num-
ber of CSP landscapes available for training; the generation
of additional landscapes can be targeted to weaknesses in the
underlying force field and molecular types where the current
machine learned correction has large errors.
Although the performance of the correction on the test sets is
encouraging, an important question is whether the improved
energies are significant enough to produce improved stabil-
ity rankings of organic crystals. To evaluate the influence on
ranking, we applied the correction to all of the CSP land-
scapes, re-ranking all the predicted structures based on the
corrected energies. Thereafter, we compared the ranking of
the matches to the experimental structures in terms of both
their ranking and their energy above the global minimum
with that found using FIT+DMA. Structures with predicted
uncertainties greater than 25 kJ mol-1 were omitted from this
analysis. This amounted to 257 structures (out of 3.9 mil-
lion total) with examination indicating the structures were
predominately high energy structures containing voids.
The resulting distributions (Figure 11) over both the training
and extrapolation compounds illustrate clearly that the cor-
rected energies in general improve the rankings of the exper-
imental structures. For instance, the correction results in an
increase from 424 (FIT+DMA) to 501 (FIT+DMA+∆-ML)
of observed structures ranked as global energy minima, and
an increase from 767 (FIT+DMA) to 839 (FIT+DMA+∆-
ML) within 2 kJ mol-1 of the global energy minimum (the
approximate limit of vibrational contributions to free energy
differences). These improvements are observed in the CSP
landscapes of the extrapolation and training molecules (see
Supporting Information). Importantly, the correction also
greatly improves the worst ranked experimental matches with
the proportion ranked above 35 in energy ranking decreasing
by over a third, from 69 (FIT+DMA) to 45 (FIT+DMA+∆-
ML) (see Supporting Information).

Transferable MACE total energy model. While the ∆-ML ap-
proach successfully improves the quality of the CSP energy
rankings, some of the CSP matches to experimental crystal
structures are still relatively high on their energy landscape,
even after applying the lattice energy correction. Consid-
ering the demonstrated accuracy of the correction, the high
relative energies could be the result of limitations with the
rigid-body lattice energy minimised geometries, which an
energy correction is unable to remedy. Indeed, many of
the structures with high relative energies are for compounds
which had large geometric deviations between the experi-
mental in-crystal molecular conformations and the gas-phase
optimised molecular geometries used (and kept rigid) during
CSP. Improving the performance of CSP for these more flex-
ible molecules in our study likely requires re-optimising the
predicted crystal structures and relaxing the rigid-molecule
constraint.
The FIT+DMA+∆-ML model is not suitable for this task be-
cause it is only a correction to the intermolecular contribution
to the lattice energy. Therefore, using a dataset derived from
the CSP structures selected for the energy correction model,
with perturbed atomic coordinates to sample conformational
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Fig. 10. Correlation of (left) force field (FIT+DMA) lattice energies and (right) force field with machine learned correction vs DFT (B86bPBE+XDM) lattice energies. The test
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Fig. 11. Histogram of the relative energies of matches to the experimentally-
determined crystal structures over all CSPs before (FIT+DMA) and after
(FIT+DMA+∆-ML) applying the data-derived B86bPBE+XDM lattice energy cor-
rection. Separate disctributions for molecules from the training and extrapolation
sets are shown in the Supporting Information.

degrees of freedom, we trained a total energy MACE (higher
order equivariant message passing neural network) model.
Full details are provided in the Supporting Information. The
trained MACE model was then applied to geometry optimise
the predicted structures of 15 compounds with large differ-
ences in molecular geometry between the observed crystal
structure and the DFT-optimised molecule (see Figure 1, bot-
tom three rows).
Re-optimisation with the trained MACE model yielded con-
siderable improvements in the geometric agreement of pre-
dicted structures with experiment and of their energy rank-
ing on the CSP landscapes (Table 2). RMSD30 between
experimental and predicted structures decreased upon re-
optimisation for 14 of the 15 compounds, by up to 1.4 Å, and
moved the match to the observed structure closer to the global
energy minimum in all but 2 cases, with 7 becoming the
global energy minimum structure. Figure 12 illustrates the
improved geometric agreement for one of these molecules.

Re-optimisation of CSP structures was also run for 4,8b-
dihydropyrrolo[3,4-b]indole-1,3(2H,3aH)-dione, where no
match to the experimental crystal structure (CSD reference
code BUVGAC) was identified in the CSP. However, no
match was identified after re-optimisation with the MACE
model; in this case, molecular flexibility would have been
required during structure generation, rather than post-CSP
re-optimisation. Now that a transferable MACE model has
been trained, it could potentially be implemented earlier in
the CSP workflow.
It should be noted though that the MACE model is a semi-
local model and so neglects long-range interactions that can
be important for highly accurate relative energies. Overall,
the results of the unconstrained optimisations confirm that
the high relative energies of these crystal structure matches
estimated by FIT+DMA+∆-ML are largely a result of limi-
tations with the rigid-body lattice energy minimised geome-
tries. It is worth reiterating that the limitations of the CSP
geometries only affected a small number of structures; in the
vast majority of cases, as shown earlier, the predicted struc-
tures at the FIT+DMA level achieved high quality matches to
the experimentally-determined crystal structures. Undoubt-
edly, the success of the FIT+DMA+∆-ML energy correction
is a reflection of the performance of the baseline empirical
force field.

Conclusions
We have presented (to our knowledge) the largest CSP
dataset produced to-date, serving as a computational survey
of crystal packing in the organic solid state for small, rigid
molecules. Using established, well-characterised CSP meth-
ods, we produced crystal structure energy landscapes for over
1000 such molecules, all of which have at least one known,
solved crystal structure available in the CSD. In total, our
CSP landscapes contain over 4 million unique crystal struc-
tures, each with an associated lattice energy at a consistent
level of theory.
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FIT+DMA MACE
crystal RMSD30 ∆E RMSD30 ∆E

structure (Å) (kJ mol−1) (Å) (kJ mol−1)
ATCDEO 0.341 7.26 0.125 (-0.216) 6.67 (-0.59)
BIRTUR 0.396 6.06 0.391 (-0.005) 0.02 (-6.03)
BIXKUP 0.813 16.32 0.208 (-0.605) 0.00 (-16.32)
BIXLOK 1.048 4.95 0.265 (-0.783) 0.00 (-4.95)
DALBIC 0.343 1.45 0.206 (-0.137) 3.70 (+2.25)
DEBFOI 1.208 4.18 0.110 (-1.098) 0.00 (-4.18)
DOBYOJ 0.654 1.27 0.640 (-0.014) 3.55 (+2.28)
JASGIT 1.837 15.77 1.776 (-0.061) 9.72 (-6.05)

KOGFER 0.247 0.37 0.248 (+0.001) 0.00 (-0.37)
QEKQIG 0.824 4.84 0.139 (-0.684) 0.00 (-4.84)
TAVTUH 1.751 12.03 0.325 (-1.426) 1.87 (-10.16)

TUNWUV 1.103 9.55 0.399 (-0.704) 0.00 (-9.55)
UDEXUZ 0.725 7.41 0.216 (-0.509) 0.75 (-6.66)
WACYAB 0.721 9.81 0.216 (-0.505) 0.92 (-8.89)
WACYEF 0.975 14.02 0.200 (-0.775) 0.00 (-14.02)

Table 2. Crystal structure RMSD30 and energetic ranking of matches to
the experimentally-determined crystal structures within CSP landscapes for 15
molecules re-optimised with the transferable MACE model. Changes between the
rigid-molecule force field reslts (FIT+DMA) and MACE are shown in parentheses.
Bold entries highlight where MACE re-optimisation leads to improvement.

Fig. 12. Overlay of the experimentally determined crystal structure (atoms
coloured by element) of (exo,exo,exo)-1,2:4,5:7,8-triepoxycyclododec-10-ene (CSD
reference code WACYEF) with (left) the matching structure from the force field
(FIT+DMA) CSP (blue) and (right) the matching CSP structure after re-optimisation
with the transferable MACE model (purple). Hydrogen atoms are hidden for clarity.
The large structural deviation in the FIT+DMA structre is driven by deviation in the
molecular geometry.

We have assessed the quality of the dataset by evaluating
its reliability at predicting the known crystal structures of
these molecules, both in terms of the quality of the geometric
match of the crystal structures and the resulting energy rank-
ing of the experimental forms on their respective landscapes
compared to other hypothetical structures. Our CSP approach
is overwhelmingly successful at predicting crystal structures
of these simple molecules – over 99% of all experimental
structures have a match located in our CSP searches. 41%
of experimental structures are predicted to be the global en-
ergy minimum on their landscapes, and 74% are found within
2 kJ/mol of this minimum, a margin equivalent to the esti-
mated error introduced by ignoring thermal effects and rank-
ing based solely on static, 0 K lattice energies. Geometrically,
the typical discrepancy between experimental structures and
their closest predicted matches is comparable to the thermal
fluctuations in experimental crystal structure solutions of the
same solid form obtained at low temperatures versus ambient
conditions. Such remarkable performance demonstrates the
consistency and accuracy of our chosen methods for optimis-
ing and ranking these structures.

Such a large dataset of many possible crystal packings should
prove a valuable resource for identifying a variety of crystal
packing trends, and we make this data available to the com-
munity as part of this work. Herein, we studied space group
distributions among low-energy hypothetical structures com-
pared to those observed in the CSD, and find substantial over-
lap, particularly among the most common space groups. We
also demonstrated the potential of this varied dataset to ex-
plore chirality in the organic solid state, finding very good
agreement with established empirical rules concerning the
propensity of racemic mixtures to crystallise in racemic crys-
tal structures as opposed to separate enantiopure crystals.

Additionally, we have shown the power of such large-scale
CSP to train transferable machine learned potentials for or-
ganic solid-state systems. A committee neural network po-
tential trained on single-point periodic DFT lattice energies
achieved excellent accuracy in correcting our force field en-
ergy landscapes to the DFT level, reducing energy errors by
approximately 8 fold. While the NNP performance is re-
duced on molecules reserved as an extrapolation set com-
pared to those seen in training, the potential still demonstrates
improvements to the quality of the resulting CSP rankings in-
creasing the number of experimental structures ranked as the
global energy minimum by 18% overall. We further demon-
strated the development of a transferable MACE potential us-
ing structures derived from the CSP landscapes to allow re-
optimisation of crystal structures, testing it successfully on
those molecules in our set where the molecular geometry dis-
tortion between the conformation in the known crystal struc-
ture and the gas-phase-optimised one was largest. The re-
sults showed improved structural agreement with experimen-
tal structures in almost all cases and much improved energy
rankings, moving several poorly-ranked observed structures
to the global energy minimum.

Using these mature, well-tested CSP methods alongside
modern machine learning approaches, we have demonstrated
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the ability of CSP to create very large, diverse datasets of
hypothetical crystal structures, and the utility of this infor-
mation in both understanding broad trends in organic crystal
structures and in training more advanced energetic models
for refinement and transferability. It is our hope that the va-
riety and quantity of CSP data presented here, alongside our
demonstrations of possible applications, enables the greater
organic solid-state computational community to develop even
more sophisticated models and techniques in pursuit of truly
predictive, computational data-driven discovery of novel ma-
terials.
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