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Abstract 

Antimicrobial peptides (AMPs) are attractive materials for combating the antimicrobial resistance crisis 

because they can kill target microbes by directly disrupting cell membranes. Although thousands of AMPs 

have been discovered, their molecular mechanisms of action are still poorly understood. One broad 

mechanism for membrane disruption is the formation of membrane-spanning hydrophilic pores which can 

be stabilized by AMPs. In this study, we use molecular dynamics (MD) simulations to investigate the 

thermodynamics of pore formation in model single-component lipid membranes in the presence of one of 

three AMPs: aurein 1.2, melittin and magainin 2. To overcome the general challenge of modeling long 

timescale membrane-related behaviors, including AMP binding, clustering, and pore formation, we develop 

a generalizable methodology for sampling AMP-induced pore formation. This approach involves the long 

equilibration of peptides around a pore created with a nucleation collective variable by performing coarse-

grained simulations, then backmapping equilibrated AMP-membrane configurations to all-atom resolution. 

We then perform all-atom simulations to resolve free energy profiles for pore formation while accurately 

modeling the interplay of lipid-peptide-solvent interactions that dictate pore formation free energies. Using 

this approach, we quantify free energy barriers for pore formation without direct biases on peptides or whole 

lipids, allowing us to investigate mechanisms of pore formation for these 3 AMPs that are a consequence 

of unbiased peptide diffusion and clustering. Further analysis of simulation trajectories then relates 

variations in pore lining by AMPs, AMP-induced lipid disruptions, and salt bridges between AMPs to the 

observed pore formation free energies and corresponding mechanisms. This methodology and mechanistic 

analysis have the potential to generalize beyond the AMPs in this study to improve our understanding of 

pore formation by AMPs and related antimicrobial materials.  
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Introduction 
A pressing issue in society today is the rise of antimicrobial resistance to currently available drugs due to 

over prescription and overuse.1 Microbes have a variety of mechanisms to decrease the efficacy of 

antimicrobial drugs, including thick biofilm matrices that restrict diffusional transport,2, 3 mutations in target 

enzymes to prevent drug binding,4 and transporter proteins (efflux pumps) that expel drugs into the 

extracellular environment.5 As a result, there is significant interest in developing antimicrobial peptides 

(AMPs) that function via membrane disruption and are less likely to lead to resistance.6 Naturally occurring 

AMPs are α-helical and typically cationic peptides that are present in the immune systems of plants and 

animals and contribute to their defense against foreign pathogens.7 Their mechanism of action is generally 

understood as first involving the binding of AMPs to microbial membranes due to attractive electrostatic 

interactions between cationic side chains and anionic lipid head groups (or other membrane components).8 

How bound AMPs then lead to membrane disruption and eventual cell death, however, is less well-

understood, inhibiting the rational design of new synthetic AMPs to address limitations of proteolytic 

degradation and low selectivity for naturally sourced AMPs when introduced in vivo.9-11 

Two broad mechanisms – pore formation and the carpet mechanism – have been proposed to explain AMP-

induced membrane disruption and have been shown to depend on a variety of AMP physiochemical 

properties such as charge, length, hydrophobic sector, and rigidity.12 In the carpet mechanism, a high local 

concentration of AMPs on the surface of a membrane leads to membrane rupture and lipid micellization.13 

The carpet mechanism is typically promoted by AMPs too short to span cell membranes as an α-helix.14, 15 

For instance, aurein 1.2 is a 13-residue +1 charged peptide sourced from bell frogs that is believed to disrupt 

membranes via the carpet mechanism as supported by dye leakage experiments from unilamellar vesicles.16 

In the pore formation mechanism, AMPs stabilize membrane-spanning pores that compromise the 

membrane’s ability to regulate transport. Melittin, a 26-residue +6 charged peptide that is the major 

component of bee venom,17,18 is an example of an AMP believed to disrupt membranes via pore formation 

as supported by x-ray diffraction19 and calcein leakage experiments.20 Pore formation can be further sub-

divided into two separate mechanisms: the barrel-stave mechanism, in which peptides completely line the 

walls of the pore to minimize lipid disruption, and the toroidal pore mechanism, in which a combination of 

peptides and lipid head groups line the pore. The barrel-stave model is favored by AMPs that are rigid, 

membrane-spanning, and have a high hydrophobic content to mediate both peptide-peptide and peptide-

lipid interactions while excluding lipid headgroups from the aqueous pore,21,22,23 whereas the toroidal model 

allows for more flexibility in AMP structure (such as proline and glycine ‘kinks’ in the α-helix that reduce 

rigidity21,24, 25) because lipids deform such that their head groups line the pore and interact with peptides. 

Although experiments can provide insight into the preference of AMPs to disrupt membranes by either the 

carpet mechanism or pore formation, it remains difficult to gain molecular-scale insight into peptide-lipid 

interactions that dictate the thermodynamics of these processes or distinguish between the barrel-stave and 

toroidal pore models. To corroborate experimental data, molecular dynamics (MD) simulations have been 

used to resolve mechanistic pathways for peptide-membrane interactions, including pore formation.22, 25-34 

Theory and simulation studies suggest that long-lived metastable pores form in membranes once a critical 

pore radius is reached, which requires the system to overcome a free energy penalty associated with 

unfavorable water-lipid tail interactions or lipid bending at the pore edge.28, 32 Therefore, variations in this 

free energy due to the addition of AMPs can resolve whether pore formation mechanisms are favorable.  

A robust enhanced sampling method that has been applied for studying pore formation in bilayers is 

umbrella sampling, which permits a potential of mean force (PMF) to be calculated as a function of a pre-

defined collective variable (CV) that is biased across an interval of interest.35 Harmonic biasing potentials 

are applied along this CV to sample a large range of system configurations and then energetic free energy 
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barriers and metastable states can be determined with the weighted histogram analysis method (WHAM).36 

Umbrella sampling requires the selection of an appropriate CV, however, to ensure that the sampled PMF 

is physically relevant. Tolpekina, et al. proposed an early CV (which we refer to as the tanh CV) to study 

the free energy of pore formation in bilayers with MD simulations. The tanh CV is calculated using a 

hyperbolic tangent function applied to the lateral distance of lipid tails which increases when lipid tails 

atoms are farther from a pre-defined pore center.37 Recently, the tanh CV has been used with umbrella 

sampling to study the energetics of pore formation in 18 different lipid membrane compositions in the 

presence of cationic cyclic nonaarginine peptides with coarse-grained simulations38 and fully atomistic 

POPC membranes with an increasing number of melittin peptides.28  In the latter case, metastable free 

energy minima were resolved with 4 or more melittin peptides lining a toroidal transmembrane pore, which 

could imply a long-lived pore that would eventually lead to cytotoxicity. This observation, however, 

required the orientation of peptides to be hand-selected a priori on the outer leaflet of the membrane, mainly 

due to slow diffusional limitations of peptides relative to the membrane in umbrella sampling.28 

Despite its promise, a limitation of the tanh CV is that it exhibits large hysteresis during umbrella sampling 

depending upon initial system configurations, suggesting that the pore formation process is not fully 

captured through a bias applied to lipid tail groups only.39 To address this issue, Hub and Awasthi developed 

a pore nucleation CV (referred to as ξ) that captures pore formation by biasing both water molecules and 

lipid headgroups.40 The value of ξ is determined by first defining a transmembrane cylinder of set radius 

that spans the lipid bilayer and is divided into horizontal slices, and then calculating the occupancy of slices 

by oxygen atoms in lipid head groups and water molecules; ξ increases in value with increased occupancy, 

which occurs when either lipid head groups or water molecules span the bilayer to form a hydrophilic 

pore.40 A typical PMF predicted with ξ has a minimum for an unperturbed membrane around ξ = 0.2, a 

maximum due to the formation of a continuous polar defect (nucleation) when ξ > 0.7, and a local minimum 

at ξ = 1.0 for a fully nucleated pore. ξ has been shown to be hysteresis-free and quickly converge in umbrella 

sampling simulations of pore formation in pure membranes40,41 and in simulations of pore formation 

stabilized by drugs42 and polycations.43 Nonetheless, ξ has yet to be applied in membranes in the presence 

of AMPs, which may be due to the long-timescale lateral diffusion of peptides during pore lining28, 44 

required to resolve physically relevant free energy profiles. 

In this study, we utilize umbrella sampling simulations as a function of ξ to study membrane pore formation 

in the presence of different AMPs with the goal of resolving corresponding free energy profiles and 

observing cooperative peptide aggregation and pore lining. To address the challenge of long-timescale AMP 

diffusion, we first nucleate aqueous pores in a model DMPC membrane using the MARTINI coarse-grained 

force field, then apply a backmapping procedure to obtain fully atomistic system representations that better 

capture the interplay of lipid-AMP-water interactions during pore formation. Using melittin as a model pore 

former and aurein 1.2 as a non-pore former, we calculate the free energy barrier for pore formation in the 

presence of these peptides and show that melittin preferentially forms toroidal-like pores in membranes by 

significantly decreasing the energy barrier required for pore nucleation relative to pure DMPC. To further 

test the robustness of this methodology, we model the 23-residue +3 charged AMP magainin 2 to compare 

its propensity for pore formation to aurein 1.2, melittin, and previous MD studies.25,45 Analysis of bilayer 

structural perturbations and peptide-peptide interactions provide insight into variations in pore formation 

free energies for these three peptides. Overall, we find that this methodology can be utilized to 

mechanistically support pore formation affinities of AMPs of varying physiochemical properties (e.g., 

length, charge, hydrophobicity) previously reported in the literature, and expect that this approach may 

further be applied to understand the behavior of new AMP structures discovered as part of ongoing efforts 

to combat the antimicrobial resistance crisis. 
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Methods 

System Preparation and Coarse-Grained Simulation Parameters 
Four different coarse-grained (CG) simulation systems were modeled with the MARTINI 2.2 forcefield46 

to test the influence of AMPs on pore formation. The four systems all included a bilayer containing 288 

DMPC lipids and with either zero peptides (Pure DMPC), 8 aurein 1.2 (8 AUR) peptides, 8 melittin (8 

MEL) peptides, or 8 magainin 2 (8 MAG) peptides. This number of peptides was chosen based on the 

peptide to lipid ratios observed to form fully lined melittin pores (the reference pore-forming peptide in our 

study); past studies have found that between 4 and 7 peptides line pores in phosphatidyl choline lipid 

membranes during full nucleation.25, 28 Each system was initially built with the insane script.47 Atomistic 

representations of each peptide were first created using Avogadro,48 and the martinize script was utilized to 

convert these to CG representations based on an average 4:1 mapping of heavy atoms to CG beads. The 

DMPC membrane was placed in the center of a solvated simulation box (spanning the xy-plane). For 

systems with peptides, the peptides were initialized in a 2 by 4 grid located 2.5 nm above the z center of 

mass (COM) of the membrane. Each system was solvated with at least 10 MARTINI W beads (representing 

40 water molecules) per lipid molecule to prevent inter-bilayer interactions in the z direction across the 

simulation periodic boundaries and to match prior simulations of pore nucleation.40 Additionally, chloride 

counterions were added to neutralize peptide-containing systems. Table 1 shows a summary of these 

systems and components. 

Table 1: Summary of systems modeled in coarse-grained (MARTINI) and all-atom (CHARMM36) molecular 

dynamics simulations. 

 Pure DMPC 8 AUR 8 MEL 8 MAG 

Peptides None 8 Aurein 1.2 8 Melittin 8 Magainin 2 

DMPC Lipids 288 288 288 288 

CG Water beads (W) 2888 3375 2939 2980 

AA Water molecules (TIP3P) 11552 13532 11948 12016 

Chloride (Cl-) 0 8 48 24 

 

All MD simulations were conducted using Gromacs 2021.5 patched with PLUMED 2.849. Energy 

minimization used the steepest descent algorithm with a maximum step size of 0.01 nm and tolerance of 

100 kJ mol-1 nm-1. A 2-step equilibration process was implemented to ensure peptide binding to the upper 

leaflet of the DMPC membrane (as visualized in Figure S1). In the first step, peptides were permitted to 

equilibrate in MD simulations in which a bias was applied using the PLUMED upper walls approach 

between the COM of each peptide and the membrane in the z direction to prevent peptides from diffusing 

into solution away from the membrane. In addition, 1000 kJ/mol harmonic restraints were placed on the x 

and y positions of backbone termini beads (Figure S1b). This equilibration step promotes peptide rotation 

and electrostatic binding to DMPC while maintaining the initial grid-like setup (Figure S1a). In the second 

step, the system was further equilibrated without any bias applied to allow for the natural clustering and 

lateral diffusion of peptides on the membrane (Figure S1c). Both equilibration steps were performed for 50 

ns with a timestep of 0.02 ps. 

All CG simulations were performed at a temperature of 323 K. This temperature was chosen because the 

freezing temperature is as high as 300 K for MARTINI water beads represented with P4 particles50; 

moreover, this temperature permits comparison to free energy profiles from prior literature results utilizing 

the ξ CV at 323 K.40 While alternative versions of the MARTINI force field more accurately treat 

electrostatic interactions to eliminate the unphysical freezing of MARTINI beads,51, 52 MARTINI 2.2 was 

adequate for our study by permitting the computationally efficient binding of peptides to DMPC membranes 
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and capturing lipid structural deformations important to the pore formation process that are not expected to 

be driven by electrostatic interactions. Moreover, the primary goal of the CG simulations was to generate 

reasonable atomistic configurations after following the backmapping procedure described below. The Verlet 

cutoff scheme was implemented for neighbor searching with a buffer tolerance of 0.005 kJ mol-1 ps-1. 

Lennard Jones interactions were cut off at a distance of 1.1 nm, and electrostatic interactions were calculated 

with the particle mesh Ewald (PME) method with a short-range cutoff of 1.1 nm.53 A velocity-rescale 

thermostat was used to control the temperature at 323 K with a time constant of 1 ps and the Berendsen 

barostat controlled the pressure at 1 bar with a semi-isotropic pressure coupling scheme with 3×10-4 bar-1 

compressibility and a 5 ps time constant. The system dielectric constant was set to 15 as recommended for 

the MARTINI 2.2 force field.50  

Backmapping Coarse-Grained Systems to All-Atom Representations 
CG systems were backmapped to all-atom (AA) representations compatible with the CHARMM36 force 

field using an implementation of the backward tool.54 AMP amino acid sequences along with CG and AA 

representations are shown in Figure 1a-c, and corresponding helical wheel representations for all AMPs are 

shown in Figure S3. Each system was energy minimized using a two-step approach as recommended by the 

initial implementation of backward54. First, all peptide-peptide and membrane-membrane nonbonded 

interactions were set to zero and the group cutoff scheme was implemented to resolve atomic clashes and 

overlap from backmapping. Second, all nonbonded interactions set to their standard values for the 

CHARMM36 force field and the Verlet cutoff scheme was used. Both energy minimization steps 

implemented the steepest descent algorithm with a maximum step size of 0.1 nm and tolerance of 1000 kJ 

mol-1 nm-1 for a maximum of 1000 steps. 

 

 

 

Figure 1: All-atom to coarse-grained mapping representation and amino acid sequence for each of the antimicrobial 

peptides studied: (a) Aurein 1.2, (b) Melittin, and (c) Magainin 2. Positively and negatively charged side chains are 

colored blue and red respectively. Additionally, the protonated N-terminus is blue for Aurein 1.2 and Melittin. (d) 

Schematic demonstrating nucleation CV (ξ) implementation along with representative system configurations at key ξ 

values for general peptide-containing (orange cylinders). DMPC systems. DMPC heads are red, peptides are orange 

cylinders, and water molecules as blue spheres. 
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Energy minimization of the AA systems was followed with 4 steps of NVT equilibration using timesteps of 

0.0002, 0.0005, 0.001, and 0.002 ps with 1000 kJ/mol position restraints on all lipid and peptide heavy 

atoms for 500 steps each. The Verlet cutoff scheme was implemented for neighbor searching with a buffer 

tolerance of 0.005 kJ mol-1 ps-1. Lennard-Jones interactions were implemented by smoothly switching 

forces to zero between 1 to 1.2 nm, and electrostatic interactions were calculated with the PME method 

with a short-range cutoff of 1.2 nm. A velocity-rescale thermostat was used to control the temperature at 

323 K to match the CG system temperature with a time constant of 0.1 ps. After NVT equilibration, three 

500 step NPT equilibration simulations were then conducted: the first with a timestep of 0.001 ps and 1000 

kJ/mol heavy atom position restraints, then with a timestep of 0.002 ps and 1000 kJ/mol heavy atom position 

restraints, and finally with a timestep of 0.002 ps and no restraints. The Berendsen barostat was 

implemented to control the pressure at 1 bar using a semi-isotropic pressure coupling scheme with a 4.5×10-

5 bar-1 compressibility and a 5 ps time constant. All other parameters were identical to NVT equilibration. 

The final configurations obtained from the backmapping and AA system equilibration were then used for 

further umbrella sampling calculations as detailed below. 

Implementation of Nucleation Collective Variable 
To bias the formation of transmembrane pores, the nucleation CV (ξ) proposed by Hub and Awasthi40 was 

implemented as a collective variable in PLUMED by adapting a previous methodology used to form a 

fusion stalk between parallel bilayers in MARTINI.55 As described previously,40 ξ increases from 0 to 1 as 

more polar atoms occupy Ns cylinder slices each of height ds that span a cylinder of height Ns × ds and radius 

R. The cylinder height is chosen to match the thickness of the lipid membrane, including the polar head 

group region, as schematically shown in Figure 1d. Equation 1 defines ξ as: 

 

ξ =  𝑁𝑠
−1 ∑ 𝛿𝑠(𝑁𝑠

(𝑝))

𝑁𝑠−1

𝑠=0

 

 

(1) 

In this equation, 𝑁𝑠
(𝑝)

 is the number of phosphate oxygen and water oxygen atoms in a slice s of the 

cylinder. The switching function δs is applied to 𝑁𝑠
(𝑝) to smoothly increase  𝛿𝑠(𝑁𝑠

(𝑝)) from 0 to 1 for each 

slice as defined in Equation 2: 

 
 𝛿𝑠(𝑁𝑠

(𝑝)) = { 
𝜁 ×  𝑁𝑠

(𝑝)                 , 𝑁𝑠
(𝑝) ≤ 1

1 − 𝑐 ×  𝑒−𝑏 × 𝑁𝑠
(𝑝)

, 𝑁𝑠
(𝑝) > 1

 
 

(2) 

The parameter ζ indicates the value of 𝛿𝑠(𝑁𝑠
(𝑝)) upon the addition of the first polar atom (𝑁𝑠

(𝑝)
 = 1), which 

exponentially approaches 𝛿𝑠(𝑁𝑠
(𝑝)) = 1 when 2 or more polar atoms occupy a slice (𝑁𝑠

(𝑝)
 > 1). The other 

parameters are b = ζ/(1- ζ) and c = (1- ζ)eb. A value of ξ = 0.2 corresponds to a flat, pore-free membrane, 

whereas a value of ξ = 1.0 corresponds to a fully nucleated pore with 3 or more polar atoms in each slice.40 

Figure 1d shows the parameters used to calculate ξ, along with expected behavior for a representative 

peptide-containing system during the evolution of ξ from 0.2 to 1.0. 

For the AA systems, recommended parameters from the initial implementation of ξ for DMPC were utilized: 

R = 0.8 nm, ζ = 0.75, ds = 0.1 nm, and Ns = 26. However, to adapt ξ to CG systems, PO4 beads in DMPC 

(representative of phosphate groups) and W beads (representative of 4 atomistic water molecules) were 

counted in the implementation of ξ instead. To account for the reduced granularity of the system, the height 

of the cylinder slices ds was increased from 0.1 nm to 0.2 nm, which is consistent with previous studies that 

implemented the nucleation CV for CG systems.56, 57 The values of R and ζ were kept as 0.8 nm and 0.75 

respectively. To determine the value of Ns, unbiased simulations of the pure 288-lipid DMPC membrane 
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system were performed for a range of values and Ns was chosen as 16 to match an average value of ξ = 0.2 

most closely (Figure S2). 

Umbrella Sampling Calculations 
To prepare CG systems for umbrella sampling, starting configurations were generated by increasing ξ 

during a 50 ns steered MD simulation from an initial value of ξ = 0.2 to ξ = 1.0 using a harmonic potential 

with a force constant of 30,000 kJ mol–1. A total of 23 windows were used for umbrella sampling: 11 

windows from ξ = 0.2 to ξ = 0.7 with an increment of 0.05 and force constant 10,000 kJ mol-1 and 12 

windows from ξ = 0.725 to ξ = 1.0 with an increment of 0.025 and force constant 20,000 kJ/mol-1. Each 

window was simulated for 600 ns. The first 500 ns of each umbrella sampling trajectory was discarded to 

account for long timescale equilibration and diffusion of peptides around the pore. The parameters from the 

unbiased equilibration system preparation step (Section 2.1.1) were adapted for these production umbrella 

sampling runs, switching the Berendsen barostat to the Parrinello-Rahman barostat with a 12 ns time 

constant. Simulation configurations were saved every 0.1 ns for analysis. 

For AA systems, final configurations from the 500 ns CG equilibration simulations were backmapped to 

AA resolution (as described above) and used as starting configurations for umbrella sampling, using the 

same number of windows and ξ spacing as CG systems. A force constant of 5,000 kJ mol-1 was used for the 

ξ = 0.2 to ξ = 0.7 windows, and a force constant of 10,000 kJ mol-1 was used for the ξ = 0.7 to ξ = 1.0 

windows. Each window for the Pure DMPC and 8 MAG systems was simulated for 50 ns and each window 

for the 8 AUR and 8 MEL systems was simulated for 70 ns. The first 10 ns was discarded for equilibration. 

System parameters were adapted from the last NPT simulation for system preparation, switching the 

Berendsen barostat to the Parrinello-Rahman barostat and using either a temperature of 300 K or 323 K. 

Simulation configurations were saved every 0.1 ns for analysis. Potential of Mean Force (PMF) profiles 

were then constructed using Grossfield’s implementation of the Weighted Histogram Analysis Method58 for 

both the CG and AA representations of the four systems. 

Results and Discussion 

Coarse-Graining Increases Peptide Lateral Diffusion and Pore Lining 
The goal of this study is to investigate the impact of membrane-bound peptides on the thermodynamics of 

pore formation, which requires simulation workflows that obtain configurations of reasonable peptide-lined 

pore structures. While atomistic simulations can generate physically reasonable pore formation free 

energies,40 the slow lateral diffusion of membrane-bound peptides typically requires the configuration of 

peptides near the pore to be predetermined.28 To overcome this challenge, we first perform CG simulations 

using the MARTINI 2.2 force field to accelerate lateral diffusion of membrane-bound peptides prior to 

eventual backmapping to enable AA simulation. Compared to AA forcefields, the smoothed energy 

landscape of CG simulations accelerates the dynamics of lipids and proteins relative to experimental 

measurements.50, 59, 60 Faster lateral diffusion permits peptides to line pores as a consequence of long 

timescale natural clustering27 at multiple ξ values. To corroborate that this approach would expedite peptide 

pore lining, we compared lateral diffusion coefficients (Dlat) computed from CG and AA simulations for 

DMPC lipids (from the Pure DMPC system) and for the aurein 1.2 (AUR), melittin (MEL), and magainin 

2 (MAG) peptides (see section S.2 for more details). Figure S6 shows that the value of Dlat for DMPC from 

AA simulations (19.68 × 10-12 m2s-1) is comparable to experimental measurements using pulsed field 

gradient NMR (20 × 10-12m2s-1)61 while CG systems yield Dlat values that are 2.2 to 9.3 times larger. The 

lower Dlat for MEL (1.38 x 10-12 m2s-1) and MAG (1.56 x 10-12 m2s-1) peptides compared to AUR (3.35 x 

10-12 m2s-1) can be partially explained by molecular crowding and electrostatic repulsion for these peptides 

because they are longer and more charged than AUR. Similar findings and rationale were previously found 
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in atomistic simulations of the lateral diffusion of polycations adsorbed to POPC as the number of highly 

charged cations increased.43  

We next determined the propensity of each peptide to line pores, and if the number of peptides lining the 

pore converges, during the 500 ns CG equilibration simulations that were performed for the umbrella 

sampling windows with CV values corresponding to the onset of pore nucleation (ξ ≥ 0.7). For each system, 

the pore peptide density is defined as the peptide density within 0.5 nm in the z direction (1 nm total) of the 

pore center and was calculated using the gmx density tool by integrating the density profile of all peptide 

beads (in kg/m3) from z = -0.5 nm to z = 0.5 nm. This range corresponds to the central, hydrophobic region 

of the membrane, and consequently only peptides in the middle of the pore contribute to the pore peptide 

density and no radial distance threshold relative to the pore is needed. Figure 2 shows pore peptide densities 

averaged over 5 ns intervals (trajectories saved every 0.1 ns) for windows with ξ = 0.7, 0.85, and 1.0. 

Further information and visualization on how pore peptide density is calculated are included in Figure S7. 

 
Figure 2: Analysis of peptide pore-lining during CG equilibration simulations for (a) 8 AUR, (b) 8 MEL, and (c) 8 

MAG. Plots at left indicate pore peptide densities vs. simulation time for umbrella sampling windows with ξ = 0.7 

(blue), 0.85 (green), and 1.0 (red), corresponding to the onset of pore formation. Each point reports the average pore 

peptide density over a 5 ns interval. Replicate pore peptide density profiles are provided in Figure S8. Simulation 

snapshots show the top (middle image) and side (right image) views of the last simulation configurations for the ξ = 

1.0 window. DMPC beads are grey, peptides are orange cylinders, and water beads are blue. Water beads are omitted 

in the top view and DMPC beads are omitted in the side view image for visual clarity. 

https://doi.org/10.26434/chemrxiv-2024-qp6qr ORCID: https://orcid.org/0000-0003-4885-6599 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-qp6qr
https://orcid.org/0000-0003-4885-6599
https://creativecommons.org/licenses/by-nc/4.0/


Page 9 of 26 

 

For the AUR peptides (Figure 2a), both the ξ = 0.85 and 1.0 windows end with similar pore peptide densities 

of ~60 kg/m3. The pore peptide densities exhibit large fluctuations throughout the simulations, and 

consequently it is unclear if there is a preferred number of peptides near the pore. Simulation snapshots 

indicate that the AUR peptides appear to line the pore on only one side in disordered structures for these ξ 

values. This observation could be indicative of unfavorable pore formation as supported by previous 

research pointing to AUR being too short to span lipid membranes as an α-helix62, 63 and MARTINI studies 

that observe strong clustering behavior between AUR peptides mostly mediated by favorable hydrophobic 

interactions with isoleucine.15 

Conversely, there is clear convergence after only 300 ns of equilibration for the MEL peptides in all three 

windows (Figure 2b). The pore peptide densities correspond to 6 peptides lining the pore at ξ = 1.0. 

Although the peptides themselves are not directly biased when biasing ξ, during system equilibration the 

N-termini of the peptides are involved in pore lining while the highly charged C-termini remain in the 

interfacial region of the membrane. This behavior is similar to previous unbiased coarse-grained 

simulations of MEL peptides in POPC membranes, where a star-like configuration of 4 MEL peptides with 

their N-termini facing each other was a precursor to cooperative membrane penetration and pore 

formation.64 The high positive charge due to the lack of amphiphilicity at the C-terminus of MEL (Figure 

1b) is the most likely contributor to this lining behavior by MEL N-termini, preventing unfavorable 

interactions of hydrophobic DMPC tails with charged MEL sidechains if the C-terminus were to line the 

pore. Unlike AUR and MAG, MEL also preferentially lines the pore at ξ = 0.7, further supporting its 

propensity to line pores. 

Lastly, MAG has similar pore lining tendencies to AUR, including a lack of peptides in the pore at small 

pore sizes (ξ = 0.7) and no clear convergence of the pore peptide density within the 500 ns simulations 

(Figure 2c). Approximately 3 peptides line the aqueous pore in a disordered structure while the remainder 

cluster on the membrane surface as visualized in the simulation snapshots shown in Figure 2c. These 

observations suggest that either a higher peptide to lipid ratio (~1/20) than studied in our simulations (1/36) 

is required for pore formation, as supported by early MARTINI simulations of DPPC bilayers25 as well as 

experimental NMR spectroscopy65 and LUV calcein leakage66 results, or that the diameter of MAG is 

simply too wide to adequately line the pore at the upper limit of ξ 67, 68 due to bulkier sidechains in the helix 

(e.g. Lys and Phe in Figure 1c) compared to MEL. 

Taken together, these results demonstrate that coarse-grained simulations using the ξ CV can lead to the 

observation of peptide-lined aqueous pores without needing to predefine peptide configurations on the 

membrane surface or biasing the peptide beads themselves, motivating further analysis of the 

thermodynamics of pore formation in the presence of peptides. 

Peptides Decrease Free Energies for Pore Formation in CG Simulations 
We next computed PMFs for pore formation in the presence of peptides for the CG systems. Because ξ was 

first developed to bias the oxygen atoms of water molecules and lipid head phosphates for the atomistic 

Berger and CHARMM36 force fields,40 we performed several tests comparing PMFs for pure DMPC 

obtained from biasing MARTINI water beads and DMPC lipid PO4 beads to confirm sufficient membrane 

size, absence of hysteresis, and convergence (see section S.4 for more details). These comparisons indicate 

that 288 lipids are sufficient to avoid finite-size artifacts (Figure S9a), initial configurations sampled from 

either a forward (ξ = 0.2 to 1.0) or backward (ξ = 1.0 to 0.2) steered molecular dynamics simulation lead to 

identical PMF profiles (Figure S9a), and PMF convergence is observed within 20 ns of sampling for each 

window (Figure S9b). There is also a PMF minimum near ξ = 0.2 which confirms proper selection of the 
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number of slices of the membrane-spanning cylinder. These results support the choice of parameters used 

to apply the nucleation CV for the CG simulations. 

Figure 3 shows PMFs for the Pure DMPC, 8 AUR, 8 MEL, 8 MAG systems for values of ξ ranging from 

0.2 (flat membrane) to 1.0 (fully nucleated pore). Each curve is the average of three replicas that differ in 

the random sampling of velocities after 500 ns of equilibration, leading to unique 100 ns production 

simulations. Each replica is set to zero independently at its minimum value and the standard error across 

the 3 trials is indicated by the shaded region around each PMF. Consistent with the Pure DMPC umbrella 

sampling simulations, membrane systems containing 8 peptides (AUR, MEL, or MAG) embedded in the 

upper leaflet also demonstrate a free energy minimum at ~ξ = 0.2, and there is sufficient convergence after 

only 40 ns of umbrella sampling for each system (Figure S10). 

 

 

Figure 3: PMF profiles for CG systems. Shaded regions indicate the standard error from 3 replicate umbrella sampling 

trials. PMFs were computed using WHAM with 100 bins. The onset of pore lining by peptides corresponds to kinks 

in the PMF profiles for the 8 AUR, 8 MEL, and 8 MAG as indicated. 

 

Previous studies implementing ξ with all-atom force fields have observed nonmonotonic PMF that exhibit 

maxima coinciding with pore nucleation at approximately ξ = 0.7 – 0.9 followed by minima at ξ = 1.0, 

which is consistent with pore metastability with a nucleation barrier at intermediate values of ξ. 40, 42, 43 

Conversely, Figure 3 shows that all PMFs computed for the CG systems monotonically increase up to ξ = 

1.0. The decrease in slope of the PMF for ξ > 0.6 suggests that peptides lining the pore (Figure 2) help to 

alleviate the energetic penalty of pore formation; however, there is no nucleation barrier that would indicate 

possible metastability for larger pore sizes. This behavior and significant overestimates of pore free energies 

have been observed in the literature before33, 69 and may be a consequence of higher line tensions and 

bending moduli of membranes in CG systems. 
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Although the ξ has not been tested for AMP-aided pore formation in the literature, similar monotonically 

increasing PMF trends have been observed in MARTINI systems for the tanh CV37 applied to DPPC 

bilayers in the presence of cyclic nonarginines38 and an adaptation of ξ to combine bilayer fusion and pore 

formation.57 Nonetheless, the lower value of ξ at which the PMF slope starts to decrease for MEL (ξ =0.65) 

compared to MAG and AUR (ξ > 0.7) and the overall larger decrease in PMF relative to the Pure DMPC 

system (on the order of 40 to 50 kJ/mol) hints at the greater propensity for MEL to form and stabilize pores. 

The rank-ordering of the PMFs at ξ = 1.0 for the 3 peptide systems also supports observations of equilibrated 

pore lining (Figure 2). The disordered pore lining of AUR and MAG leads to PMF values between those of 

the pure DMPC system and MEL system, the latter of which displayed significant toroidal-type pore lining 

at the upper limit of ξ (Figure 2b). These observations suggest that MARTINI can capture trends in the 

degree to which peptide pore lining promotes pore formation by reducing corresponding pore formation 

free energies, although the model does not predict metastable, long-lived pores. 

Peptides Reduce Pore Formation Free Energy Barriers in AA Simulations 
To better resolve energetic barriers for pore formation and more accurately capture system interactions, 

umbrella sampling was performed for AA systems after backmapping final configurations from the 500 ns 

equilibrated CG configurations. Figure 4 shows average PMFs obtained from 3 replicate simulations at both 

300 K and 323 K. Standard errors across the 3 replicates are visualized as shaded regions. Consistent with 

the initial implementation of ξ,40 the observation of a nucleation barrier (i.e., a PMF maximum) depends 

upon temperature. There is a clear PMF maximum between ξ = 0.7 and ξ = 0.9 at 300 K (Figure 4a) for all 

systems, but this barrier is less clear or non-existent depending on the system at 323 K (Figure 4b). 

Additionally, there is roughly a 10 kJ/mol difference between the 300 K and 323 K systems as expected. 

Small differences in the values of the energy barrier obtained in this study compared to values reported by 

Hub et al. for a 128 lipid DMPC bilayer (45.3 vs. ~42 kJ/mol for 300 K and 58.1 vs ~52 kJ/mol for 323 K) 

using the same CHARMM36 force field can be attributed to the larger 288 lipid DMPC systems used in 

this study, which has been shown to slightly affect barrier magnitudes.40  

 

 
Figure 4: PMF profiles for AA systems at (a) 300 K and (b) 323 K. Shaded regions indicate the standard error 

computed from 3 replicate umbrella sampling trials. WHAM was performed with 100 bins across the CV space. Pore 

formation barriers (in kJ/mol) are reported on each plot for pure DMPC (blue) and 8 MEL (green) systems. 

Convergence analyses for all PMF profiles are provided in Figure S11 (300 K) and Figure S12 (323 K). 
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The key takeaways from the AA PMFs are: (1) pore formation is never thermodynamically favorable, since 

the PMF is always positive relative to a flat membrane state (ξ = 0.2); (2) there is a local minimum in the 

PMF at ξ = 1.0 (unlike in CG systems, Figure 3), which implies the formation of a long-lived metastable 

pore; (3) the barrier for forming this metastable pore decreases in the presence of peptides (AUR, MEL, 

MAG) compared to pure DMPC, implying a higher likelihood of pore formation; and (4) AA PMFs show 

a similar rank ordering of the 4 system types compared to CG PMFs (Figure 3). We note that expanding the 

pore to larger sizes not accessible to ξ may decrease the free energy further towards a metastable minimum, 

which has been demonstrated in a recent extension to the nucleation CV that promotes pore expansion, 

although we expect the relative values of the barriers to be unchanged.70 

Of the three peptides, MEL reduces the nucleation free energy barrier to the greatest extent regardless of 

temperature, with the nucleation barrier decreasing by 35% from 45.3 kJ/mol to 29.3 kJ/mol at 300 K and 

by 44% from 58.1 kJ/mol to 32.2 kJ/mol. This decrease is consistent with the ability of MEL to act as a 

pore-forming AMP, and is comparable to similar decreases in nucleation free energy barriers predicted for 

POPC membranes in the presence of other pore-forming compounds, such as the antifungal drug 

itraconazole42 and polycationic species.43 At 300 K, both AUR and MAG have similar free energy barriers 

for pore formation (~38-40 kJ/mol); however, the PMF at ξ = 1.0 is significantly decreased for MAG 

compared to AUR. These results suggest that while barriers to pore formation are similar for both peptides, 

the increased energetic stability of MAG-lined pores for larges values of ξ (lower energy metastable 

minimum) would lead to longer-lived pores once formed, especially given the sharp decrease in the PMF 

slope past the nucleation barrier for MAG compared to AUR and MEL (Figure 4a). Together, these results 

are consistent with experimental observations that MEL promotes pore formation, AUR does not, and MAG 

exhibits behavior between these extremes. 

Melittin Pore Structure Differs from Other Peptide-Containing Systems  
We next sought to understand differences in the PMFs by analyzing the simulation configurations at full 

pore nucleation (ξ = 1.0) and relating simulation observations to known mechanisms of pore formation. We 

first performed number density analysis for each system at 300 K to study the spatial distribution of different 

system components. Starting from the radial and z center of the pore, atomic positions obtained from the 

last 20 ns of each trajectory were histogrammed into bins with radius 0.1 nm (from 0 to 5 nm) and height 

0.1 nm in z direction (from -3.5 to 3.5 nm), and the number of atoms for each group present per bin was 

divided by bin volume in nm3 using an in-house python script. 

Figure 5 shows number densities for the phosphates of DMPC and oxygen atoms of water (biased as part 

of ξ), all peptide atoms, and Cl- counterions, with horizontal lines indicating the approximate regions 

corresponding to DMPC head groups. Using the pure DMPC system (Figure 5a) as reference, there is a 

clear correlation between the densities of DMPC head phosphate groups and water oxygen atoms when a 

pore with a maximum diameter of roughly 2 nm is formed at ξ=1.0, which is because lipid head groups 

deform to line the pore and alleviate unfavorable water-lipid tail interactions. This pore size during full 

nucleation and hourglass shape is consistent with previous studies of pores that have conducted group 

density analysis with the implementation of this CV.42, 71, 72  

Comparing DMPC head phosphate and water oxygen profiles with peptide-containing systems (Figure 5 b-

d), the 8 AUR system (Figure 5b) only alleviates pore phosphate density slightly, and the peptide density 

indicates that there is tight clustering amongst the peptides but no full pore lining between upper and lower 

leaflets. This peptide clustering behavior is consistent with equilibrated CG systems at the ξ=1.0 sampling 

window (Figure 2a). Conversely, the 8 MEL system (Figure 5c) shows a significant decrease in head 

phosphate density across the length of the pore and near 0 nm-3 density within the middle 0.5 nm. This is 
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supported by the large peptide number density across the full range of the membrane. Interestingly, the 

elliptical character of the nucleated pore is also diminished as the pore appears to reach a size of close to 3 

nm. This more squarish water profile could be indicative of a higher likelihood of a structured toroidal pore 

mechanism of MEL relative to AUR and MAG peptides (further supported with visualizations of pore 

structures across replicate trials in Figure S4), similar to previous findings in the literature for both 

experimental19, 73 and computational29 studies. Additionally, the 8 MEL system is the only system with a 

substantial counterion density in the pore, implying the formation of a larger, more permissive pore. 

 

Figure 5: Group number densities (nm-3) from AA umbrella sampling trajectories for ξ = 1.0. Number densities are 

shown for DMPC lipid head phosphate groups, water oxygen atoms, any peptide atom, and Cl- counterions for (a) 

Pure DMPC, (b) 8 AUR, (c) 8 MEL, and (d) 8 MAG. Number density heat maps are based on 0.1 nm bins for the 

distance projected onto the z-axis (z-distance) and radial distance in the xy-plane away from the geometric center of 

the pore in the membrane. Horizontal black lines on each plot represent the fluctuation range of DMPC head 

phosphates. All replicate and trial-averaged number density profiles are provided in Figures S18-S19. 
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The 8 MAG system (Figure 5d) demonstrates some decrease in phosphate density near the upper but not 

lower membrane leaflet, and the peptide density confirms that MAG prefers to remain near the upper leaflet 

after membrane binding compared to MEL. Further analysis of the AA umbrella sampling trajectories 

(described below) details this observation; however, one simple explanation is that pores of ~2 nm diameter 

are not large enough to adequately incorporate all 8 peptides given prior literature that MAG-induced pores 

of up to 8 nm in diameter have been resolved in lipid vesicles using neutron scattering and cryo-EM.68 

However, MAG pore diameters of 2-4 nm have also been resolved using fluorescence and neutron-

scattering studies.74, 75 Taken together, these results point to MAG preferring larger pore sizes than the upper 

limit of ξ, which supports free energy trends discussed for this peptide (Figure 4a). 

Peptide Tilt Angles Corroborate Melittin’s Increased Propensity to Line Pores 
To better quantify the pore-lining propensity of each peptide, peptide tilt angles were calculated from the 

umbrella sampling production trajectories at different stages of the pore nucleation process. The tilt angle 

of each peptide was defined as the average angle between the vector connecting the N-terminus backbone 

nitrogen to the C-terminus backbone carbon and the membrane xy-plane. Angles close to 0° indicate 

peptides lying approximately in the plane of the membrane that are adsorbed to the membrane surface 

whereas angles close to 90° indicate peptides aligned parallel to the membrane normal that are lining the 

pore. Figure 6a shows time-averaged peptide tilt angles with highlighted regions indicating ranges of tilt 

angles for membrane-bound peptides in the absence of the pore (ξ = 0.2). Figures 6b-6d show representative 

system configurations at the onset of peptide pore lining (ξ = 0.7 or 0.8) and for fully nucleated pores (ξ = 

1.0) for all three peptides. Similar trends are observed for all three replicas as shown in Figure S13. 

The tilt angles in Figure 6a indicate that MEL is capable of lining aqueous pores at earlier stages in the 

nucleation process (ξ =0.7) relative to AUR and MAG (ξ =0.8) as indicated by values much larger than the 

tilt-angles in the pore-free membranes. Simulation snapshots (Figure 6c) and the large tilt angles indicate 

that 3 MEL peptides line the pore for ξ =0.7 with the tight tilt angle distribution suggesting the formation 

of well-ordered toroidal-type pores. In comparison, only 1 peptide begins to line the pore starting at ξ =0.8 

for AUR (Figure 6b) and MAG (Figure 6d). These results are consistent with the CG (Figure 3) and AA 

(Figure 4) free energy profiles, in which MEL introduces either a kink in the PMF or a decrease in the PMF 

at a smaller value of ξ than the other two peptides, pointing to the effect of peptide-stabilized pores on these 

PMFs.  

At full nucleation (ξ =1.0), only 2 MAG peptides have lined the pore (based on large tilt angles) compared 

to 5 and 6 for AUR and MEL respectively, suggesting that MAG less efficiently stabilizes membrane pores. 

The snapshots indicate that most MAG peptides instead retain a more disordered structure and stay in 

membrane-bound states near the pore. For AUR and MEL, the wider range of tilt angles (~30 degrees for 

AUR compared to ~20 degrees for MEL) at ξ =1.0 suggests a more disordered pore structure (Figure 6a) 

despite a similar number of peptides lining the pore. This disordered behavior for AUR is similar to a 

previous MD study in which 5 AUR peptides were pre-configured to vertically line a DPPC pore at similar 

peptide to lipid ratios as our study (1:25 vs. 1:36 for our systems), with large tilt angle ranges of 15-80 

degrees.76 The consistent observation of disordered structures in both studies indicates that AUR is unlikely 

to form structured toroidal pores even in simple short-tail (DMPC and DPPC) lipid bilayers, which agrees 

with the less favorable free energy of pore formation observed in the PMFs. Together, these results support 

the general variations in the PMFs for the three peptides (Figure 4) and indicate that the PMF for MEL has 

the earliest decrease in slope and lowest energetic barrier for nucleation across the 4 systems studied due to 

its stronger propensity to line pores in ordered structures. 
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Figure 6: (a) Tilt angles vs. ξ for each of the 8 peptides in the Aurein 1.2 (AUR), Melittin (MEL), and Magainin 2 

(MAG) AA systems at 300 K. Shaded regions indicate the range of tilt angles for the pore-free membrane at ξ = 0.2. 

(b-d) Simulation configurations at the onset and end of pore formation for the (b) AUR, (c) MEL, and (d) MAG 

systems. All peptides are represented as orange cylinders; opaque peptides are lining the pore and semi-transparent 

peptides are not. Water molecules are represented as transparent blue spheres. 

 

Pore Formation Alleviates Lipid Disruption Associated with Peptide Binding 
Based on the relatively ordered structures observed for MEL-lined pores (Figures 5 and 6) compared to the 

other peptides, we next sought to determine if the disruption of lipid structure due to peptide interactions 

and pore formation could be related to the PMF trends in Section 3.3. A common metric for quantifying 
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lipid structural order is the P2 order parameter, which measures the alignment of lipid tail bonds (θ) relative 

to the membrane normal and is defined in Equation 3: 

 
P2 = <

3

2
cos2𝜃 −

1

2
> 

(3) 

Larger values (up to 1) indicate a higher degree of alignment of lipid tails to the membrane normal. This 

parameter has been extensively utilized in the literature to quantify lipid order in membrane simulations77, 

including due to changes in the value of ξ.43, 72 We calculated the P2 order parameter relative to the DMPC 

membrane normal (taken as the z-axis of the simulation box). Figure 7a shows variation in the P2 order 

parameter for the pore-free membrane (ξ = 0.2) and fully nucleated pore (ξ = 1.0) for one tail of the DMPC 

lipids; values for the other tail exhibit similar trends and are shown in Figure S14. Additionally, to compare 

lipid order profiles for lipids within close proximity of the fully nucleated pore (ξ = 1.0), Figure 7c shows 

values of P2 for lipids with head phosphate groups that are within a 2 nm radial distance of the pore center 

(schematically illustrated in Figure 7b), which we refer to as radial P2 values. 

 

 
Figure 7: P2 order parameter values for atoms in one tail of DMPC for AA systems at 300 K. Values for the other tail 

are shown in Figure S14. (a) P2 for a pore-free membrane (ξ = 0.2) and fully nucleated pore (ξ = 1.0). (b) Schematic 

showing the lipid groups used to compute radial P2 values, which include DMPC lipids with head phosphates (orange 

spheres) within a 2 nm radial distance (in the xy-plane) of the pore center. (c) Radial P2 values for the fully nucleated 

pore (ξ = 1.0). Error bars indicate the standard error computed from three replicates (Figures S15-S17). 
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For ξ = 0.2, the binding of 8 MEL (green) or 8 MAG (red) peptides to the membrane disrupt lipid tail 

structure relative to the Pure DMPC case (blue), which is apparent from the decrease in P2 values. By 

comparison, 8 AUR peptides (orange) have a minimal effect on lipid order when bound to the membrane.  

The difference between these peptides can be attributed to the higher positive charge density of MEL and 

MAG peptides compared to AUR and generally agree with prior results indicating membrane disruption 

upon MEL and MAG binding. For example, previous studies of MEL interactions with POPC-POPG 

bilayers have observed conformational realignments of lipids given the large influx of positive surface 

charge upon peptide binding, leading to orientation changes in the choline head group.78 For MAG, 

reductions in lipid tail order parameters of up to 25% have been observed for a variety of membrane types 

when 2 mol% peptide (roughly 1:50 P/L ratio) are bound based upon quadrupolar splittings of the 2H-NMR 

spectra.79 Additionally, experimental measurements have shown that increasing MAG adsorption leads to 

decreases in bilayer thickness in DMPC 80, which would also lead to increased tail disorder at ξ = 0.2. 

Once the pore is fully formed (ξ = 1.0 in Figure 7b), the P2 values for the pure DMPC system decrease as 

expected compared to ξ = 0.2 due to lipids bending towards the hydrophilic pore; such disruption is 

energetically unfavorable. For the AUR system, P2 values remain similar for both ξ = 0.2 and ξ = 1.0, with 

values in the latter case again similar to the P2 values for the pore-free pure DMPC membrane. This 

comparison indicates that the 5 AUR peptides lining the pore alleviate tail disruption and thus decrease the 

energy for pore formation, which can explain the decrease in the PMF at ξ = 1.0 for the AUR system 

compared to pure DMPC (Figure 4). For both the MEL and MAG systems, P2 values increase for ξ = 1.0 to 

obtain values similar to those of pure DMPC in the pore-free membrane (ξ = 0.2). Counterintuitively, this 

result indicates that the disruption of lipid order due to binding of these peptides to the membrane in the 

absence of the pore is alleviated upon pore formation, which we attribute to the motion of peptides from 

membrane-bound regions to pore-lining structures. This favorable change in P2 values is in agreement with 

the PMFs for these peptides, which show deeper minima at ξ = 1.0 than the AUR peptides (Figure 4), and 

which we can attribute to the decreased penalty for lipid disruption upon pore formation. 

To further support this hypothesis that lipid bending during pore formation is partially alleviated by peptide 

lining of the pore, Figure 7c presents radial P2 values to highlight lipid tail disruption for those lipids close 

to the pore itself. These values again support trends in the PMFs observed for the 4 systems (Figure 4) – all 

peptides lead to lipid order parameters more similar (larger) to the pore-free system (pure DMPC in Figure 

7a) indicating that peptide pore lining reduces the need for lipids to deform such that that phosphate head 

groups line the pore. MEL has the largest radial P2 values of the peptide-containing systems, pointing to its 

increased propensity to reduce lipid deformation and supporting the data in Figures 4 and 5. 

Pore Lining by Magainin 2 is Influenced by Salt Bridge Formation 
The analysis in Figures 5-7 supports the ability of MEL to most effectively stabilize pore formation through 

pore lining, while AUR least effectively does so, explaining the difference between these peptides in the 

PMFs shown in Figure 4a. The lipid tail order data also supports why MAG can have a metastable PMF 

minimum comparable to MEL by alleviating lipid disruption to a similar extent. The PMF barrier for MAG 

at ξ = 0.8, however, is large and comparable to AUR, which merits further analysis. Motivated by the low 

Cl- number densities observed for AUR and MAG within the pore center (Figure 5b and d) and the presence 

of both positively and negatively charged sidechains compared to MEL (Figure 1a and c), we next sought 

to calculate the propensity for AUR and MAG peptides to form salt bridges as a function of ξ to determine 

if these strong peptide-peptide interactions affect trends in the PMFs. Previous studies have suggested that 

salt bridges between peptides stabilize their alpha-helical secondary structure81-83 and can lead to stabilized 

heterodimers in membranes that precede pore formation.84 
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Figure 8: Comparison of salt bridge formation between Aurein 1.2 (AUR) and Magainin 2 (MAG) peptides 

at representative ξ values for the pore-free membrane (ξ = 0.2) compared to pore formation (ξ = 0.7, 0.8, 

0.9, 1.0) AA system at 300 K. (a) Normalized salt bridge values for AUR and MAG. Bold numbers indicate 

the sum across all four salt bridge types. (b) Top-down simulation view of salt bridges formed for MAG at 

ξ = 0.8 (beginning of peptide pore lining) vs. ξ = 1.0 (fully nucleated pore). Peptides are shown as orange 

cylinders, negative GLU sidechains as red sticks, positive LYS sidechains as cyan sticks, and DMPC lipids 

as grey sticks. Salt bridges are circled. 

 

AUR peptides have 2 cationic (LYS7, LYS8) and 2 anionic side chains (ASP4, GLU11), whereas MAG 

peptides have 4 cationic (LYS4, LYS10, LYS11, LYS14) and 1 anionic (GLU19) side chain, so there are 4 

possible types of salt bridge to consider for each peptide. We calculated the number of salt bridges for 

different values of ξ by defining a salt bridge as consisting of a nitrogen atom of a basic residue (LYS) and 

oxygen atom of an acid residue (ASP, GLU) within 0.4 nm of each other. We further defined the number of 

‘normalized salt bridges’ as the total number of configurations in which a particular type of salt bridge 

(among the four possible) was observed in each umbrella sampling window divided by the total number of 

configurations (Figure S20). 

Figure 8a compares the number of normalized salt bridges (averaged across three replicates) for AUR and 

MAG peptides at four different values of ξ. For both peptides, there is negligible salt bridge formation for 

ξ values prior to pore formation and peptide lining of the pore (ξ = 0.2, 0.7). Interestingly, at the beginning 

of pore lining for both peptides (ξ = 0.8), MAG has over 4 times the probability to form salt bridges relative 

to AUR across all types of salt bridges. To understand this behavior for MAG, we analyzed all salt bridges 

sustained for at least half of the timesteps in the ξ = 0.8 umbrella sampling window (defined as ‘long-lasting 
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salt bridges’) and identified 6 long-lasting salt bridges in the first simulation replica (visualized in Figure 

8b, ξ = 0.8). By comparison, salt bridges for AUR were more transient in nature, with only 1 long-lasting 

salt bridge during any of the three replicate simulations. 

This chain of salt bridges across the pore opening for the 8 MAG system and the much higher propensity 

for salt bridge formation in general over AUR could lead to the sharp peak in the PMF for this system prior 

to the ξ = 0.8 window (Figure 4), which is not seen in any other system studied.  This is further supported 

by the decrease in overall salt bridges for MAG as the pore becomes larger (ξ = 0.9, 1.0). In the visualization 

of the ξ = 1.0 window (Figure 8b), there appears to be a restructuring of salt bridges to stabilize one of the 

two MAG peptides lining the fully nucleated pore (Figure 6a and d). With these results, we hypothesize the 

following  behavior during pore formation in the 8 MAG system: (1) salt bridges force MAG peptides into 

unfavorable “disordered” pore lining configurations at the early stages of nucleation (0.7 < ξ < 0.8), leading 

to the sharp, large peak in the PMF for pore formation; (2) increasing the pore size (ξ > 0.8) releases spatial 

constraints on MAG and permits the peptides to span the pore and interact with counterions, leading to a 

significant decrease in the nucleation free energy (Figure 4a). These behaviors would be unique to MAG 

due to its strong propensity for salt bridge formation among the three peptides studied. 

Conclusions 
In this study, we have provided a generalizable methodology for investigating the energetics of membrane 

pore nucleation and pore lining by membrane-active species. Through the implementation of a hysteresis-

free nucleation collective variable (ξ)40, we have shown that a CG-to-AA backmapping approach can be 

utilized to first equilibrate peptide positions quickly around a nucleating pore with MARTINI CG 

representations of lipids and peptides before then backmapping these systems to the CHARMM36 AA force 

field to resolve free energy profiles for pore formation in atomistic detail. The key advantage of this 

methodology over previous studies is that pore formation in membranes can be observed as a result of 

natural peptide clustering and lateral diffusion rather than having to bias peptide configurations around a 

pore a priori. 

To our knowledge, this has allowed us for the first time to resolve energetic barriers for pore formation for 

the antimicrobial peptides Aurein 1.2, Melittin, and Magainin 2 from AA MD simulations without direct 

biases on whole lipids or peptides and without predefining peptide positions relative to the pore. 

Comparison of pore formation free energies resolved with umbrella sampling for both the CG and AA  

systems validated the need for the backmapping approach because only the AA simulations demonstrated 

expected free energy barriers, which is likely due to overestimations of membrane line tensions and bending 

moduli in the MARTINI force field. Nonetheless, both CG and AA free energy profiles demonstrated 

Melittin’s increased propensity to line pores in DMPC membranes at smaller pore sizes (lower ξ values), 

and both CG and AA simulations predict lower free energy barriers for pore formation for Melittin 

compared to Aurein 1.2 and Magainin 2. These calculations are in good agreement with literature findings 

that Melittin promotes pore formation as a mechanism of antimicrobial activity.19, 20, 25, 73  

To understand the peptide-mediated differences in pore formation free energies, we analyzed the AA 

simulation trajectories to quantify peptide, pore, and lipid structure through calculation of densities, peptide 

tilt angles, the P2 order parameter, and intermolecular peptide salt bridges. Our main conclusions are as 

follows: (1) Aurein 1.2 lines pores in a disordered structure and does little to alleviate either DMPC head 

phosphate density in the pore or lipid deformations in general upon pore lining, leading to the smallest 

decrease in the pore formation free energy barrier; (2) Melittin is the best pore former of the peptides studied 

as supported by strong toroidal-type behavior in tilt angle and group density analysis as well as clear 

alleviation of lipid deformation adjacent to the pore, leading to the largest decrease in the pore formation 
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free energy barrier; (3) Magainin 2 has a weak propensity to line pores with only 1 to 2 peptides lining the 

pore at the maximum value of ξ, which appears to be due to salt bridges between peptides and leads to a 

large pore formation free energy barrier. However, magainin 2 also introduces lipid disruption upon 

membrane binding that is alleviated when a pore forms, leading to a comparable decrease in the free energy 

of the metastable pore (ξ=1.0) as melittin. These results illustrate the atomistic insights achievable from the 

combined CG and AA simulation approach utilized in this study, which we believe will provide a framework 

for future efforts to quantify clinically applicable activity and pore formation metrics for varied 

antimicrobial materials. 
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