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Abstract 
A growing number of Deep Learning (DL) methodologies have recently been developed to design 

novel compounds and expand the chemical space within virtual libraries. Most of these Neural 

Network approaches design molecules to specifically bind a target, based on its structural 

information and/or knowledge of previously identified binders. Fewer attempts have been made to 

develop approaches for de novo design of virtual libraries, as synthesizability of generated molecules 

remains a challenge. In this work, we developed a new Monte Carlo Search (MCS) algorithm, 

DrugSynthMC (Drug Synthetise using Monte Carlo), in conjunction with DL and statistical-based 

priors to generate thousands of interpretable chemical structures and novel drug-like molecules per 

second. DrugSynthMC produces drug-like compounds using an atom-based search model that 

builds molecules as SMILES, character by character. Designed molecules follow Lipinski’s “rule of 

5”, show a high proportion of predicted-to-be synthesisable compounds and efficiently expand the 

chemical space within the libraries, without reliance on training datasets, synthesizability metrics or 

enforcing during SMILES generation. Our approach can function with or without an underlying Neural 

Network and is thus easily explainable and versatile. This ease in drug-like molecule generation 

allows for future integration of score functions aimed at different target- or job -oriented goals. Thus, 

DrugSynthMC is expected to enable the functional assessment of large compound libraries covering 

an extensive novel chemical space, overcoming the limitations of existing drug collections. The 

software is available at https://github.com/RoucairolMilo/DrugSynthMC 

 
 
Introduction 
Since the 1980s, in silico approaches have been extensively and routinely used in drug discovery 

and have transformed the medicinal chemistry field 1, with expectation to do so even more in the 

future. The need for rapid response, highlighted by the emergence of resistant bacteria and, among 

others, the COVID-19 pandemic, has fuelled the development of novel computational tools for drug 

design and screening 2. In silico virtual-library screening (VS) is usually the first critical step in 

structure-based drug discovery, where the algorithm aims to predict the best matching binding mode 

of a ligand to a receptor 3. Despite the many attempts to improve accuracy of VS methods 4, 5, the 

relatively limited chemical diversity of compounds in libraries reduces the ability of structure-based 

VS to identify hits and leads 6, 7. Indeed, it has been estimated that only a small portion (106-107) of 

the 1063 drug-like molecules predicted to be synthetically accessible has been explored 8. 

 

Several studies have shown that screening larger libraries that expand the accessible molecules by 

several order of magnitude (~1011) improves the rate of true high affinity (nM-pM) binders 9-12. To 

further expand the chemical space within virtual libraries, generative models based on Deep 

Learning (DL) methodologies have been used to produce molecules with desired chemical features 

able to bind specifically macromolecules of interest extensively reviewed in 13, 14-16. 
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Recurrent neural networks (RNNs) were among the first DL methods to be developed to generate 

SMILES, a line notation that describes the structure of a molecule 17. However, RNNs tend to suffer 

from exposure bias, and a diverse range of alternative approaches that differ in the training 

procedure and model architecture have been proposed. These include Variational AutoEncoders 

(VAEs) 18, Generative Adversarial Networks (GANs) 19, and graph-based generator 20. Nevertheless, 

even these alternative approaches have limitations and, for example, it has been reported that VAEs 

generated SMILES often cannot be translated into interpretable chemical structures 21. Furthermore, 

a key requirement of generative models is that designed molecules must be synthesisable. A wide 

range of different approaches have been used to predicts synthetic feasibility of molecules, including 

using scores based on structure complexity and similarity to evaluate synthesizability 22, or 

integrating computer aided synthesis planning (CASP) tools as part of the design process 23, 24. 

However, as Bilodeau et al. 25 recently highlighted, approaches that embed CASP tools automatically 

inherit CASP limitations, thus reducing chemical diversity of compounds in de novo generated 

libraries. 

 

In this paper, we use Monte Carlo Search (MCS) algorithms in conjunction with DL and statistical-

based priors to generate thousands of interpretable chemical structures and novel drug-like 

molecules per second. DrugSynthMC (Drug Synthetise using Monte Carlo) relies on an algorithm 

never previously used in chemistry/medicinal chemistry, differing from prior efforts in that it rapidly 

produces valid molecules, while being explainable and, importantly, requiring no training. The 

algorithm does not enforce synthesizability or rely on synthesizability metrics during SMILES 

generation, which has been shown to reduce diversity and novelty of generated compounds 26. 

However, the synthesizability of generated compounds was analysed using an open-source 

retrosynthesis analysis tool, AiZynthFinder 27. We show that our method generates drug-like libraries 

with a high proportion of predicted-to-be synthesisable compounds and efficiently expands the 

chemical space within the libraries. Finally, DrugSynthMC is highly flexible and, in future, could be 

easily tuned using multiple parameters to tailor for a wide range of different chemical goals and/or 

create customised libraries of compounds for specific targets.  

 

Methods 
Search model 

The search model consists of a set of instructions defining what available moves (character addition) 

can be applied to unfinished SMILES. All SMILES start empty, and only one atom can be added at 

that stage. Once atoms are added, cycles and subtrees can be initiated. This search model ensures 

that initiated SMILES can be completed from any point of the search into a valid final SMILE, with 

generation being heavily restricted by the below rules. The central rule is to respect the total number 

of bonds each atom can form. To do so, the number of available bonds of the last added atom in the 
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current subtree is stored. This number is checked to compute possible legal moves and decreased, 

when adding a character corresponding to a new atom in a different subtree level, according to the 

number of bonds used to connect the new atom to the previous one. To maximise the chance of 

generating valid molecules with drug-like properties, we scanned the FDA subset of the ZINC20 

database 28 to obtain frequency information on types of atoms and bonds involved. This information 

was stored in frequency matrices, allowing to label as illegal moves by the search model bonds that 

were never or very rarely encountered (less than 1/10000 of the bonds for each atom involved). It 

also enabled us to focus the generator on using the most commonly encountered atoms only: carbon 

(C), oxygen (O), nitrogen (N), fluorine (F), sulphur (S), and chlorine (Cl), while bromine (Br) and 

phosphate (P) atoms were not included due to their relative rarity, but could be easily reintroduced 

in the search model, along with inorganic atoms. Last, we added shortcuts for the different bonding 

of S: bond to 2 atoms, or 4 atoms in sulfinyl, or 6 atoms in sulfonyl. Rather than learning the entire 

functional groups and edge possibilities through the prior, we decided to pre-process the SMILES 

prior to training, turning the trifluoromethyl (W), sulfinyl (M), and 

sulfonyl (U) into their own symbols used in building SMILES. 

Operating principle 

To give an accurate list of possible characters to append to an incomplete SMILE, the search model 

keeps track of several parameters concerning the SMILES at any step: 

(1) The depths of the nested subtrees: The subtrees are expressed in SMILES language using the 

"(" symbol for opening, and the ")" symbol for closure. Termination of SMILES is not allowed unless 

they are back to the root tree, meaning that all open parentheses must be closed. Closing a subtree 

when no parenthesis is open is also forbidden. 

(2) Covalence bounds counts: Each subtree contains an active atom, which is the last one added at 

that level. It is the atom to which other atoms, cycles, and subtrees are then added. The search 

model keeps track of the number of available covalent bounds on the last atom of each subtree until 

the latter is closed by a ”)”. Moves that exceed the number of covalent bounds available are not 

allowed. 

(3) Cycle nesting: Nested cycles that share more than one bond are uncommon in drug-like 

molecules. Thus only the most recent cycle is allowed to be terminated. 

(4) Cycle length: More rules, not inherent to the SMILES grammar, were added to improve the drug-

likeness and stability of the molecules. These included not allowing cycles smaller than 5 and bigger 

than 7 atoms to be generated. Indeed, while these cycle sizes exist in drug-like molecules, size 4 

cycles are usually hard to synthesize and unstable, while cycles longer than 7 atoms are rare. 

Additionally, to avoid unnecessarily long playouts and molecules, a boolean flag called “finish ASAP” 

is added. It is set to true once a certain number of characters is met and disallows certain moves, 

such as opening a new subtree or cycle, with some exceptions (i.e., finishing an already open 

subtree). This complicated set of rules is necessary to prevent the search from cornering itself due 

to cycles or using all the covalent bounds available on a particular level. However, this results in a 
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rather lengthy function enumerating the legal moves from an incomplete SMILES (about 100 lines 

long). 

 

Playouts 

In Monte Carlo Search, a playout is a computationally cheap unfolding of actions from a starting 

search space state. Moves are selected and played until the resulting new search is terminal or no 

move is available. The terminal state is then evaluated and returned to be used by the algorithm 

calling the playout. Playouts are a core element of most Monte Carlo Search algorithms and the 

move selection process differentiates algorithms. Many algorithms use random playouts, usually 

when tackling NP-hard problems where expert knowledge can’t help. The Prior Upper Confidence 

bounds applied to Trees (PUCT) 29 used in DeepMind’s AlphaGo 30 employs a neural network to 

recommend moves to play in a game of Go. The Nested Rollout Policy Adaptation (NRPA) 29 learns 

a reinforcement learning policy on the fly to select the moves. Some other applications can evaluate 

non-terminal states and use greedy playouts (our unpublished results). In fact, the choice of playout 

mode can be more important to the success of a MCS than the algorithm used (our unpublished 

results). In this study, we used the Sampling method to act as a baseline to compare our algorithms. 

This method consists of independent playouts from the start state and ends once a molecule reaches 

the best possible score. 

 

Guided playouts: ngrams 

Ngrams are short subsequences derived from larger sequences of characters. They were one of the 

first machine learning approaches, mostly used in Natural Language Processing (NLP). Through the 

use of grams, it is possible to compute the statistics of every sequence of characters in a learning 

corpus to predict the next character in a Markovian process. Here, ngrams were generated through 

extracting every sequence of characters from the FDA subset of the ZINC20 database and were 

associated conditional probabilities used to guide the playout of an incomplete SMILES given its last 

characters at any step. For instance, if the learning corpus only contained “COCC” and ”COCO”, the 

entry for ”COC” would report P (C|COC) = 0.5 and P (O|COC) = 0.5. The ngrams were only used to 

value moves and act as a prior, following the rules of the search model. Hence, whenever the ngram 

valued a move that was forbidden by the model, the move was discarded. The ngrams also used 

the cycle length computed from the FDA-approved compound database to guaranty the right 

proportion of cycles of each length in the final molecules. Storing information about the cycles’ length 

within the ngrams themselves would be possible but expected to be more error-prone. Therefore, 

we instead decided to use a probability to end a cycle at a certain length. These probabilities are 

0.228 for a cycle of length 5, 0.751 for a cycle of length 6, and 0.02 for a cycle of length 7. Smaller 

and longer cycles were omitted for reasons mentioned above. 

 

Guided playouts: neural network  
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As previously explored 31, neural networks can be trained to give conditional probabilities of the next 

character given all of the SMILES. The neural network is then repeated on the newly extended 

SMILES until the SMILES is terminal, similar to recent Large Language Models (LLM). This method 

strays from the usual playouts as it is not limited by the rules of the search model, but is prone to 

produce invalid smiles 31. The same neural network can also be used as a prior, following the rules 

of the search model just like in the case of ngrams. This method has two advantages over 

approaches using ngrams: (1) taking the entire context of the SMILES into account, and (2) 

generalization (as ngrams require an exact precursor). However, ngrams are faster, more easily 

explainable, and require no training. 

The neural network used in the present study is the same as in 31, and was trained using the same 

dataset. It was only slightly modified to accommodate for the shortcuts with no apparent 

repercussions on the results obtained. 

 

Monte Carlo Search: Upper Confidence bounds applied to Trees 

Monte Carlo Search (MCS) encompasses a wide range of search algorithms. These differ from 

regular search algorithms in that they are not deterministic and use randomness to explore search 

spaces too large for regular algorithms and learn guiding policies 32. In 2006, Kocsis introduced a 

variant of Monte Carlo Tree Search (MCTS) called Upper Confidence bounds applied to Trees (UCT) 

or Bandit based Monte-Carlo Planning 33. It is now the most widely used MCTS and MCS algorithm 

in the literature, often in the form of Prior UCT (PUCT).  

UCT is a bandit-based reinforcement learning algorithm similar to Q-learning. The algorithm learns 

a policy and selects to go down the tree in order to balance exploitation and exploration. 

Like all MCTS, UCT is comprised of 4 phases: 

1. Selection: Progress in the selection tree according to the policy. 

2. Expansion: Once a state that has not been explored yet is encountered, it is added to the tree. 

3. Evaluation: A playout (or another fast algorithm) is used to evaluate the quality of the new state. 

4. Backpropagation: The result of the evaluation is used to update all the parent states visited during 

the Selection step. 

These four steps are repeated indefinitely, starting from the initial state each time, much like in Q-

learning. What differs between the various MCTS algorithms is the formula of the policy. 

UCT uses the following formula to evaluate a child state S to select: 

𝑈𝐶𝑇𝑠 = 𝑋𝑠 + 𝐶 ∗	*!" #
#$

√ 

Where XS is the average score of state S, C is the exploration/exploitation constant (usually 1), V is 

the number of visits of the current state, and VS is the number of child state S visits. 

PUCT is a generalization of UCT. It uses a prior to guide not only the playouts but also the selection 

process, allowing to speed up the latter with knowledge from outside this execution. PUCT uses a 

different selection formula: 
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𝑈𝐶𝑇𝑠 = 𝑋𝑠 + 𝐶 ∗ 𝑃𝑠 ∗
√𝑉

1 + 𝑉𝑠
 

With PS the value given by the prior for state S. 

 

Nested Monte Carlo Search 

Nested Monte Carlo Search (NMCS) is a different type of MCS algorithm. It uses lower-level NMCS 

on each available move of the current state to explore the search tree and register the sequences of 

actions leading to the best scores. Once the lower-level NMCS returns their best routes to the higher 

level, it executes the next move of the best route and calls new lower-level NMCS on the resulting 

state. The lowest level NMCS is (usually) a playout. Unlike UCT, the NMCS does not explore the 

entire search space given enough time, but gains in precision as it explores the tree and is less 

prone to be stuck in a local maximum. This property led to generally better results from NMCS over 

UCT and other algorithms on optimization problems. 

 
Validation of the Generated Small  

An in silico validation was performed to understand the quality and synthesizability of the 

generated molecules. SMILES validity and clogP were calculated with the RDKit 34. The 

AiZynthFinder software was used to predict synthetic routes of generated SMILES 27. 

 
Results and Discussion 
 

Performance of Models 
The aim of this work was to (i) generate large sets of novel molecules that expand the chemical 

diversity of available compounds libraries, (ii) generate small molecules with drug-like properties, (iii) 

which in future could be used for VS campaigns and could be easily grown into larger drugs and 

tailored for specific targets. As such, DrugSynthMC generates, in the absence of any training, 

SMILES of drug-like molecules without prior targets in mind. Thus, the score function is meant to 

only maximize the validity and drug-likeness of the output molecules and is not goal-oriented (e.g., 

tailored to bind a specific biological target). The drug-likeness is obtained through maximizing the 

general chemical properties associated with drugs according to the “Rule of 5” 35-37. Indeed, easily 

calculated physicochemical descriptors, such as molecular weight (MW) and number of hydrogen 

bond donors and acceptors, have been found to correlate with the success rate of clinical trials 38. 

The function of compliance (score function) was defined as: 

α1 = −max(mass − 500)/500 (1) 

α2 = −max(natoms − 70)/70 (2) 

α3 = min(natoms − 20)/20 (3) 

α4 = −max(nhbd − 5)/5 (4) 

α5 = −max(nhba − 10)/10 (5) 

score = α1 + α2 + α3 + α4 + α5 (6) 
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With mass being the MW of the molecule, natoms the number of atoms (including hydrogens), nhbd 

the number of hydrogen bond donors, and nhba the number of hydrogen bond acceptors. This 

formula has the advantage of being computationally cheap and requiring only a pass through the 

SMILES string.  

 

To identify the most efficient method, we compared the UCT and NMCS MCS algorithms combined 

with different types of playouts. (i) random: the next character is selected uniformly randomly among 

the ones proposed by the search model. (ii) enforced: as in random, the next character is selected 

uniformly randomly among the ones proposed by the search model. In order to generate compounds 

that are structurally valid and synthetically accessible, the score function aims to generate molecules 

containing the same heavy atoms (C, O, N, F, S) ratios as in FDA drugs (retrieved from the FDA 

subset of the ZINC20 database) 28. (iii) ngram: the next character in the SMILES is selected 

randomly among the ones proposed by the search model, according to the conditional probabilities 

of the 3 characters ngram computed on the SMILES from the FDA subset. To balance the number 

of rings containing 5, 6, and 7 atoms, the score function uses the probability of difference rings 

occurrence calculated on FDA drugs to end a ring at a certain length. No conditional probability was 

used to balance type of ring (i.e., aromatic and aliphatic, homo- and hetero-cycles). Additionally, 

characters with a probability under 0.001 are pruned as they are judged too rare. (iv) neural: the 

next character is selected randomly among the ones proposed by the search model, according to 

the neural network output weight based on the incomplete SMILES input. As for ngram, characters 

with a probability under 0.001 are pruned. In addition, we used the Sampling method as a control. 

This method consists of independent playouts from the start state, and ends once a molecule 

reaches the best score possible. 

 

For NMCS, we used a level of 3. For PUCT/UCT we used a constant of 1. We use PUCT instead of 

UCT when a prior is used (ngrams and neural). Here, DrugSynthMC was run on Rust 1.59, on an 

Intel Core i7-11850H 2.50GHz using a single core, to generate 1000 valid drug-like molecules in 

independent runs (Table S1). Generation times are not dependent on molecules size or complexity. 

In all cases, the neural playout is much slower (approximately 5000 times) than the ngrams. The 

random and enforced playouts do not use a policy and show how the algorithm selection can affect 

the generation speed. PUCT and UCT use a timeout of 10 sec, because both methods lock into local 

maxima induced by the shortcuts, failing to generate molecules (unless restarted immediately, 

turning them into Sampling). Indeed, shortcuts in PUCT and UCT increase the size of molecules and 

the linked scores, but often produce molecules which deviate from desirable drug-like properties 35-

37. In contrast, UCT without shortcuts is able to return molecules for random and enforced generation. 

However, while UCT without shortcuts has identical generation times as NMCS and Sampling with 
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random playouts, with enforced playouts UCT is over 100 and 6 times slower than NMCS and 

Sampling, respectively. 

The NMCS shows a clear advantage over UCT and Sampling when a more complex score function 

is used. The design of NMCS forces it to explore other subtrees of the search tree, thus preventing 

locking in local maxima. However, this feature increases generation times when using a prior in this 

set of experiments. Nevertheless, as suggested by the random and enforced playouts generation 

times, NMCS is likely to outperform UCT and Sampling for specific goal-oriented generation requiring 

more complex score functions. 

 

Validation of the Generated Drug-like Molecules 
In recent years, with the expansion of DL methods for drug design, several initiatives have been 

launched to assess generated compounds, which includes benchmarks such as Guacamol and 

MOSES 39, 40. However, these benchmarks are not suitable for methods like DrugSynthMC that don’t 

exclusively rely on training datasets. Instead, we evaluated similar metrics (validity, uniqueness, 

novelty, diversity, physicochemical properties and synthesizability) and used comparable tools 

(RDkit, ZINC databases, AiZynthFinder) to validate our algorithm. 

 

To assess the reliability of the tool to generate valid and interpretable molecules, 10,000 generated 

SMILES were translated into structure representations using RDkit 34. In all cases, we see that RDkit 

is able to read and translate 100% of the inputted SMILES (Table 1), showing no syntax errors. This 

is significantly superior to other methods, which showed validity scores ranging from 85% for 

generative autoencoders to about 96% for RNN-based models 41-43.  

 

Table 2: Novelty of 10,000 SMILES 

 

 

 

 

 

 

Table 1: Validity of 10,000 SMILES 
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Table 3: Uniqueness of 10,000 SMILES 

 
 

The ability to generate novel compounds was determined by measuring the percentage of molecules 

in a library of 10,000 generated SMILES which was not present within ZINC-250K 44 (containing 

nearly 250,000 molecules) (Table 2). In all cases, we see a high level of novelty. It is logical to 

assume that designing compounds based on general physicochemical properties of drugs instead 

of on a training set allows DL methods to explore a wider chemical space. Within each of the libraries 

generated, uniqueness was assessed by identifying the number of identical molecules (Table 3). 

This shows substantial differences among the different playouts used, with ngram and neural 

showing a higher number of replicated molecules within libraries. This is linked to the priors 

restricting the search space to what is more probable. Indeed, by determining the average edit 

distance as a measure of structural similarity of compounds (Table 4), we can see that both priors 

similarly restrict the explored chemical space (lower values indicating more similar structure, more 

likely to have similar properties 45). Conversely, by generating larger drugs with SMILES string 

containing 30 characters or more the uniqueness rises above 95% with all methods. While possible, 

it is more challenging to predict synthesizability of larger drugs using retrosynthesis programmes 

which search a synthetic route for a chosen molecule 46, 47.  

 

Table 4: Average Distance for of 1,000 SMILES compared 2 by 2 

 
 

Synthesizability of the Generated Drug-like Molecules 
A recent comparison of tools used to predict synthesizability of compounds carried out by Sanchez-

Garcia et al. 48 showed that retrosynthesis programmes tend to be more accurate than SA scores. 
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Yet effectiveness and efficiency of different retrosynthesis tools varies quite dramatically and is still 

restricted in the variety of reaction types considered 49. Retrosynthesis programmes use a 

combination of search algorithms and 1- or 2-step retrosynthesis deep learning to apply reactions to 

a molecule and divide it into reactants available on the market. AiZynthFinder is an open-source full-

fledged template-based retrosynthesis planning framework that adopts a root-parallelized MCTS 27, 

similar to ASKCOS 50, and to our UCT. AiZynthFinder usually tends to successfully identify paths to 

synthesis in less than 1-2 min 27. Indeed, this was consistent with our retrosynthesis analysis of drugs 

retrieved from the FDA subset, showing that AiZynthFinder finds routes for the majority of molecules 

within the first 2 min of search (Fig. 1A). Hence, 2 min was chosen as maximum search time for the 

retrosynthesis assessment of the 1000 molecules generated. As mentioned above, there is a 

connection between number of characters in a SMILES and success in identifying retrosynthesis 

pathways. We noticed that the larger the compounds generated the less likely AiZynthFinder 

successfully completes a search within 2 minutes or more. Indeed, AiZynthFinder finds 

retrosynthesis routes for ~60% of the 1615 FDA-approved drugs and tends to fail for larger molecules 

(Fig. 1A-B). Therefore, as proof-of-principle study, we chose to generate lower MW drug-like 

compounds, at the expenses of uniqueness, to show the ability of our approach to generate 

synthesizable compounds. Due to the similarities between the algorithms when using neural or 

ngram playouts, and, as shown above, the overall better performances of NMCS, we focused on the 

molecules generated by this latter method. The ngram playout is the one that generates the largest 

number of synthesizable compounds. The predicted 32.2% synthesizability is promising and in line 

with previously reported accuracy rates for different retrosynthesis programmes 49. The neural 

playouts, while still promising, provide a much lower rate of predicted synthesizability. This can be 

explained by the fact that the neural network does not return the exact conditional probability from 

the training set, and thus rare moves such as the shortcuts are over-represented in these 

generations. We adopted the neural network from Yang et al. 31 with adaptations for our shortcuts 

and explicit bonds. While it showed worse outcomes with the implicit bonds and no shortcuts, it 

delivered similar results with explicit bonds and no shortcuts. However, with more fine tuning, neural 

networks may have the potential to reach the same level of synthesizability achieved with the ngrams 

although with the added disadvantage of having a slower execution. 

The random and enforced generations act as control experiments. As no policy governs the structure 

of the generation, nothing can direct the molecule generation toward a sensible and synthesizable 

outcome. Indeed, AiZynthFinder is unable to propose reactions, thus ending the search long before 

the 2 minutes time limit (generally in less than a second). 
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Figure 1. AiZynthFinder synthetic routes search (A) histogram plot showing the number of drugs 
from a dataset comprising 909 drugs retrieved from the FDA subset of the ZINC20 database versus 
AiZynthFinder synthetic routes search time in seconds. (B) histogram plot showing the number drugs 
for which AiZynthFinder successfully finds synthetic routes in less than 2 minutes versus drugs 
Molecular Weight. “Solved 1-step” drugs that can be produced directly from commercially available 
compounds; “Already in stock” drugs that are identified as commercially available by AiZynthFinder. 

 

Physicochemical properties of the Generated Drug-like Molecules 

To further validate drug-likeness of generated compounds, we compared distributions of key 

physicochemical properties of molecules generated with NMCS with ngram playout (the method that 

generated the highest number of valid and synthesisable drugs-like compounds) with molecules 

generated with NMCS with random playout (used as control) and drugs retrieved from the FDA 

subset of ZINC-20 28 abiding to the same general physicochemical properties we took into 

consideration in the design stage.  
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It’s been shown that, to avoid reducing oral bioavailability, the number of hydrogen bond donors 

(HBD) should be lower than 6 and hydrogen bond acceptors (HBA) lower than 15 51, 52. Despite the 

upper limitation of 10 and 5 for HBA and HBD, respectively, we found that compounds generated 

with ngram peak at 2 and 1 for HBA and HBD, respectively, with an overall lower number of HBA 

than random, and a higher ratio of compounds with fewer HBD than random and FDA (Fig. 2A-B). 

By design, ngram generates compounds with lower MW and total number of carbons (and as a 

consequence, lower number of heavy atoms) and hydrogens than drugs in FDA (Fig. 2C-F). This is 

an indispensable requirement for (i) future optimisation studies where compounds may need to be 

grown to adapt to pockets in targets and increase overall affinity, and (ii) synthesizability analysis 

with AiZynthFinder. The distribution of heavy atoms is overall comparable in all plots, as the score 

function generates molecules containing the same heavy atoms (Nitrogen, Oxygen, Fluorine, 

Sulphur, Chlorine) ratios as in FDA drugs (Fig. 2G-L). DrugSynthMC score function balances the 

number and size of rings (Fig. 2M-O), but not the type (aromatic and aliphatic, homo- and hetero-

cycles), based on the probability of difference rings occurrence calculated on FDA drugs. The 

formula returns drugs with a nearly equal distribution of compounds with zero or one aromatic cycle, 

which is lower than the aromatic cycle content in FDA drugs (Fig. 2P). However, it has been shown 

that oral drugs with less than 3 aromatic rings have good compound developability 53, suggesting 

that DrugSynthMC has the potential to generate compounds with low risk of attrition in early stage 

development. Generated compounds have also promising oral bioavailability parameters. Earlier 

work by Caminero Gomes Soares et al. 54 showed that FDA-approved drugs in the last 20 years 

have a relatively stable numbers of rotatable bonds (mean 5, median 7.5) with about 89% drugs 

containing less than 10 rotatatable bonds. ngrams successfully generates compounds with less than 

6 rotatable bonds (mean 3) and, in proportion, produced higher number of molecules with fewer and 

higher rotatable bonds than the FDA drugs and Random playout, respectively, thus potentially 

identifying a balance between flexibility and diffusional cross-section (Fig. 2P). 
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Figure 2. Physicochemical properties of the Generated Drug-like Molecules. Comparison of 
physicochemical properties among drug-like compounds generated with Random and Ngram, and 
the ”Rule of 5” drugs withing the FDA subset of the ZINC20 database. Violin plots showing (A) 
number of hydrogen bond donors (HBD), (B) hydrogen bond acceptors (HBA), (C) Molecular Weight 
(MW), (D) total number of Carbons, (E) heavy atoms, (F) Hydrogens, (G) Nitrogen, (H) Oxygen, (I) 
Fluorine, (K) Sulphur, (L) Chlorine, (M) pentamers, (N) hexamers, (O) heptamers, (P) aromatic 
cycles, and (Q) clogP. Physicochemical properties were calculated on libraries containing 1,000 
generated compounds. 

 

The logarithm of the octanol–water partition coefficient (logP) is a widely used parameter to define 

solubility of compounds in water and to define their upper limit of intrinsic solubility. Extensive 

analysis of experimental logP and calculated logP (clogP) of approved drugs over the past 30 years 

showed that the cutoff <5 remained constant with a mean of about 3.4 55-57. Unlike other Rule of 5 

physicochemical descriptors which are routinely calculated based on SMILES or compounds 

structures, the clogP is highly dependent on the calculation method, with recent approaches relying 

on computationally expensive and state-of-the-art neural approaches 58. Faster approaches are 

available, but they trade accuracy for speed. As such, to avoid making the evaluation function 

computationally demanding or inaccurate, the calculation of the logP was not included in the score 

function and instead clogP was calculated on DrugSynthMC generated compounds using Rdkit, 

which provides an implementation of the atom-based Wildman-Crippen method 59. All three sets of 

molecules analysed have overall similar clogP (Fig. 2Q). The distribution of clogP showed that the 

majority of molecules have a value between -2 and 4, with ngram showing a larger number of 

compounds with lower clogP (~2) than that of the FDA, suggesting high likelihood of a compound 

being orally active. 

 

Conclusions 
Our approach, DrugSynthMC, is capable of designing novel and chemically diverse drug-like 

compounds by generating character-by-character SMILES. We compared different algorithms with 

different payouts. Unexpectedly, we showed that the ngrams playout is superior to the more 

advanced neural approaches and usual MCTS algorithms, such as UCT. Very likely, this is linked to 

ngrams’ ability to follow more closely the distribution. Conversely, as expected, NMCS outperforms 

UCT in random and enforced generation, as it has been shown before that NMCS is usually better 

than UCT on optimization problems 60, 61. 

We have shown that DrugSynthMC is highly flexible and, in future, could be easily tuned using 

multiple parameters. This would result in the generation of customised drugs libraries tailored for 

specific binding pockets on targets.  
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Table S1: Time (sec) to generate 1000 molecules. 
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