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Abstract

Recently, we derived experimental oscillator strengths (OSs) from well-defined UV-

visible absorption spectral peaks of 100 molecules in solution. Here, we focus on a subset

of transitions with the highest reliability to further benchmark the OSs from several

wave function methods and density functionals. We consider multiple basis sets, tran-

sition moment gauges (length, velocity, and mixed), and solvent corrections. Most

transitions in the comparison set come from conjugated molecules and have π → π∗

character. We use an automated algorithm to assign computed transitions to exper-

imental bands. OSs computed using the Tamm-Dancoff approximation (TDA), CIS,

or EOM-CCSD exhibited a strong gauge dependence, which is diminished in linear

response theories (TD-DFT, TD-HF, and to a smaller degree LR-CCSD). OSs calcu-

lated from TD-DFT with PCM solvent models are systematically larger than apparent
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OSs derived from experimental spectra. For example, fcomp from hybrid functionals

and PCM have mean absolute errors that are ∼10% of n · fexp, where n is a solvent

refractive index factor that arises from the energy flux of the radiation field in a di-

electric (solvent). Theoretical cavity field corrections considering spherical cavities do

not improve the agreement between computed and experimental data. Corrections that

account for the molecular shape and the direction of transition dipole moments should

be more appropriate.

Introduction

Among quantum mechanics’ earliest successes was its ability to explain and predict spectra,

from black-body radiation to atomic emissions. The agreement between calculations and

spectroscopic quantities remains an important and widely used metric for assessing the ac-

curacy of quantum chemical theories and models. Many benchmark studies have provided

data on the accuracy of computed electronic transition energies in molecules. For instance,

vertical energies computed with time-dependent density functional theory (TD-DFT) can

lie within a fraction of an electron volt from experimental λmax.1 Specifically for π → π∗

transitions in organic dyes, TD-DFT computations have typical deviations in the 0.15-0.25

eV range.2 Protocols aimed at reproducing experimental adiabatic excitation energies and

that take into account vibrational zero-point energies have achieved chemical accuracy (er-

rors under 1 kcal·mol−1 or 0.043 eV) on small molecules using systematically improvable but

more time-consuming ab initio excited-state methods.3

Compared to electronic transition energies, far fewer studies have looked into the ability

of computational methods to accurately reproduce absorption intensities. This is the focus of

the present work. We start by briefly reviewing some of the benchmark studies for oscillator

strengths (OS, or f values) in the literature.

Most studies focus on comparing f values computed using one method to another suit-

able computational reference. For instance, Silva-Junior et al.4 compared TD-DFT (BP86,
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B3LYP, and BHLYP) and DFT-based multireference configuration interaction (DFT/MRCI)

f values to the best theoretical estimates from ab initio methods such as MS-CASPT2,

CC2, and CCSD.4,5 They focused on optically allowed transitions from 28 medium-sized or-

ganic molecules and found that TD-DFT generally underestimates the ab initio OSs, while

DFT/MRCI f values were comparable, with a mean absolute deviation in the range 0.06-

0.08.4

Similarly, Caricato et al.6 assessed the performance of TD-DFT functionals, RPA, CIS,

and CIS(D) relative to EOM-CCSD calculations in a set of 11 small organic molecules con-

taining alkenes, carbonyls, and azobenzenes. They analyzed a total of 69 states: 30 valence

and 39 Rydberg in nature. They found significant variations between functionals and a

marked dependence of the error magnitude on the molecule.6

A few studies have directly compared computed and experimental f values. Chrayteh

et al.7 studied the excited state properties of 13 small molecules in the gas phase using the

CC-expansion and extrapolating to the complete basis set limit. They found that their com-

putations fall within experimental errors for transitions with experimentally reproducible

f values.7 Jacquemin et al.8 compared f values computed with the Bethe–Salpeter equa-

tion (BSE) formalism (combined with the GW approximation) to experimentally-derived

f values of 30 anthraquinones in dichloromethane.9 The BSE/GW calculations reproduced

the experimental trend. They report a R2 value of 0.819 for the linear regression between

the computed and experimental data, even though the calculation did not include solvation

effects.8

In a study that focused on N2, CO, formaldehyde, ethylene, and benzene, Tawada et al.10

found that LC-functionals (LC-BOP, LC-BLYP, and LC-PBEOP) were able to correctly

reproduce the order of magnitude of the experimental f values in N2 Rydberg transitions.

On the other hand, pure functionals (BOP, BLYP, and PBEOP) underestimated f values

by two orders of magnitude, and B3LYP underestimated them by one order of magnitude.

With a less marked difference in CO’s σ → π∗ transition, LC-TDDFT still outperformed
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B3LYP and pure functionals (the worst performing again). In formaldehyde, ethylene, and

benzene, results became more mixed, with LC-TDDFT greatly overestimating C2H4’s π →

π∗ transition.10

Miura, Aoki, and Champagne11 focused on lowest-energy dipole-allowed (mainly π → π∗)

transitions in benzene, phenol, aniline, and fluorobenzene. They compared seven functionals

(SVWN, BLYP, PBE, TPSS, B3LYP, PBE0, and BHandHLYP) to available gas-phase ex-

perimental f values, and to RPA, CIS, CCS, CC2, and CCSD calculations. They investigated

the effect of basis set (Pople’s 6-31G*, 6-311G*, 6-311G**, and 6-311++G**; and Dunning’s

cc-pVDZ to cc-pV5Z, aug-cc-pVDZ to aug-cc-pVQZ, and d-aug-cc-pVDZ to d-aug-cc-pVTZ)

on the energies, f values, and character of the transition computed with B3LYP and PBE0.

An important conclusion from their work is that diffuse basis functions are important for

both energies and OSs. For example, the decrease in excitation energy (in agreement with

experiment) is more pronounced going up in the cc-pVXZ than in the aug-cc-pVXZ series of

basis sets. The corresponding f values increase with the former and decrease (in agreement

with experiment) with the latter series. The bulk of their calculations were carried out with

the 6-311++G** basis set. When expanding their benchmark to include chlorobenzene,

anisole, and phenetole and comparing their calculations to experiments, they found that

the computations correlated well with the experimental data but were not in quantitative

agreement. For example, TD-B3LYP calculations yielded a slope of 1.48 and a y-intercept

of -0.26 when plotted against experimental data, but the correlation coefficient (R) value is

0.94. Other functionals gave comparable results.11

For more information about oscillator strength benchmark studies in the literature pub-

lished before 2013, we refer the reader to Ref. 1.

Recently, we generated a collection of f values from experimental UV-Vis absorption

spectra of 100 organic molecules in solution.12 A total of 164 OSs were obtained by integrating

the attenuation coefficient ϵ(ν̃) over the limit of well-defined bands in the spectra. Transitions

were categorized as either very high (VH), high (H), medium (M), low (L), or very low (VL)
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confidence on the basis of the reproducibility and quality of the fitting. We refer the reader

to Ref. 12 for more details on the fitting, integration, categorization, and a discussion of

the sources of error of these f values. While errors in experimental OSs are difficult to

quantify, we expect that errors in the condensed phase should be smaller than errors in the

gas phase.12,13

Here, we employ this benchmark set to compare OSs computed using several TD-DFT

functionals and wave function methods. Aspects that affect the comparison between the-

ory and experiments, such as experimental deviations from the Beer-Lambert Law, solvent

effects, and the f value dependence on the energy of the electric transition, are discussed.

The manuscript is structured in four sections. To provide a framework for how computed

and experimental OSs can be compared, The first section presents a concise background ex-

plaining how f is obtained from absorption experiment observables (Experimental oscillator

strength) and from quantum theory (Theoretical oscillator strength). A third subsection

discusses cavity field corrections in the literature. The next section details the approach

used to compute f in this work (Computed absorption transitions) and outlines how they

are compared with the experimental data (Statistical analysis). The last two sections present

the results of the benchmark and conclusions, respectively.

Modern quantum chemical methods have become valuable tools for early-stage screening

of novel dyes.14 Chromophores with strong absorption and emission have applications in

areas spanning solar energy and light-emitting devices to bioimaging. For such applications,

we emphasize the importance of selecting computational methods that accurately predict

relative transition strengths as well as transition energies.
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Theoretical background

Experimental oscillator strength

A detailed discussion of the experimental aspects and theory of UV-vis absorption spec-

troscopy can be found, for example, in Refs. 15 and 16. Here we briefly summarize some

main points that connect the experimental observables to the oscillator strength and provide

context for later discussion on the validity of the expressions used.

A typical UV-Vis absorption experimental setup in the condensed phase (Fig. 1) involves

nearly monochromatic, collimated electromagnetic radiation traveling through a cuvette con-

taining the molecule of interest dissolved in a solvent. A sensor measures the intensity of

light after it traverses the cuvette. This intensity is compared to a reference, typically light

that has traveled through an identical cuvette filled only with the solvent to account for the

intensity reduction resulting from reflection, scattering, or absorption by molecules other

than the solute.16 1

The intensity of light of wavenumber ν̃ reaching the sample, I0(ν̃), and the intensity

leaving it, I(ν̃), will determine the spectral absorbance A(ν̃), a magnitude commonly used

to describe the reduction in the light intensity:

A(ν̃) = log

[
I0(ν̃)

I(ν̃)

]
. (1)

The absorbance of a solute of interest is then found from the difference between the

absorbance obtained for the solution (sample) and the pure solvent (reference):16

A(ν̃) = ASample(ν̃)− AReference(ν̃) (2)
1Depending on the spectrophotometer used and the wavelength of interest, the light reaching the cuvette

will exhibit a certain degree of polarization arising from reflection and refraction in the optical elements
of the monochromator. For example, one of the spectrophotometers used for some of the molecules in
the benchmark, the Cary model 14, was found to have varying degrees of polarization, going from fairly
constant in the UV, to more varying in the visible, to sharp maxima in the IR.17 This effect should not be
important for an isotropic distribution of molecules (such as molecules in solution) but becomes relevant for
an anisotropic or partially oriented sample.15
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Figure 1: A scheme of the typical absorption experiment setup. Here, I0(ν̃) is the intensity
of the incident light in air entering the cuvettes, I1(ν̃) is the intensity of light leaving the
reference cuvette and reaching the detector, and I2(ν̃) is the intensity of light leaving the
sample cuvette and reaching the detector. The terms with primes indicate changes in the
intensity of light as it enters and exits the cuvette wall.

Assuming the solution and solvent reference are measured under identical conditions,

effects such as scattering and reflection by the solvent and cuvette walls that affect light

intensity cancel out, and the expression for the absorbance of the solute simplifies to:

A(ν̃) = log

[
I0(ν̃)

I2(ν̃)

]
− log

[
I0(ν̃)

I1(ν̃)

]
= log

[
I1(ν̃)

I2(ν̃)

]
, (3)

where I0(ν̃) is the intensity of light reaching the cuvettes, I2(ν̃) is the intensity leaving the

cuvette with the sample, and I1(ν̃) is the intensity of light leaving the cuvette with the

reference.2 The absorbance measured in this way will correspond to a reduction in intensity
2Upon normal incidence on a surface separating two media, the transmitted electric field intensity vector

is Et = 2ηt/(ηt + ηi)Ei, where Ei is the incident electric field intensity vector, ηi =
√

µi/ϵi is the intrinsic
impedance of the medium of the incident waves, ηt =

√
µt/ϵt is the intrinsic impedance of the medium of the

reflected waves, µi and µt are the relative permeabilities of the medium of the incident wave and the medium
of the reflected wave, respectively, and ϵi and ϵt are the dielectric constant of the incident medium and the
reflected medium, respectively. Therefore, the intensities in air are related to those in solution by the same
multiplicative constant. That is, I ′′1 (ν̃) = cI ′1(ν̃) and I ′′2 (ν̃) = cI ′2(ν̃), where c is a common constant.

7

https://doi.org/10.26434/chemrxiv-2024-qn1rp ORCID: https://orcid.org/0000-0002-6429-2853 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-qn1rp
https://orcid.org/0000-0002-6429-2853
https://creativecommons.org/licenses/by-nc-nd/4.0/


given by the Beer-Lambert law,

A(ν̃) = log

[
I1(ν̃)

I2(ν̃)

]
= ε(ν̃) · cM · l, (4)

where ε(ν̃) is the decadic molar extinction coefficient (also called absorption or attenuation

coefficient), cM is the molar concentration of the solute in the solution, and l is the path

length of the light through the solution. The linear correlation between absorbance A(ν̃)

and concentration cM in the Beer-Lambert law requires that:15,18 (i) the solute molecules

do not aggregate, (ii) light scattering by the solute molecules is negligible, (iii) I0(ν̃) is

small and multiphoton processes, excited states populations, and photochemical reactions

are negligible, (iv) the spectral bandwidth of the light used is narrow compared to the

transition bandwidth, i.e., the light leaving the monochromator spans only a narrow range

of frequencies.3

In molecules, the spectral band for a given electronic transition is spread over a wide range

of frequencies by each electronic level’s vibrational and rotational substructures. Solvent

effects further broaden the line shape of transitions. The transition probability is obtained

by measuring the full range of ε(ν̃) as a function of ν̃ for that specific excitation.

Since A is dimensionless, the units for ε are determined by the units of cM and l, typically

moles per liter (mol/L) and centimeters (cm), respectively. Therefore, ε is usually reported

in units of L/(mol · cm) or equivalently in M−1cm−1.

The reduction in intensity can be equivalently expressed in terms of the absorption cross-

section of the solute in the specific solvent σ(ν̃) as:

I(ν̃) = I0(ν̃)10
−ε(ν̃)cM l = I0(ν̃)e

−σ(ν̃)n′l, (5)
3A narrow spectral bandwidth (i.e., being as close as possible to monochromatic) can be critical when

obtaining atomic or highly resolved vibronic spectra. The monochromator spectral bandwidth should be
smaller than the absorption bandwidth of the sample to resolve it properly. This is less of a concern for
broad-band absorptions such as the ones in the experimental benchmarks used in this work.
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where n′ is the number density (number of molecules per unit volume). The following

expression can be used to convert from cross-sections expressed in cm−2 and attenuation

coefficients in cm−1M−1:

ε =
10−3NA

ln(10)
σabs, (6)

where NA is Avogadro’s number.

Delving into the derivation of the Beer-Lambert law in terms of the absorption cross-

section offers valuable molecular-level insights into the approximations inherent in the law.

A detailed discussion can be found in Ref. 19, where the law is derived by equating the proba-

bility of a photon traversing the sample length l (without being absorbed) to the probability

of encountering no molecules within a cylinder of base equal to the molecular absorption

cross-section σ(ν̃) and of height l. Although we will focus on OSs as our primary metric, we

will revisit the cross-section perspective later as we describe solvent effects theoretically.

The connection between oscillator strength f and the experimental metrics of attenuation

is given by f ’s historical origin as a link between classical electromagnetic dispersion theory

and quantum theory. In classic electrodynamics, the propagation of a plane, monochromatic,

linearly polarized wave in an isotropic, nonmagnetic medium, with the constitutive relations

D = ϵ̃E and B = H, 4 is given by

E = Re
{
E0e

i[2πν̃c(t− ñ
c
x)]

}
, (7)

where c is the speed of light in vacuum, and ñ is a complex index of refraction:5

ñ(ν̃) = n(ν̃)− iκ(ν̃). (8)

The real part of (8), n(ν̃), quantifies the phase velocity (the usual refractive index) while
4The magnetic permeability of typical solvents µ is practically equal to vacuum’s µ0.15 By using Gaussian

units21 then µ ≈ µ0 = 1. Also, we have that |H0| = |E0|.
5Rigorously, all magnitudes in (8) depend also on temperature T and the (number) concentration of

molecules (n = n(ν̃, T, n′), κ = κν̃, T, n′)).
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the imaginary part, κ(ν̃), quantifies absorption in the medium. The average light intensity

at a depth x is given by:

I =
1

2
E2

0e
−4πν̃κx, (9)

or in terms of the intensity at x = 0, I0:

I = I0e
−4πν̃κx. (10)

Comparing (10) to (5) then:

4πν̃κ = σ(ν̃)n′ = ln 10ε(ν̃)cM (11)

In classical dispersion theory, the interaction of electromagnetic radiation with the medium

is described by a model that has electrons harmonically bound to positive charges (e.g., nu-

clei). These oscillating electrons have characteristic frequencies and damping constants,

resulting in distinctive oscillations when the frequency of the incident field is close to the

characteristic frequency (in analogy to the resonant character of atomic electronic transi-

tions). The polarization induced in the medium by the external field, without accounting for

any ordering of the permanent molecular dipoles, is described in terms of the displacements

induced in the harmonically bound electrons.22–24 25 26 In this way, the model accounts for

the dielectric constant ϵ̃ and determines both the real and imaginary parts of the refractive

index ñ =
√
ϵ̃.

In 1921, in the context of the development of quantum mechanics, Ladenburg introduced

the oscillator strength27 as a quantity that represents the fraction of the total number of

atoms/molecules that have a "dispersion electron," i.e., those electrons oscillating with the

characteristic frequency of a given electronic transition.

From the relations above, f -values can be expressed in terms of the integrated absorption

intensity of a band as:15,18
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fexp = 103 ln 10
mec

2

πe2NA

∫
band

ε(ν̃)dν̃, (12)

where ε(ν̃) is expressed in M−1cm−1 and dν̃ in cm−1.

Two comments regarding equation (12) must be made. First, it is common to include the

(real) refractive index of the medium in the denominator of (12) to account for the effect of

the solvent on the electric field "felt" by the solute.18 15 This correction is expected to make f

values obtained in different solvents directly comparable. The factor 1/n is recognized to be

a rough approximation15 for a complicated problem with several authors proposing different

corrections. This is discussed further at the end of the section.

Second, while the OS is a well-defined magnitude for electronic transitions in atoms or

even for a line corresponding to a vibronic transition in a molecule, it does not have the same

clear meaning for a molecular spectral band.28 29 24 The main obstacles are the temperature-

dependent population of energy sublevels, and the spread of frequencies over which molecular

transitions are possible.

Nonetheless, f values obtained according to equation (12), as a function of the integrated

intensity if nothing else, quantify the probability of an electronic transition in a way suitable

to compare to theoretical probability computations.

Theoretical oscillator strength

In the linear regime (where the Beer-Lambert law is valid), the reduction in light’s intensity

as it goes through a sample is attributed exclusively to one-photon processes. At these inten-

sities, light can be treated classically while the light–molecule interaction can be described

using time-dependent perturbation theory. Such a semiclassical treatment of the interaction

is presented at length in several quantum mechanics textbooks such as Refs. 30–33 as well

as in books focused on spectroscopy such as Refs. 15 and 29. To frame our comparison with

experimental strengths, a minimal discussion of the key points in the derivation is provided
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below.

A linearly polarized plane wave, such as (7), can be expressed in terms of the vector

potential A. Under the Coulomb gauge, and in the absence of charges, A relates to E and

H via E = −(1/c)∂A/∂t and H = ∇×A. Expressed as a function of time (t) and position

(r), A is given by:

A(r, t) = 2A0u cos[(k · r)− ωt] (13)

A(r, t) = A0ue
−i(k·r)eiωt + A0ue

i(k·r)e−iωt, (14)

where u is the direction of polarization of the wave, k is the wave vector that points in the

direction of propagation of the wave, and ω is the angular frequency. The magnitude of the

wave vector, |k|, is related to the wavelength of light λ by |k| = 2π/λ and to ω and the

speed of light in vacuum c as |k| = ω/c, while the angular frequency ω = 2πν is related to

the wave number in vacuum as ω = 2πν̃c. The constant A0 represents the intensity of light

and can be related to the average number of monochromatic photons of energy ℏω per unit

volume, Nphotons:31

A0 =

√
2πℏc2Nphotons

ω
. (15)

The probability per unit time Pnm of a molecule absorbing a photon of the incident field,

described by (14), and undergoing a transition from an initial state m to a final state n is

given by:6

Pnm =
2π

ℏ

∣∣∣∣A0e

mec
⟨n|u · p̂ · ei(k·r)|m⟩

∣∣∣∣2 δ(En − Em − ℏω) (16)

where e and me are the charge and mass of an electron, respectively, p̂ is the linear

momentum operator, Em and En are the energies of the initial and final states, respectively,

δ(x) is Dirac’s delta function, and ⟨n|u · p̂ · ei(k·r)|m⟩ is the transition moment integral.
6From equations (16) to (23), n represents the final state of a system, while in the rest of the manuscript

n refers to a solvent refractive index.
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Expression (16) is obtained as a first-order approximate solution in a time-dependent

perturbation-theory treatment of the interaction. The perturbation used, − e
mc

A · p̂, is the

most relevant term from the classical Hamiltonian for the interaction of an electron with an

electromagnetic field characterized by the vector potential A (and the scalar potential ϕ.)

The Dirac’s δ(x) in (16) represents the resonant character of the transition and conservation

of energy.

The position r in (14), and consequently in (16), is measured from an arbitrary origin.

Choosing it to be located on the molecule is convenient to carry out the integration in (16),

since the integrand will be non-vanishing only in the proximity of the molecule, where the

wavefunctions are different from zero. Given the relatively small dimensions of a molecule

compared to the wavelength of the electromagnetic radiation, k·r ≪ 1 in the relevant volume.

It is convenient then, to expand the exponential term ei(k·r) in (16) using the definition of

an exponential function in the complex plane:

ez =
∞∑
k=0

zk

k!
(17)

where z ∈ C. This gives the infinite series:

ei(k·r) = 1 + i(k · r)− (k · r)2

2!
− i

(k · r)3

3!
+ · · · (18)

Taking ei(k·r) ≈ 1 results in what is known as the dipole approximation:

Pnm =
2π

ℏ

∣∣∣∣A0e

mec
u · ⟨n|p̂|m⟩

∣∣∣∣2 δ(En − Em − ℏω) (19)

Expression (19) provides the probability per unit time of an induced transition on a

specific molecule. Such a probability will depend on the orientation of the molecule relative

to the polarization of the EM wave, as indicated by the product u · ⟨n|p̂|m⟩. Therefore Pnm

will be maximal when u and ⟨n|p̂|m⟩ are aligned in the same direction. On the other hand,
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for a perpendicular orientation of these vectors, Pnm will be 0. For any given molecule,

0 ≤ u · ⟨n|p̂|m⟩ ≤ |⟨n|p̂|m⟩| (since |u| = 1). The different orientation of the molecules

relative to the polarization of the field results in an average value of |⟨n|p̂|m⟩|2/3 for the

product |u · ⟨n|p̂|m⟩|2 when considering all the molecules in an isotropic sample.34

The commutation relation between the position r̂ and momentum p̂ operators can be

used to relate the transition moments associated with each:

⟨n|p̂|m⟩ = imeωnm⟨n|r̂|m⟩ (20)

The equality in (20) only holds for exact wavefunctions. The approximate nature of ⟨n|

and |m⟩ makes the transition probabilities computed from ⟨n|p̂|m⟩ (referred to as dipole

velocity formulation) or ⟨n|r̂|m⟩ (dipole length formulation) differ. These two formulations

are perhaps the most widely used, though in general the transition dipole moments can be

expressed in terms of other operators.35,36

The oscillator strength fnm for a transition from an initial state m to a final state n is

obtained from Pnm and can be expressed in either the length formulation (superscript lg),

the velocity formulation (vg), or a mixed formulation (mx), as follows:36,37

f lg
nm =

2meωnm

3ℏ
|⟨n|r̂|m⟩|2 (21)

f vg
nm =

2

3ℏmeωnm

|⟨n|p̂|m⟩|2 (22)

fmx
nm =

2i

3ℏ
|⟨n|r̂|m⟩⟨m|p̂|n⟩| (23)

The expressions above do not explicitly account for solvent effects. The presence of a

solvent influences transition probabilities in three ways: (i) the solvent may chemically alter

the solute (e.g., tautomerization, acid-base reactions, complexation, etc.), (ii) the solvent’s
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electrostatic potential acts on the solute, and (iii) the solvent affects the incident electro-

magnetic field that drives the electronic transition on the solute.38,39

Effects (i) and (ii) would affect the probability (per unit time) of an induced electronic

transition, as given by equation 19, by altering the wavefunctions of the absorbing molecule in

the ground and excited state, therefore affecting the transition dipole moment ⟨n|p̂|m⟩. On

the other hand, effect (iii) would modify the intensity of the perturbation along the direction

of the transition dipole moment which is represented in equation 19 by the projection of the

term A0u along the direction of ⟨n|p̂|m⟩.

If considered in the context of the Beer-Lambert law derivation, where the decrease in

light intensity dI as it travels a distance dx is given by dI = −Iσn′dx, effects (i) and (ii)

would affect the absorption cross-section σ, while effect (iii) would result in a replacement

of the light intensity I, proportional to the square of the electric field (E2), with a more

complicated function of the incident field: dI = −f(E)σsolutionn
′dx (where n′ is the number

of molecules per unit volume).

The first two interactions (i) and (ii) exist in the absence of the incident field. For ab-

sorption measurements, solvents and experimental conditions are chosen to prevent as much

as possible chemical alteration of the solute, and effect (i) will not be discussed here. The

description of the second effect, dating back to Onsager’s "reaction field,"40 is historically

linked to the description of effect (iii). The reaction field that acts on the solute molecule

originates from the polarization of the dielectric medium caused by the solute molecule

itself. The reaction field has been the subject of intense research resulting in several contin-

uum solvation models that treat the solute-solvent interaction representing the latter with

a continuum dielectric material. These models are widely used and implemented in many

electronic structure software packages.41,42 Effect (ii) can also be treated with calculations

including explicit solvent molecules around the solute of interest. In this manuscript we

assume that effect (ii) is adequately described by the polarizable continuum model (PCM)

used in our computations (see the methods section for further details). By default, those
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methods do not account for effect (iii) in most widely used implementations. We describe

that effect in some more detail next to understand how it affects experimentally measured

and computed absorption intensities.

Cavity field corrections

The effect of the solvent on the incident electromagnetic field "felt" by a solute molecule

is usually described by considering a cavity that contains the solute inside a macroscopic

dielectric medium that represents the solvent. Considering a dielectric medium upon which

an external static (constant-in-time) electric field acts, and a hypothetical spherical cavity

large enough that its inner region still can be described by the macroscopic constants of the

surrounding medium, Lorentz obtained, for the local field FL acting upon a charge inside

the cavity:43

FL =
ϵs + 2

3
E (24)

where E is the macroscopic electric field in the dielectric, and ϵs is the static dielectric

constant which is assumed to be independent of E when the latter is small enough to prevent

saturation effects.44

Onsager proposed the division of the local field into two components, a "cavity field"

proportional to the external field as well as to the polarization induced by this field, and the

aforementioned "reaction field" proportional to the dipole moment of the solute molecule.

Considering a spherical cavity containing only a dipolar molecule, he obtained for the cavity

field FC,O:40 7

FC,O =
3ϵs

2ϵs + 1
E (25)

Onsager’s theory of polarization has further generalizations. For example, Kirkwood45

considered explicitly the electric moments of the first shell of solvent molecules around a

solute. His corrections are particularly relevant for polar solvents, since in the vicinity
7If Onsager’s cavity is considered as a homogeneously polarized continuum, then the resulting field (re-

action + cavity) acting on the solute molecule equals the Lorentz field (see for example Ref. 44)
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of a given molecule, the surrounding molecules tend to maintain definite (either parallel

or antiparallel) orientations of their dipoles.46 Detailed derivations and discussion of these

effects are provided in Ref. 44.

Other authors have generalized the local field corrections by considering non-spherical

cavities. For example, Scholte47 and Shibuya48 considered ellipsoidal cavities and the fields

along the principal axes of the ellipsoid.

Using the Maxwell relation connecting the refractive index of a medium to its dielectric

constant (n2 = ϵ), the different cavity field corrections have been adapted to time-varying

fields, for which the permanent dipoles of solvent molecules have no time to reorient. Us-

ing these local field expressions, several authors have proposed corrections that relate the

"apparent" OS of a molecule when experiments are carried out in solvents with different

refractive indexes. We will employ a common notation to summarize some of those correc-

tions: we call f ′′ the OS measured (according to equation 12) for a molecule in a solvent

of refractive index n, and f the OS of the same molecule when the refractive index of the

medium is 1.

The first correction dates back to 1934. Chako, using a Lorentz field obtained:49

f ′′

f
=

(n2 + 2)2

9n
(26)

A limitation of this expression is that it predicts that f ′′ will always increase, at a fixed

rate, when absorption experiments are carried out in solvents of higher refractive index.

This is known not to be the case, with notable exceptions such as the π → π∗ transition of

β-carotene.50 To correct this issue, Böttcher51 and Schuyer52 included the polarizability and

radii of the solute molecules in their correction. Myers and Birge50 considered a cylindrical

cavity and the orientation of the transition moment relative to the cavity. Shibuya,48 con-

sidering the local field along the principal axis of the ellipsoidal cavity he used, obtained for
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a transition oriented along the principal axis k the correction:

f ′′
k

fk
=

[sk(n
2 − 1) + 1]2

n
, (27)

where sk is a shape parameter equal to the depolarization factor along the corresponding

axis. The value of sk ranges from 0 − 1, and
∑3

k sk = 1.53 Therefore, Shibuya’s correction

f ′′/f ranges from 1/n to n3 depending on the molecular shape and relative orientation of

the transition moment, and reduces to Chako’s in the limit where the ellipsoid becomes a

sphere. Ref. 48 contains a more extensive survey of the work in this area prior to 1983.

Other corrections depending only on the refractive index are those by Abe.54 Using a

Lorentz field Abe obtained the expression:54

f ′′

f
=

(n2 + 2)2

9n2
, (28)

while when using an Onsager cavity field he obtained:

f ′′

f
=

9n2

(2n+ 1)2
. (29)

In the same paper Abe approximated Schuyer’s expression as

f ′′

f
=

6n

(2n2 + 1)(n2 + 1)
. (30)

For this last expression, it is worth mentioning that instead of equation (12) he considered

a modified relation of the OS to the integral of the attenuation coefficient that included the

factor n2 in the denominator.

The value of n to use in the corrections above is also subject to debate. Some authors

recommend using the refractive index of the solvent for the frequency of the transition, n(ν̃),

while other authors recommend n(∞) (the refractive index of a material for a field in the
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limit of infinite frequency). This latter value has being said to be well approximated by

the refractive index at the sodium D line (nD).41 Warner and Wolfsberg,55 in their study of

spectra in condensed phases, used the Lorentz field to derive the correction factor 1
nb

(
2+n2

b

3

)2

where nb is the "slowly varying background contribution to the refractive index" that depends

on the off-resonance polarizability of the solute molecules. They obtained nb values by fitting

a model for n(ν̃) presented in their paper to data from reflection experiments. For benzene,

chloroform, and methyl iodide, they found nb values close to, but consistently lower than,

the corresponding nD values.55

It is worth mentioning that the dependence on n in the f ′′/f correction factors comes

not only from the local/cavity field correction. This may be best understood in terms of the

absorption cross section (see, for example, the derivations in Ref. 56), which is defined as

energy (per unit time) absorbed by the molecule divided by the energy flux of the radiation

field. Macroscopically, the flux of energy of the incident electromagnetic wave in a non-

magnetic medium of refractive index n is given by:20,57

S =
c

8π
|E|2 n. (31)

While the local/cavity field is considered for the energy (per unit time) absorbed by the

molecule, equation (31) must be taken into account for the energy flux of the radiation field.

Comparison of Chako’s correction (equation 26) to the Lorentz local field (equation 24)

shows that n in the denominator of (26) comes from (31). The same applies to Shibuya’s

correction (expression 27).

The computational description of the reaction field (responsible for effect ii) using im-

plicit solvation models typically accounts for solute–solvent electrostatic interactions using

apparent charges at the surface of a cavity constructed around the molecule. Details of how

the cavity is constructed, how the apparent charge on the cavity’s surface is discretized, or

how to treat non-equilibrium effects, have being extensively researched. More recent efforts

have being made to describe the cavity field in terms of additional surface charges. See, for
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example, Refs. 56,58,59.

Methods

Computed absorption transitions

The coordinates of the 100 molecules optimized at the B3LYP/6-31+G* level of theory were

obtained from the supporting information of Ref. 12. Here, we refined the structures at

the B3LYP/6-311++G** level of theory.60–62 Frequency calculations were carried out at the

same level of theory to ensure that all positive frequencies were obtained. The updated

geometries are provided in the Supporting Information (SI) as xyz coordinate files.

In this study, we will focus our analysis on 85 transitions categorized as very high, high, or

medium confidence in Ref. 12. This subset of data will be referred to as VHHM throughout

this work (where VHHM = VH ∪ H ∪ M). Since more than one transition per molecule is

sometimes included, the 85 transitions come from 69 molecules. Table S1 of the SI document

lists the molecules and transitions included in the subset.

From the optimized geometries, the energies and OSs of the lowest 30 singlet exited states

were computed using single-point TD-DFT calculations. Nine different functionals were

tested: One pure functional (SVWN63,64), five hybrid functionals (B3P86,60,65 O3LYP,61,66

mPW1PW91,67 M05,68 and B3LYP60,61), and three long-range corrected hybrid functionals

(CAM-B3LYP,69 LC-wHPBE,70,71 and wB97XD72). The 6-311++G** basis set62 was also

used for all TD-DFT calculations. The solvent effect was included, in both geometry opti-

mizations and single-point calculations, through PCM using the integral equation formalism

(IEFPCM).73

Excitation energies and OSs for all nine functionals were computed both with and without

the Tamm-Dancoff approximation (TDA)74 using the same basis set and solvation method.

We also recomputed the transition energies and OSs for TD-B3LYP with multiple basis sets:

STO-3G, 3-21G, 6-31G*, 6-31++G**, cc-pVDZ, aug-cc-pVDZ, and aug-cc-pVTZ.62,75–77
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The calculations above were all performed using Gaussian 16 version C.01.78 In addition,

using the PCM/6-31+G* optimized geometries reported by Tarleton et al.,12 we carried

out additional calculations using the 6-31+G* basis set with Q-Chem 5.3.79 Specifically, we

ran the calculation in vacuo and also using two additional solvation models; the conductor-

like PCM (CPCM) model and COSMO. Those were compared to the B3LYP/6-31+G*

calculations using IEFPCM solvation from Gaussian. Differences in the computed OSs using

the three solvation models and two different software were negligible, indicating that the

strengths are relatively insensitive to the details of the solvent model implementations tested.

The gas phase calculations are discussed further in the Results and Discussion Section.

In addition to TD-DFT calculations, we carried out single-point excited state energy

calculations using three ab initio methods: time-dependent Hartree-Fock (TD-HF), config-

uration interaction singles (CIS) and equation of motion coupled cluster with singles and

doubles (EOM-CCSD). In the case of EOM-CCSD, we compute OSs from linear response

transition densities (LR-CCSD) in addition to the unrelaxed EOM ones.80–82 EOM-CCSD

applies excitation operators to a CCSD ground state reference and includes doubly excited

configurations.83,84 These wave funcion method calculations were carried out for a smaller

subset of 35 transitions from 26 molecules for which EOM-CCSD calculations were tractable.

Those molecules and transitions are listed in Table S1 of the SI document. Furthermore,

for the EOM-CCSD calculations, only 15 excited states were requested instead of 30. The

EOM-CCSD calculations were carried out using the double-ζ aug-cc-pVDZ basis set.77

Statistical analysis

When running, for instance, a TD-DFT calculation for 30 excited states of a given molecule,

30 OSs are obtained in each gauge (i.e., 30 of each of f lg
nm, f vg

nm, and fmx
nm ). Here, we will

drop the superscripts related to the gauge, as the same discussion will apply to all three

gauges. The individual state-specific OSs are denoted fn0, where 0 is the index for the

ground state and n represents the excited state index (e.g., 1 for the first singlet excited
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state, 2 for the second singlet excited state, etc.). As a first approximation, a code assigns

the computed fn0 to an experimental band of the molecule if its corresponding energy is

within the energy limits of the band (ε(ν̃) minima in the experimental spectra). Often, more

than one transition contributes to a band. When that is the case, we use the sum of the

corresponding fn0 values to find the total OS of the band. The OS computed in this way for

a specific band, k, is referred to as fcomp,k and can be compared to the corresponding fexp,k.

Our benchmark for OSs faces the inconvenience that not only are the individual fn0

values dependent on energy, but also that the set of fn0 values that contribute to a given

fcomp,k is affected by the accuracy of the computed (vertical) electronic transition energies.

Judging whether or not a computed transition belongs in a band may not be straightforward,

even more so if we are not sure whether fcomp values should reproduce fexp values as given

by (12), or fexp/n as proposed in Refs. 15,18, or one of the other solvent effect corrections

proposed. Therefore, an algorithm has been used that actively maximizes the agreement

between fcomp and fexp (or fexp/n, nfexp, etc...) by modifying which fn0s contribute to a

band. The algorithm does this by shifting the band limits to include or exclude computed

transitions to minimize |fcomp − fexp| (or equivalently |fcomp − fexp/n|, |fcomp − nfexp|, etc).

As an initial guess, the band limits are given by the experimental ε(ν̃) minima.

The implementation avoids having a specific transition fn0 double-counted towards two

different bands. This should give a "best-case scenario" where the computed OSs are as

close as possible to the experimental ones. Note that in case of an incorrect energy ordering

of excited states, the algorithm will not be able to repair the issue. While we recognize

the shortcomings of this approach, automation was necessary given the large number of

computations in the present benchmark.

For each set of computations, two comparisons with experimental data are presented.

These are labeled "Exact Band Limits" and "Improved Fit". In the first case computed

fn0 are assigned to an experimental band if the computed energy lies strictly within the

energy limits of the band. The second case corresponds to the application of the algorithm
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described above (labeled "Improved Fit Algorithm" as well). We emphasize that with the

use of the Improved Fit algorithm, it becomes only possible to discuss an upper limit to the

accuracy of a method’s f values. On the other hand, within the Exact band limits framework,

large computed energy discrepancies with experimental energies will severely affect the OS

comparisons.

To quantify the agreement of a method with the experimental data, two sets of metrics

are employed: The first metric is the mean absolute error, MAE, calculated as:

MAE =
1

Ntransitions

∑
k

|fexp,k − fcomp,k| , (32)

where Ntransitions is the total number of transitions. The second set of metrics is obtained

from linear regression analysis of the (fexp, fcomp) pairs. A small MAE, a linear fit close to

y = x+0, and an R2 value close to one are indicators of a good agreement between the set of

fcomp obtained with a given method and the corresponding set of experimental values fexp.

Since fcomp,k values depend on the computed energy (with fn0 explicitly dependent in the

position and momentum gauges) we must also pay attention to how the computed transition

energies compare to the experimental ones. To describe the experimental transition energies,

an average transition energy is obtained for a band k as

Eexp,k =

∫
band

ν̃ε(ν̃) dν̃∫
band

ε(ν̃) dν̃
, (33)

using the data from Ref. 85 and digitized in Ref. 12 for ε(ν̃).

Analogously, computed energies are obtained as oscillator strength-weighted transition

energy averages:

Ecomp,k =

∑
n∈band ν̃n · fn0∑

n∈band fn0
(34)

Three metrics are employed to monitor how computations reproduce experimental ener-

gies:
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i) The mean absolute error (in energy) computed as:

⟨|∆E|⟩ = 1

Ntransitions

∑
k

|Ecomp,k − Eexp,k| . (35)

ii) The mean error (in energy) obtained as:

⟨∆E⟩ = 1

Ntransitions

∑
k

Ecomp,k − Eexp,k. (36)

iii) The mean ratio of computed to experimental energies, given by:

〈
Ecomp

Eexp

〉
=

1

Ntransitions

∑
k

Ecomp,k

Eexp,k

. (37)

As mentioned earlier, solvent effects need to be accounted for when comparing computed

vs. experimental OSs. In the experimental spectra, the solvent effects are intrinsic to the

measured attenuation coefficient leading to an apparent fexp derived using equation (12).

On the other hand fcomp values computed with PCM only account for the reaction field

component of the local field while computations without any solvent model make no account

at all. That is why, initially, we start by comparing fcomp not only to fexp, but also to fexp/n

and nfexp. We also test some of the cavity field corrections mentioned before, noticing the

equivalence of fexp and fcomp to the notation used in the cavity field corrections subsection:

f ′′ → fexp and f → fcomp. Making that substitution, for example, on Chako’s correction

(equation 26) we obtain:

fcomp =
9n

(n2 + 2)2
fexp (38)

fcomp = CChako(n)fexp, (39)

where CChako(n) = 9n/(n2 + 2)2. We can obtain equivalently CShibuya,k(n) = n/[sk(n
2 − 1) +

1]2, CAbeL(n) = 9n2/(n2 + 2)2, CAbeO(n) = 9n2/(2n+ 1)2, and CSchuyer(n) = [(2n2 + 1)(n2 +

1)]/(6n), from equations (27), (28), (29), and (30), respectively. The agreement of fcomp to
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CChako · fexp, CAbeL · fexp, CAbeO · fexp, and CSchuyer · fexp is also tested in this work.

We calculate the expressions above using n(ν̃) evaluated at the corresponding frequency

of each transition. We used the dispersion formulas reported in the litearture for water,86

ethanol,87 CCl4,88 dioxane,88 acetonitrile,89 methanol,89 cyclohexane,89 hexane,90 and hep-

tane.90 Those expressions are collected in Refs. 91,92. We also evaluated the correction

factors using the value at the sodium D-line (nD) obtained from Ref. 93.

An alternative approach to using these cavity field corrections is to find the optimal

scaling factor that relates the computed and experimental OSs. Consider Algorithm 1, shown

below. It computes C constants that reflect the slope between (fexp and fcomp) accounting for

the Improved Fit algorithm. The value of C often converges after a few iterations. However,

in a few cases, the algorithm is sensitive to the initial guess for C. This is discussed further

in the Results and Discussion Section.

Algorithm 1 Iterative approach to find a scaling factor C

1: Program Start
2: Obtain fcomp within the "Exact Band Limits"
3: Initialize constant C = 1
4: loop
5: Read fexp set
6: Transform the experimental set fexp = Cfexp
7: Transform fcomp set according to the band-matching "Improved Fit" algorithm to

reduce MAE(fexp, fcomp)
8: Linear regression analysis of the pairs (fexp, fcomp)
9: c1 = Slope of the linear regression through the origin

10: Update C = c1 · C
11: end loop

As discussed in the computed absorption transitions subsection, the majority of the sta-

tistical analysis focuses on the subset of VHHM transitions. A smaller subset of 35 transitions

is used for comparison between wave function methods. We carry out further analysis by

looking at subsets of VHHM prepared based on: 1) transition character (π → π∗, charge

transfer, or mixed character), 2) point group symmetry (C1, Cs, or higher symmetry), 3) sol-

vent (water, electrolyte solution, ethanol, methanol, heptane, hexane, and cyclohexane), and
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4) Spectrophotometer used to measure the experimental UV-visible spectra (Zeiss PMQ II,

MM12, Perkin Elmer 4000 A, Unicam SP 500, or other). In the case of solvents, we also pre-

pared a subset that is a union of protic solvents (ethanol, methanol, water, electrolytes) and

aprotic nonpolar solvents (heptane, hexane, CCl4, petroleum ether, cyclohexane, dioxane).

Results and Discussion

In Ref. 12, we focused on benchmarking a single method, TD-B3LYP. In Figure 2, we extend

the comparison to include wave function method calculations for 35 transitions that belong

to the VHHM subset. Large molecules from that subset are excluded due to computational

cost. These transitions are listed in Table S1. Six methods are tested: CIS, TD-HF, EOM-

CCSD, LR-CCSD, Tamm-Dancoff approximated (TDA) DFT and TD-DFT.

The B3LYP functional is used for this plot. For the sake of simplicity, at this stage, we

consider only three possible approximate solvent effect corrections: fexp/n, fexp, and n · fexp.

We present the other pre-factors later in this Section.

In the center of Fig. 2, a plot shows the MAE between computed and experimental

OSs, calculated using Eq. (32). The MAEs are shown for different methods (labeled at the

bottom of the plot), for different refractive index pre-factors for the experimental strengths

(fexp/n, fexp, and n · fexp, shown on the top of the plot), different gauges (represented using

different symbols), and before and after the application of the Improved Fit band matching

algorithm (red and green, respectively). The blue bar outline indicates the average values of

fexp multiplied by the respective refractive index pre-factor, and serves as a reference to allow

comparison of the magnitude of the MAE relative to the average value of the experimental

OS itself.
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Figure 2: Comparison of f -values computed using CIS/6-311++G**, TD-HF/6-311++G**,
EOM-EE-CCSD/aug-cc-pVDZ, LR-CCSD/aug-cc-pVDZ, TDA-B3LYP/6-311++G**, RPA
TD-B3LYP/6-311++G**, and gas phase-RPA-TD-B3LYP/6-31+G* for a subset of 35 ex-
perimental transitions. For each method, the fcomp values are compared to fexp/n (left),
fexp (center), and n · fexp (right) as indicated by the labels on top of the central plot. The
blue bar outline indicates the average values of fexp multiplied by the respective refractive
index pre-factor (⟨fexp/n⟩ = 0.155384, ⟨fexp⟩ = 0.215319, and ⟨n · fexp⟩ = 0.298506). A full
circle corresponds to the data obtained with the length gauge, an empty square corresponds
to the velocity gauge, and an empty triangle corresponds to the mixed gauge. Markers in
red correspond to transitions assigned using the Exact Band Limits, while markers in green
correspond to transitions assigned using the Improved Fit algorithm. The data displayed can
be found in Tables S2 to S19 of the SI document. See the text regarding the interpretation
of these plots.

Six additional panels are shown in all figures presented in this section. The panels on

the left and right sides are set up in the same way as the central one but with x-axis labels

excluded. The results for different methods are shown with alternating background shades

to help correlate with the labels in the central panel.

The three panels on the left indicate the agreement between experimental and computed

excitation energies, obtained from Eqs. (33) and (34), respectively. |∆E|, ∆E, and Ecomp

Eexp
are

calculated using equations (35), (36), and (37), respectively. Notably, if no state was found

within the band limits, Ecomp,k was assigned a value of zero. Therefore, a negative value of

∆E does not necessarily mean that computed transitions are systematically red-shifted with

respect to computed ones but instead indicates that many transitions may fall outside the
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band limits. When this occurs, the associated |∆E| will be large and Ecomp

Eexp
will be smaller

than 1.

The comparison between computed and experimental energies before (red symbols) and

after (green symbols) the Improved Fit algorithm reflects what the algorithm did. The

algorithm does not alter the computed energy associated with a given fn0; it just assigns or

unassigned computed transitions to each band. Therefore, when the red and green symbols

are not equal, that means that the algorithm made changes to the band assignments. The

values of |∆E|, ∆E, and Ecomp

Eexp
after the Improved Fit algorithm are more representative

of the errors stemming from the electronic structure method used, as those are assumed to

have assigned computed transitions reasonably well to the experimental bands.

Fig. 2 indicates that CIS and TD-HF computed transitions often fall completely outside

of the experimental absorption band limits. This is consistent with previously reported

errors associated with CIS, often in the 0.5-2.0 eV range.94 The Improved Fit algorithm

partly resolves this issue, reducing the errors in the excitation energies, but CIS and TD-HF

transitions may still not have been assigned correctly in all cases to the experimental bands.

Therefore, those two methods will not be discussed extensively in this section.

Several EOM (or LR) CCSD transitions also fall outside of the experimental band limits.

However, the center-left panel shows that the Improved Fit algorithm largely resolves the

issue and that EOM-CCSD transitions are typically overestimating rather than underesti-

mating relative to the experimental band energies. This is largely consistent with what is

expected of EOM-CCSD with a double-ζ basis set;95,96 better agreement between computed

and experimental excitation energies would require the triples correction and/or a larger

basis set, but those would not be tractable for the systems studied here.

TD (or TDA) DFT transitions mostly fall within the band limits, as reported also in the

Supporting Information of Ref. 12. The Improved Fit algorithm makes a few changes in the

band assignments, but those changes do not significantly affect the energetic error metrics.

The three panels on the right of Fig. 2 indicate the values of the slope, y-intercept,
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and R2 for the linear regression between computed and experimental OSs. An excellent

agreement would yield values of 1.0, 0.0, and 1.0, respectively, so any deviations from those

values indicate differences between the computed and experimental strengths. Together with

the center panel, which presents the MAE, those metrics aid in quantifying the differences

in the computed and experimental OSs.

CIS and TDA DFT exhibit a strong dependence of the OS on the gauge used; the

length gauge (full circle) and velocity gauge (empty square) often give OSs that can vary

significantly. The mixed gauge (empty triangle) is typically in between the other two gauges.

This gauge dependence is almost eliminated when using TD-HF or TD-DFT, which follow

the Thomas–Reiche–Kuhn sum rule (
∑N

i fi = N , where N is the number of electrons in the

system)97–99 unlike CIS and TDA.94,100 Similarly, EOM-CCSD has a larger gauge-dependence

than LR-CCSD, but the difference is not as pronounced.

For the remainder of this section, we focus our discussion on TD-DFT (without the

Tamm-Dancoff approximation) and LR-CCSD.

In Ref. 12, we verified that (RPA) TD-B3LYP OSs with PCM solvation improved by

almost all metrics when compared against n · fexp instead of just fexp. Here, we revisit

this comparison focusing on only the subset of 35 VHHM transitions and applying the

Improved Fit algorithm. We find, consistently with Tarleton et al.,12 that TD-B3LYP fcomp

are overestimated relative to fexp, and are in much better agreement with n · fexp. This is

reflected in each of the MAE, slope, y-intercept, and R2 plots in Fig. 2. We note also that

the relative error (compared to the average value of experimental OS) is significantly lower

for n · fexp, as shown in Table 1.

Table 1: Relative MAE for TD-B3LYP compared to the average of the experimental ref-
erence. We use the average of the three gauges since TD-B3LYP does not exhibit strong
gauge-dependence.

Framework fexp/n fexp n · fexp
Exact Band Limits 84.3 % 34.4 % 11.8 %
Improved Fit 60.1 % 26.1 % 9.3 %
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Within the Exact Band Limits framework, the metrics for MAE and slope are best for

n · fexp and worst for fexp/n. R2 and y-intercept are instead comparable for fexp/n, fexp,

and n · fexp. However, application of the Improved Fit algorithm, which reduces the MAE,

improves the agreements with n ·fexp by almost all metrics; it results in a slight improvement

in R2, minimizes the y-intercept, and reduces the absolute error in energy |∆E|. Meanwhile,

applying the same Improved Fit algorithm when comparing to fexp and fexp/n yields a limited

improvement or even a worst agreement (in terms of R2, y-intercept, and |∆E|) compared

to the Exact Band Limits framework.

Due to the stronger gauge-dependence of EOM-CCSD (which is only partially but not

fully resolved with LR-CCSD), it is more difficult to draw conclusions about which solvent

correction (fexp/n, fexp, or n · fexp) is in best agreement with the EOM-CCSD results. The

MAE and other metrics in the length gauge are in best agreement with n ·fexp. However, ve-

locity gauge calculations give a better agreement with fexp/n. The mixed gauge calculations

appear to have a similar error with all three gauges but agree best with fexp. Overall, we

expect the results of the length gauge to be more reliable for the double-ζ basis set used.101

The fact that the length gauge OSs overestimate fexp, while the momentum gauge OSs

underestimate fexp could be partially explained by the computed transition energies being

systematically larger than the experimental energies (f lg
nm is proportional to the transition en-

ergy while f vg
nm is inversely proportional to it; see equations 21 and 22) From the Ecomp/Eexp

plot in Figure 2 (see Figure 3 as well) EOM(LR)-CCSD computed energies appear to be

∼10% larger than the experimental energies. That said, the difference between OSs com-

puted in different gauges seems to be larger than what can be explained by the energy

overestimation, as will also become apparent during the discussion of Table 2 below.

The gas phase OS calculations agree better with fexp rather than n ·fexp. In other words,

the reaction field effect introduced by using PCM significantly increases the computed OS.

This can be traced to the individual fn0. For most transitions computed in this set, the

fn0 were larger when computed using PCM. We believe that the agreement of gas-phase
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calculations to fexp result from a cancellation of errors.

Next, we optimize the scaling factor "C" that relates the computed and experimental OSs

by following the approach in Algorithm 1. For the electronic structure methods presented

in Table 2, three initial guesses were tested: C0 = 0.7, 1.0, and 1.4. The converged C values

resulting in the highest R2 are presented in Table 2.

Table 2: C values obtained according to Algorithm 1. The background color indicates the
convergence from three different starting points for C. Green indicates that the same C value
is obtained from either C0 = 0.7, 1.0, or 1.4. Red or blue indicate that the C value with the
highest R2 comes from C0 = 1.4 or 1.0, respectively. Purple indicates that the same C value
with the highest R2 is obtained from either C0 = 1.4 or 1.0.

Method X-gauge P-gauge XP-gauge
CIS 1.49 0.55 0.88
TD-HF 1.20 1.14 1.17
EOM-CCSD 1.36 0.77 1.01
LR-CCSD 1.27 0.88 1.06
TDA-B3LYP 1.76 0.35 0.72
B3LYP 1.33 1.29 1.31
Gas B3LYP 1.11

Most of the data in Table 2 has a green background which indicates that the algorithm

converged to the same C value independent of the starting point used (0.7, 1.0, or 1.4). Even

among the values colored with a red, blue, or purple background, most converged to similar

values from the different starting points. For the few exceptions to this, there usually is a

poor quality fit (e.g., for CIS) and the R2 value between C · fexp and fcomp gives a good

indication for which value of C to trust.

The results in Table 2 again highlight the strong gauge dependence of CIS, EOM-CCSD,

and TDA-B3LYP, and the slightly reduced gauge dependence of LR-CCSD. In all those

cases, the length gauge gives a scaling factor larger than one and the velocity gauge gives

a scaling factor smaller than one. On the other hand, the more gauge-independent TD-HF

and TD-B3LYP methods systematically overestimate fexp regardless of the gauge.
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Figure 3: Comparison of f -values computed using CIS/6-311++G**, TD-HF/6-311++G**,
EOM-EE-CCSD/aug-cc-pVDZ, LR-CCSD/aug-cc-pVDZ, TDA-B3LYP/6-311++G**, RPA
TD-B3LYP/6-311++G**, and gas phase-RPA-TD-B3LYP/6-31+G* for a subset of 35 ex-
perimental transitions. For each method, the fcomp values are compared to C · fexp, where
the constants C were obtained according to algorithm 1 and are displayed in Table 2. A full
circle corresponds to the data obtained with the length gauge, an empty square corresponds
to the velocity gauge, and an empty triangle corresponds to the mixed gauge. The data
displayed can be found in Tables S20 to S28 of the SI document.

The statistics for the pairs (C ·fexp, fcomp) are displayed in figure 3. These results represent

the best possible fit using a simple scaling factor, C, in combination with the Improved Fit

algorithm. We find that all of EOM-CCSD, LR-CCSD, TD-DFT, and TDA-DFT can be

give a good agreement (MAE lower than 0.04) with experimental OS through selection of

band assignments and appropriate scaling factor C. This algorithm also reduces the gauge

dependence for EOM-CCSD and LR-CCSD by using an different scaling factor C for each

gauge to better fit the experimental data. This is also true, to a lesser degree, for TDA-DFT,

but not CIS, where the MAE still varies strongly with the gauge. Among these methods,

TD-DFT with the B3LYP functional still results in the best metrics overall for the slope, y-

intercept, R2, and energy errors, compared to the other methods. Meanwhile, other methods

can be fit to reproduce OSs with a similarly low MAE but they either result in a worse linear

regression slope and intercept or require using transitions outside of the band limits, which

manifests in larger errors in the energy metrics.
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For gauge dependent methods, the scaling factor C is a more complicated function that

captures multiple effects, including a correction for the gauge used. However, for gauge-

independent methods like (RPA) TD-DFT, the origin of the scaling factor C may be largely

attributed to the solvent effect. As discussed in the theoretical background section, the

solvent impacts the absorption intensity in several ways. The reaction field (effect ii) is

accounted for through PCM. However, the cavity field (effect iii) is missing. In Figure 4, we

test some of the simple cavity field corrections proposed in the literature (see equations 26

to 30) using both the frequency-specific refractive index of the solvent (n) and the refractive

index at the sodium D-line (nD). We focus at this point on TD-B3LYP calculations. Similar

figures for the gas phase and for LR-CCSD are shown in SI Figure S1.

Figure 4: Comparison of f -values computed using TD-B3LYP/6-311++G**/PCM for a
subset of 35 experimental transitions multiplied by different cavity field corrections. The
blue bar outline indicates the average values of fexp multiplied by the respective cavity field
factor. A full circle corresponds to the data obtained with the length gauge, an empty
square corresponds to the velocity gauge, and an empty triangle corresponds to the mixed
gauge. Markers in red correspond to transitions assigned using the Exact Band Limits, while
markers in green correspond to transitions assigned using the Improved Fit algorithm. The
data displayed can be found in Tables S29 to S106 of the SI document.

All the cavity field corrections used in Fig. 4 assume a spherical cavity. For the molecules

in this benchmark, we find that none of the corrections performed better than a simple

multiplication by the refractive index (either n or nD). The corrections displayed to the left

side of fexp give considerably worse agreement by almost all metrics.
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As shown earlier in Eq. (31), the factor n that appears in n·fexp arises from the energy flux

of the radiation field in a dielectric and appears in early cavity field literature corrections.48,49

It has been shown that more accurate cavity field corrections would need to account for the

cavity shape beyond using a simple spherical approximation.48,56 Such corrections will be

tested in future work.

A similar analysis of different cavity field corrections was carried out for LR-CCSD calcu-

lations (see SI Fig. S1). The results in the length gauge, which also give an overestimation of

the computed OS relative to the experimental one, largely follow the same trend as observed

for TD-B3LYP.

Next, we expand the benchmark set to include all 85 VHHM transitions to compare

f -values computed using different TDDFT functionals and basis sets. Hereon, we focus on

comparing the computed transitions relative to only fexp and n · fexp, and no longer consider

other cavity field correction terms. The average experimental OS in the set, as given by

equation (12), is ⟨fexp⟩ = 0.3077, while ⟨n · fexp⟩ is 0.4333.

Figure 5 presents the data for the OS calculations carried out using TD-B3LYP and dif-

ferent basis sets. Small basis sets exhibit a strong gauge-dependence, especially for STO-3G

and 3-21G*, that is significantly reduced for larger basis sets. In general, the MAE and

gauge-dependence continue to decrease with increasing basis set size above 6-31G* (see SI

Fig. S2 for more detailed figure). For example, the range of MAEs for the different gauges

decreases from 0.083(length)-0.089(velocity) for 6-31G* to 0.076(length)-0.083(velocity) for

6-31++G** to 0.076(length)-0.077(velocity) for 6-311++G** when not using the Improved

Fit algorithm. Similarly, across the Dunning basis set series, 0.085(length)-0.088(velocity) for

cc-pVDZ to 0.075(length)-0.077(velocity) for aug-cc-pVDZ to 0.076(length)-0.077(velocity)

for aug-cc-pVTZ. The same trends are largely conserved when using the Improved Fit algo-

rithm.
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Figure 5: Comparison of f -values computed using B3LYP with different basis sets to a
subset of 85 experimental transitions. For each basis set the fcomp values are compared to
fexp (left) and n·fexp (right). For reference, the average value of the experimental f -values are
⟨fexp⟩ = 0.307655, and ⟨n · fexp⟩ = 0.433273. A full circle corresponds to the data obtained
with the length gauge, an empty square corresponds to the velocity gauge, and an empty
triangle corresponds to the mixed gauge. Markers in red correspond to transitions assigned
using the Exact Band Limits, while markers in green correspond to transitions assigned using
the Improved Fit algorithm. The data displayed can be found in Tables S107 to S118 of the
SI document.

Figure 6 compares the OS errors relative to fexp, n · fexp, and C · fexp for a series of 9

TD-DFT functionals (one pure, five hybrid, and three long-range corrected functionals). The

values of C for each gauge and each functional are shown in Table 3. The green background in

Table 3 indicates that in all cases, convergence was achieved regardless of the starting value

of C (0.7, 1.0, or 1.4). All functionals behave consistently with TD-B3LYP and overestimate

the OS relative to fexp. A weak gauge-dependence is observed in all cases. On the other

hand, the TDA equivalents, shown in Table S275 to S292 and Figure S5 of the supporting

information, display much stronger gauge-dependence consistent with TDA-B3LYP.

Hybrid functionals without long-range corrections give an optimal C value in the range

of 1.25-1.42. the pure functional SVWN gives an optimal C value in the range of 1.11-

1.15. Long-range functionals give optimal C values in the range 1.47-1.58. Most of those

factors, especially for the hybrid functionals, are close to the refractive index of solvents,

so the agreement with n · fexp is usually better than the agreement with just fexp, with the
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exception of SVWN. B3LYP still gives the best agreement with n ·fexp, although a few other

hybrid functionals are close.

Table 3: C values obtained according to Algorithm 1 for the nine functionals considered

Method X-gauge P-gauge XP-gauge
B3P86 1.34 1.29 1.31
CAM-B3LYP 1.54 1.49 1.52
LC-wHPBE 1.55 1.47 1.54
M05 1.39 1.38 1.38
mPW1PW91 1.42 1.37 1.39
O3LYP 1.27 1.25 1.27
SVWN 1.15 1.11 1.14
wB97XD 1.58 1.53 1.56
B3LYP 1.34 1.30 1.31

Figure 6: Comparison of f -values computed using different density functionals to a subset of
85 experimental transitions. For each method the fcomp values are compared to fexp (left),
n · fexp (center), and C · fexp (right). For reference, the average value of the experimental
f -values are ⟨fexp⟩ = 0.307655, and ⟨n · fexp⟩ = 0.433273. A full circle corresponds to the
data obtained with the length gauge, an empty square corresponds to the velocity gauge, and
an empty triangle corresponds to the mixed gauge. Markers in red correspond to transitions
assigned using the Exact Band Limits, while markers in green correspond to transitions as-
signed using the Improved Fit algorithm. Blue markers are used for the iterative comparison
to C · fexp The data displayed can be found in Tables S119 to S133 of the SI document.

Out of the 85 transitions that belong to the VHHM subset, 43 come from molecules

whose ground state symmetry point group is C1, 30 come from molecules of point group Cs,

and 12 come from molecules of point groups of higher symmetry (one from D2h, two from
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C2h, two from D2, four from C2v, and three from C2). Of the 85 B3LYP transitions, 54

have ππ∗ character, 7 are ππ∗ with significant charge transfer character, and 21 are mixed,

containing Rydberg or diffuse character in addition ππ∗. In the reference experimental data,

32 of the 85 transitions were measure in non-polar solvent, 50 in protic solvents, and 3 in

polar aprotic solvents. We carry out further statistical analyses on these subsets of data in

Supporting Information Figures S3 and S4 and find that the trends observed overall for the

85 transitions are largely reproduced by all the subsets if they have a large enough sample

size. In other words, we do not identify significantly different trends for molecules of different

symmetry, excitation character, or solvent polarity.

Conclusions

In a previous study, Tarleton et al. derived experimental oscillator strengths from well defined

UV-visible absorption spectral peaks of 100 molecules in solution.12 Here, we use a subset of

transitions identified as having reliable experimental strengths, based on the reproducibility

and quality of their deconvolution and having little overlap with other peaks, to further

benchmark several wave function methods, density functionals, basis sets, transition dipole

gauges (length, velocity, and mixed), and solvent corrections. A band-matching algorithm

is used to assign computed transitions to experimental peaks.

Large errors and gauge-dependence were observed and quantified in oscillator strengths

computed with CIS or TD-DFT paired with the Tamm-Dancoff approximation (TDA). These

theories, which do not satisfy the Thomas–Reiche–Kuhn sum rule, gave oscillator strengths

that do not match well with the experimental data. Linear response methods like TD-DFT

and TD-HF (RPA) showed much smaller gauge dependence. TD-DFT calculations resulted

in mean errors that are less than half of those observed in the best TDA cases.

The size of the molecules (average molecule weight = 160 g/mol for the molecules included

in the 85 VHHM transitions) made systematic calculations using high-level wave function
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methods and large basis sets intractable. Instead, we opted to run EOM-CCSD and LR-

CCSD calculations with the aug-cc-pVDZ basis set on a subset of 35 transitions. Overall,

EOM-CCSD calculations also exhibited a strong gauge-dependence which was only slightly

reduced with LR-CCSD.

In general, we find that an increase in the size of the basis set resulted both in smaller

gauge-dependence and smaller mean errors relative to the experimental data.

Several functionals were benchmarked in addition to TD-B3LYP. In all cases, the os-

cillator strengths were overestimated relative to the experiments, but the degree of this

overestimation depends on the class of functional used. A pure functional only overesti-

mated fexp by a factor of around 1.1, while hybrid functionals had a larger factor ranging

from 1.25 to 1.4. Long range corrected functionals gave the largest factor relative to fexp,

up to 1.58. The EOM-CCSD and LR-CCSD in the length gauge also overestimate the data

by a similar factor as hybrid functionals, close to 1.3.

The systematic overestimation of most computational methods compared to fexp is con-

sistent with the refractive index factor that appears in the denominator of several theoretical

solvent effect corrections. This factor arises from the energy flux of the radiation field in

a dielectric (eq. 31). Through testing several simple cavity field corrections, we find that

factors derived using a spherical cavity do not improve the agreement between computations

and experiments. As highlighted by several studies,48,56 a suitable cavity field correction can

be obtained by using a cavity shaped to the dimensions of the molecule and that considers

the direction of the transition dipole moment relative to that cavity. While these effects

can be explored further, in the meantime, we find that simply multiplying the experimental

oscillator strength by the solvent refractive index, which is equivalent to assuming that the

cavity field acting on the molecules is equal to the macroscopic (averaged) field, gives a

reasonably good agreement with computed oscillator strengths for TD-DFT/PCM methods,

especially when using a hybrid functional. For example, in the case of TD-B3LYP, the error

when comparing fcomp and n · fexp is on the order of 0.02, which is near 9-12 %, depending
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on how band assignments are made, of the actual magnitude of the experimental strength.

Acknowledgement

This material is based upon work supported by the National Science Foundation (NSF)

under Grant CHE-2047667 (S.G.). J.C.G.A. acknowledges a fellowship from the Molec-

ular Basis of Disease Program at Georgia State University. This work used Expanse at

SDSC through allocation CHE180027 from the Advanced Cyberinfrastructure Coordination

Ecosystem: Services and Support (ACCESS) program, which is supported by National Sci-

ence Foundation grants #2138259, #2138286, #2138307, #2137603, and #2138296. We

also acknowledge the use of Advanced Research Computing Technology and Innovation Core

(ARCTIC) resources at Georgia State University’s Research Solutions, made available by

the NSF Major Research Instrumentation (MRI) grant number CNS-1920024.

Supporting Information Available

Tables with the numerical values for the figures shown in the Results and Discussion section

of this work; Table and Figure of Cavity Field Correction results; Table of results for all

164 transitions with 9 functionals and 6-311++G** ; Table and Figure with TDA-DFT

calculations for 9 functionals with 6-311++G** basis set ; Tables and Figures summarizing

the results of oscillator strength calculations for different subsets of the data related to

symmetry, transition character, solvent, and spectrophotometer used (PDF)

Structures of the 100 molecules from Tarleton et al. re-optimized with the 6-311++G**

basis set (ZIP)

39

https://doi.org/10.26434/chemrxiv-2024-qn1rp ORCID: https://orcid.org/0000-0002-6429-2853 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-qn1rp
https://orcid.org/0000-0002-6429-2853
https://creativecommons.org/licenses/by-nc-nd/4.0/


References

(1) Laurent, A. D.; Jacquemin, D. TD-DFT benchmarks: A review. International Journal

of Quantum Chemistry 2013, 113, 2019–2039.

(2) Jacquemin, D.; Wathelet, V.; Perpète, E. A.; Adamo, C. Extensive TD-DFT Bench-

mark: Singlet-Excited States of Organic Molecules. Journal of Chemical Theory and

Computation 2009, 5, 2420–2435, PMID: 26616623.

(3) Loos, P.-F.; Galland, N.; Jacquemin, D. Theoretical 0–0 Energies with Chemical Accu-

racy. The Journal of Physical Chemistry Letters 2018, 9, 4646–4651, PMID: 30063359.

(4) Silva-Junior, M. R.; Schreiber, M.; Sauer, S. P. A.; Thiel, W. Benchmarks for elec-

tronically excited states: Time-dependent density functional theory and density func-

tional theory based multireference configuration interaction. The Journal of Chemical

Physics 2008, 129, 104103.

(5) Schreiber, M.; Silva-Junior, M. R.; Sauer, S.; Thiel, W. Benchmarks for electronically

excited states: CASPT2, CC2, CCSD, and CC3. The Journal of chemical physics

2008, 128 .

(6) Caricato, M.; Trucks, G. W.; Frisch, M. J.; Wiberg, K. B. Oscillator Strength: How

Does TDDFT Compare to EOM-CCSD? Journal of Chemical Theory and Computa-

tion 2011, 7, 456–466, PMID: 26596165.

(7) Chrayteh, A.; Blondel, A.; Loos, P.-F.; Jacquemin, D. Mountaineering Strategy to

Excited States: Highly Accurate Oscillator Strengths and Dipole Moments of Small

Molecules. Journal of Chemical Theory and Computation 2021, 17, 416–438, PMID:

33256412.

(8) Jacquemin, D.; Duchemin, I.; Blondel, A.; Blase, X. Assessment of the Accuracy of

40

https://doi.org/10.26434/chemrxiv-2024-qn1rp ORCID: https://orcid.org/0000-0002-6429-2853 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-qn1rp
https://orcid.org/0000-0002-6429-2853
https://creativecommons.org/licenses/by-nc-nd/4.0/


the Bethe–Salpeter (BSE/GW) Oscillator Strengths. Journal of Chemical Theory and

Computation 2016, 12, 3969–3981, PMID: 27403612.

(9) Labhart, H. Zur quantitativen beschreibung des einflusses von substituenten auf das

absorptionsspektrum ebener molekeln. Anwendung auf anthrachinon. Helvetica Chim-

ica Acta 1957, 40, 1410–1420.

(10) Tawada, Y.; Tsuneda, T.; Yanagisawa, S.; Yanai, T.; Hirao, K. A long-range-corrected

time-dependent density functional theory. The Journal of Chemical Physics 2004,

120, 8425–8433.

(11) Miura, M.; Aoki, Y.; Champagne, B. Assessment of time-dependent density func-

tional schemes for computing the oscillator strengths of benzene, phenol, aniline, and

fluorobenzene. The Journal of Chemical Physics 2007, 127, 084103.

(12) Tarleton, A. S.; Garcia-Alvarez, J. C.; Wynn, A.; Awbrey, C. M.; Roberts, T. P.;

Gozem, S. OS100: A Benchmark Set of 100 Digitized UV–Visible Spectra and Derived

Experimental Oscillator Strengths. The Journal of Physical Chemistry A 2022, 126,

435–443, PMID: 35015532.

(13) Chan, W. F.; Cooper, G.; Brion, C. E. Absolute optical oscillator strengths for the

electronic excitation of atoms at high resolution: Experimental methods and measure-

ments for helium. Phys. Rev. A 1991, 44, 186–204.

(14) Pastore, M.; Mosconi, E.; De Angelis, F.; Grätzel, M. A Computational Investigation

of Organic Dyes for Dye-Sensitized Solar Cells: Benchmark, Strategies, and Open

Issues. The Journal of Physical Chemistry C 2010, 114, 7205–7212.

(15) Michl, J.; Thulstrup, E. W. Spectroscopy with polarized light : solute alignment by

photoselection, in liquid crystals, polymers, and membranes ; VCH: Deerfield Beach,

FL, USA, 1986.

41

https://doi.org/10.26434/chemrxiv-2024-qn1rp ORCID: https://orcid.org/0000-0002-6429-2853 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-qn1rp
https://orcid.org/0000-0002-6429-2853
https://creativecommons.org/licenses/by-nc-nd/4.0/


(16) Molecular Fluorescence; John Wiley & Sons, Ltd, 2012; Chapter 2, pp 31–51.

(17) Hills, M. E.; Olsen, A. L.; Nichols, L. W. Polarization in Cary Model 14 Spectropho-

tometers and Its Effect onTransmittance Measurements of Anisotropic Materials. Appl.

Opt. 1968, 7, 1437–1441.

(18) Braslavsky, S. E. Glossary of terms used in photochemistry, 3rd edition (IUPAC Rec-

ommendations 2006). Pure and Applied Chemistry 2007, 79, 293–465.

(19) Berberan-Santos, M. N. Beer’s law revisited. Journal of Chemical Education 1990,

67, 757.

(20) Jackson, J. D. Classical Electrodynamics, 3rd Edition; 1998.

(21) Ref. 20, Appendix.

(22) Foster, E. W. The measurement of oscillator strengths in atomic spectra. Reports on

Progress in Physics 1964, 27, 469–551.

(23) Marlow, W. C. Hakenmethode. Appl. Opt. 1967, 6, 1715–1724.

(24) Huber, M. C. E.; Sandeman, R. J. The measurement of oscillator strengths. Reports

on Progress in Physics 1986, 49, 397–490.

(25) Ref. 20, Chapter 4.

(26) Ref. 20, Chapter 7.

(27) Ladenburg, R. Die quantentheoretische Deutung der Zahl der Dispersionselektronen.

Zeitschrift für Physik 1921, 4, 451–468.

(28) Tatum, J. B. The Interpretation of Intensities in Diatomic Molecular Spectra. Astro-

physical Journal Supplement 1967, 14, 21.

42

https://doi.org/10.26434/chemrxiv-2024-qn1rp ORCID: https://orcid.org/0000-0002-6429-2853 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-qn1rp
https://orcid.org/0000-0002-6429-2853
https://creativecommons.org/licenses/by-nc-nd/4.0/


(29) Thorne, A. P.; Litzén, U.; Johansson, S. S. Spectrophysics : principles and applications ;

Springer: Berlin ;, 1999.

(30) Cohen-Tannoudji, C.; Laloë, F.; Diu, B. Quantum Mechanics.; Quantum Mechanics

Vol. 2; John Wiley & Sons, Inc. [US], 1977; pp 1303–1368.

(31) DAVYDOV, A. In Quantum Mechanics (Second Edition), second edition ed.; DAVY-

DOV, A., Ed.; International Series in Natural Philosophy; Pergamon, 1965; Vol. 1; pp

388–434.

(32) Sakurai, J. J. Modern quantum mechanics; rev. ed.; Addison-Wesley: Reading, MA,

1994.

(33) Peleg, Y.; Pnini, R.; Zaarur, E.; Hecht, E. Schaum’s Outline of Quantum Mechanics,

Second Edition, 2nd ed.; McGraw-Hill Education: New York, 2010.

(34) Andrews, S. S. Using Rotational Averaging To Calculate the Bulk Response of Isotropic

and Anisotropic Samples from Molecular Parameters. Journal of Chemical Education

2004, 81, 877.

(35) Crossley, R. In The Calculation of Atomic Transition Probabilities ; Bates, D., Ester-

mann, I., Eds.; Advances in Atomic and Molecular Physics; Academic Press, 1969;

Vol. 5; pp 237–296.

(36) Hansen, A. E.; Bouman, T. D. Advances in Chemical Physics ; John Wiley & Sons,

Ltd, 1980; pp 545–644.

(37) Open-Shell and Excited-State Methods, Q-Chem 6.2 User’s Manual. https://

manual.q-chem.com/latest/sec_EOMGRAD.html.

(38) Weigang, J., Oscar E. Solvent Field Corrections for Electric Dipole and Rotatory

Strengths. The Journal of Chemical Physics 1964, 41, 1435–1441.

43

https://doi.org/10.26434/chemrxiv-2024-qn1rp ORCID: https://orcid.org/0000-0002-6429-2853 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-qn1rp
https://orcid.org/0000-0002-6429-2853
https://creativecommons.org/licenses/by-nc-nd/4.0/


(39) Abe, T. Comments on “The effect of solvent environment on molecular electronic

oscillator strengths”. The Journal of Chemical Physics 1982, 77, 1074–1074.

(40) Onsager, L. Electric Moments of Molecules in Liquids. Journal of the American Chem-

ical Society 1936, 58, 1486–1493.

(41) Herbert, J. M. Dielectric continuum methods for quantum chemistry. WIREs Compu-

tational Molecular Science 2021, 11, e1519.

(42) Mennucci, B. Polarizable continuum model. WIREs Computational Molecular Science

2012, 2, 386–404.

(43) Lorentz, H. The theory of electrons ; Teubner, 1909.

(44) Fröhlich, H. Theory of dielectrics; dielectric constant and dielectric loss ; Monographs

on the physics and chemistry of materials; Clarendon Press Oxford: Oxford, 1949.

(45) Kirkwood, J. G. The Dielectric Polarization of Polar Liquids. The Journal of Chemical

Physics 1939, 7, 911–919.

(46) Kirkwood, J. G. The influence of hindered molecular rotation on the dielectric polar-

isation of polar liquids. Trans. Faraday Soc. 1946, 42, A007–A012.

(47) Scholte, T. A contribution to the theory of the dielectric constant of polar liquids.

Physica 1949, 15, 437–449.

(48) Shibuya, T. A dielectric model for the solvent effect on the intensity of light absorption.

The Journal of Chemical Physics 1983, 78, 5175–5182.

(49) Chako, N. Q. Absorption of Light in Organic Compounds. The Journal of Chemical

Physics 1934, 2, 644–653.

(50) Myers, A. B.; Birge, R. R. The effect of solvent environment on molecular electronic

oscillator strengths. The Journal of Chemical Physics 1980, 73, 5314–5321.

44

https://doi.org/10.26434/chemrxiv-2024-qn1rp ORCID: https://orcid.org/0000-0002-6429-2853 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-qn1rp
https://orcid.org/0000-0002-6429-2853
https://creativecommons.org/licenses/by-nc-nd/4.0/


(51) Böttcher, C. Zur Theorie Der Inneren Elektrischen Feldstärke. Physica 1942, 9, 937–

944.

(52) Schuyer, J. The influence of the refractive index on the absorption of light by solutions.

Recueil des Travaux Chimiques des Pays-Bas 1953, 72, 933–949.

(53) Osborn, J. A. Demagnetizing Factors of the General Ellipsoid. Phys. Rev. 1945, 67,

351–357.

(54) Abe, T. Theory of solvent effects on oscillator strengths for molecular electronic tran-

sitions. Bulletin of the Chemical Society of Japan 1970, 43, 625–628.

(55) Warner, J. W.; Wolfsberg, M. Dielectric effects on the spectra of condensed phases.

The Journal of Chemical Physics 1983, 78, 1722–1730.

(56) Gil, G.; Pipolo, S.; Delgado, A.; Rozzi, C. A.; Corni, S. Nonequilibrium Solvent Po-

larization Effects in Real-Time Electronic Dynamics of Solute Molecules Subject to

Time-Dependent Electric Fields: A New Feature of the Polarizable Continuum Model.

Journal of Chemical Theory and Computation 2019, 15, 2306–2319, PMID: 30860829.

(57) Novotny, L.; Hecht, B. Principles of Nano-Optics, 2nd ed.; Cambridge University

Press, 2012.

(58) Cammi, R.; Mennucci, B.; Tomasi, J. On the Calculation of Local Field Factors

for Microscopic Static Hyperpolarizabilities of Molecules in Solution with the Aid

of Quantum-Mechanical Methods. The Journal of Physical Chemistry A 1998, 102,

870–875.

(59) Pipolo, S.; Corni, S.; Cammi, R. The cavity electromagnetic field within the polarizable

continuum model of solvation. The Journal of Chemical Physics 2014, 140, 164114.

(60) Becke, A. D. A new mixing of Hartree–Fock and local density-functional theories. The

Journal of Chemical Physics 1993, 98, 1372–1377.

45

https://doi.org/10.26434/chemrxiv-2024-qn1rp ORCID: https://orcid.org/0000-0002-6429-2853 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-qn1rp
https://orcid.org/0000-0002-6429-2853
https://creativecommons.org/licenses/by-nc-nd/4.0/


(61) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy

formula into a functional of the electron density. Physical review B 1988, 37, 785.

(62) Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self—consistent molecular orbital methods.

XII. Further extensions of Gaussian—type basis sets for use in molecular orbital studies

of organic molecules. The Journal of Chemical Physics 1972, 56, 2257–2261.

(63) Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation

effects. Physical review 1965, 140, A1133.

(64) Vosko, S. H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation

energies for local spin density calculations: a critical analysis. Canadian Journal of

physics 1980, 58, 1200–1211.

(65) Perdew, J. P. Density-functional approximation for the correlation energy of the in-

homogeneous electron gas. Physical review B 1986, 33, 8822.

(66) Cohen, A. J.; Handy, N. C. Dynamic correlation. Molecular Physics 2001, 99, 607–

615.

(67) Adamo, C.; Barone, V. Exchange functionals with improved long-range behavior and

adiabatic connection methods without adjustable parameters: The m PW and m

PW1PW models. The Journal of chemical physics 1998, 108, 664–675.

(68) Zhao, Y.; Schultz, N. E.; Truhlar, D. G. Exchange-correlation functional with broad

accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interac-

tions. The Journal of chemical physics 2005, 123 .

(69) Yanai, T.; Tew, D. P.; Handy, N. C. A new hybrid exchange–correlation functional us-

ing the Coulomb-attenuating method (CAM-B3LYP). Chemical physics letters 2004,

393, 51–57.

46

https://doi.org/10.26434/chemrxiv-2024-qn1rp ORCID: https://orcid.org/0000-0002-6429-2853 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-qn1rp
https://orcid.org/0000-0002-6429-2853
https://creativecommons.org/licenses/by-nc-nd/4.0/


(70) Vydrov, O. A.; Scuseria, G. E. Assessment of a long-range corrected hybrid functional.

The Journal of chemical physics 2006, 125 .

(71) Henderson, T. M.; Izmaylov, A. F.; Scalmani, G.; Scuseria, G. E. Can short-range

hybrids describe long-range-dependent properties? The Journal of chemical physics

2009, 131 .

(72) Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with

damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–

6620.

(73) Scalmani, G.; Frisch, M. J. Continuous surface charge polarizable continuum models

of solvation. I. General formalism. The Journal of chemical physics 2010, 132 .

(74) Hirata, S.; Head-Gordon, M. Time-dependent density functional theory within the

Tamm–Dancoff approximation. Chemical Physics Letters 1999, 314, 291–299.

(75) Dunning, J., Thom H. Gaussian basis sets for use in correlated molecular calculations.

I. The atoms boron through neon and hydrogen. The Journal of Chemical Physics

1989, 90, 1007–1023.

(76) Hehre, W. J.; Stewart, R. F.; Pople, J. A. Self-Consistent Molecular-Orbital Meth-

ods. I. Use of Gaussian Expansions of Slater-Type Atomic Orbitals. The Journal of

Chemical Physics 1969, 51, 2657–2664.

(77) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. Electron affinities of the first-row

atoms revisited. Systematic basis sets and wave functions. The Journal of chemical

physics 1992, 96, 6796–6806.

(78) Frisch, M. J. et al. Gaussian~16 Revision C.01. 2016; Gaussian Inc. Wallingford CT.

(79) Shao, Y. et al. Advances in molecular quantum chemistry contained in the Q-Chem 4

program package. Molecular Physics 2015, 113, 184–215.

47

https://doi.org/10.26434/chemrxiv-2024-qn1rp ORCID: https://orcid.org/0000-0002-6429-2853 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-qn1rp
https://orcid.org/0000-0002-6429-2853
https://creativecommons.org/licenses/by-nc-nd/4.0/


(80) Koch, H.; Jo/rgensen, P. Coupled cluster response functions. The Journal of Chemical

Physics 1990, 93, 3333–3344.

(81) Koch, H.; Kobayashi, R.; Sanchez de Merás, A.; Jo/rgensen, P. Calculation of size-

intensive transition moments from the coupled cluster singles and doubles linear re-

sponse function. The Journal of Chemical Physics 1994, 100, 4393–4400.

(82) Kállay, M.; Gauss, J. Calculation of excited-state properties using general coupled-

cluster and configuration-interaction models. The Journal of Chemical Physics 2004,

121, 9257–9269.

(83) Stanton, J. F.; Bartlett, R. J. The equation of motion coupled-cluster method. A

systematic biorthogonal approach to molecular excitation energies, transition prob-

abilities, and excited state properties. The Journal of chemical physics 1993, 98,

7029–7039.

(84) Krylov, A. I. Equation-of-motion coupled-cluster methods for open-shell and electron-

ically excited species: The hitchhiker’s guide to Fock space. Annu. Rev. Phys. Chem.

2008, 59, 433–462.

(85) Staff, P. S. G. E. UV Atlas of Organic Compounds ; Springer US, 1967.

(86) Daimon, M.; Masumura, A. Measurement of the refractive index of distilled water from

the near-infrared region to the ultraviolet region. Appl. Opt. 2007, 46, 3811–3820.

(87) Rheims, J.; Köser, J.; Wriedt, T. Refractive-index measurements in the near-IR using

an Abbe refractometer. Measurement Science and Technology 1997, 8, 601.

(88) Moutzouris, K.; Papamichael, M.; Betsis, S. C.; Stavrakas, I.; Hloupis, G.; Triantis, D.

Refractive, dispersive and thermo-optic properties of twelve organic solvents in the

visible and near-infrared. Applied Physics B 2014, 116, 617–622.

48

https://doi.org/10.26434/chemrxiv-2024-qn1rp ORCID: https://orcid.org/0000-0002-6429-2853 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-qn1rp
https://orcid.org/0000-0002-6429-2853
https://creativecommons.org/licenses/by-nc-nd/4.0/


(89) Kozma, I. Z.; Krok, P.; Riedle, E. Direct measurement of the group-velocity mis-

match and derivation of the refractive-index dispersion for a variety of solvents in the

ultraviolet. J. Opt. Soc. Am. B 2005, 22, 1479–1485.

(90) Kerl, K.; Varchmin, H. Refractive index dispersion (RID) of some liquids in the

UV/VIS between 20°C and 60°C. Journal of Molecular Structure 1995, 349, 257–260,

Molecular Spectroscopy and Molecular Structure 1994.

(91) Polyanskiy, M. N. Refractiveindex.info database of optical constants. Scientific Data

2024, 11, 94.

(92) Polyanskiy, M. RefractiveIndex.INFO - Refractive index database — refractivein-

dex.info. https://refractiveindex.info, [Accessed 22-03-2024].

(93) Winget, P.; Dolney, D. M.; Giesen, D. J.; Cramer, C. J.; Truhlar, D. G. Minnesota

solvent descriptor database. Minneapolis, MN: Department of Chemistry and Super-

computer Institute 1999,

(94) Dreuw, A.; Head-Gordon, M. Single-Reference ab Initio Methods for the Calculation

of Excited States of Large Molecules. Chemical Reviews 2005, 105, 4009–4037, PMID:

16277369.

(95) Rishi, V.; Perera, A.; Nooijen, M.; Bartlett, R. J. Excited states from modified coupled

cluster methods: Are they any better than EOM CCSD? The Journal of Chemical

Physics 2017, 146 .

(96) Acharya, A.; Chaudhuri, S.; Batista, V. S. Can TDDFT describe excited electronic

states of naphthol photoacids? A closer look with EOM-CCSD. Journal of Chemical

Theory and Computation 2018, 14, 867–876.

(97) Thomas, W. Über die Zahl der Dispersionselektronen, die einem stationären Zustande

zugeordnet sind.(Vorläufige Mitteilung). Naturwissenschaften 1925, 13, 627–627.

49

https://doi.org/10.26434/chemrxiv-2024-qn1rp ORCID: https://orcid.org/0000-0002-6429-2853 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-qn1rp
https://orcid.org/0000-0002-6429-2853
https://creativecommons.org/licenses/by-nc-nd/4.0/


(98) Reiche, F.; Thomas, W. Über die Zahl der Dispersionselektronen, die einem sta-

tionären Zustand zugeordnet sind. Zeitschrift für Physik 1925, 34, 510–525.

(99) Kuhn, W. Über die Gesamtstärke der von einem Zustande ausgehenden Absorption-

slinien. Zeitschrift für Physik 1925, 33, 408–412.

(100) Casida, M. E.; Huix-Rotllant, M. Progress in time-dependent density-functional the-

ory. Annual review of physical chemistry 2012, 63, 287–323.

(101) Bauschlicher, C. W.; Langhoff, S. R. Computation of electronic transition moments:

the length versus the velocity representation. Theoretica chimica acta 1991, 79, 93–

103.

50

https://doi.org/10.26434/chemrxiv-2024-qn1rp ORCID: https://orcid.org/0000-0002-6429-2853 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-qn1rp
https://orcid.org/0000-0002-6429-2853
https://creativecommons.org/licenses/by-nc-nd/4.0/


TOC Graphic

51

https://doi.org/10.26434/chemrxiv-2024-qn1rp ORCID: https://orcid.org/0000-0002-6429-2853 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-qn1rp
https://orcid.org/0000-0002-6429-2853
https://creativecommons.org/licenses/by-nc-nd/4.0/

