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ABSTRACT  

Over the past few years, photoredox catalysis has led to significant transformations in modern 

synthetic chemistry. It has allowed the development of new synthetic pathways for the 

assembly of complex molecular scaffolds using light as a driving force. However, investigations 

of the ultrafast light-initiated mechanisms required for these reactions are relatively scarce. 

Here we follow the ultrafast dynamics of a red-light organic photocatalyst, N,N′-di-n-propyl-

1,13-dimethoxyquinacridinium (nPr-DMQA+), in the aerobic oxidative hydroxylation of 

phenylboronic acid using transient absorption and time correlated single photon counting 

spectroscopy. Global target analysis supports a reaction mechanism that proceeds through the 

excited triplet state of nPr-DMQA+, leading to the generation of a superoxide anion and 

subsequent oxidative hydroxylation. The triplet pathway proposed here has relatively wide 

application in organic photocatalytic oxidative reactions including those using methylene blue 

and other organic dyes as catalysts. Observation of the ultrafast dynamics of nPr-DMQA+ as it 

acts as a catalyst can provide insights to improve the efficiency of oxidative hydroxylation 

reactions and the mechanisms of photoredox catalysis more broadly. 
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Introduction  

Photoredox catalysis has been the subject of significant interest1-11 due to its potential 

environmental and economic advantages.12-15 Over the past decade, the growth of photoredox 

catalysis has significantly influenced chemical methodologies, enabling the development of 

new synthetic pathways through light activation,7-9, 16-18 simplifying complex reactions under 

milder conditions,3, 16, 19-22 minimizing the reliance on harmful reagents,3, 23, 24 and enhancing 

waste reduction and process efficiency. While photoredox catalysis using transition metal 
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complexes allows access to a wide array of reactions,7, 25-32 issues such as cost and potential 

toxicity persist. Organic photocatalysts have emerged as a potential solution due to their 

structural flexibility and low cost. Red-light-activated photoredox catalytic processes are an 

area of great interest.33-38 The benefits of red-light photocatalysis include its lower energy 

requirement, reduced side reactions, minimized health risks, and its greater penetration 

through scattering media.39-43 

This work investigates the ultrafast dynamics of the organic N,N′-di-n-propyl-1,13-

dimethoxyquinacridinium (nPr-DMQA+) red-light photocatalyst to understand its mechanism 

in the aerobic oxidative hydroxylation of phenylboronic acid. nPr-DMQA+, shown in Figure 1 

inset, is a member of the helicene family characterized by a condensed aromatic structure, 

with fused rings arranged in a nonplanar fashion to alleviate steric hindrances.44 This 

arrangement, combining a conjugated π-electron system with nonplanarity, is known to favor 

enhanced intersystem crossing rates.44-47 Here we use transient absorption (TA) and time 

correlated single photon counting (TCSPC) to track the dynamics of the catalyst. These 

measurements suggest that the mechanism proceeds through a long-lived triplet state of nPr-

DMQA+. 

 

Experimental Section 

nPr-DMQA+ with a 𝐵𝐹!" counter ion was synthesized according to a previously reported 

method.43 For all optical measurements, solutions were prepared by dissolving 2.5 mg of nPr-

DMQA+ in 5 mL of N,N-dimethylformamide (DMF). 0.5 mmol of phenylboronic acid and 1 
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mmol of N,N-Diisopropylethylamine (DIPEA) were added to nPr-DMQA+ in DMF, to generate 

a previously reported oxidative hydroxylation reaction mixture.42 Steady-state UV/Vis 

absorbance measurements were collected using an Agilent Cary 100. Fluorescence spectra 

were gathered using an Agilent Cary Eclipse. All measurements were performed at room 

temperature.  

TCSPC data were collected using a previously described home-built system.48 Briefly, the 

output of a Coherent Vitara Ti:Sapphire oscillator generating pulses of 100 fs at 800 nm was 

frequency-doubled to 400 nm through a type-I β-barium borate (BBO) crystal and focused into 

the sample to generate fluorescence. The fluorescence was then directed to a monochromator 

and photomultiplier tube detector and lifetime decays were measured using a SPC-130 TCSPC 

(Becker-Hickl). 

Broadband-detected TA experiments were performed using a home-built apparatus. Our 

regenerative amplifier laser system (Libra, Coherent) delivered 100 fs pulses at 800 nm with 

an energy output of approximately 4 mJ per pulse at a frequency of 1kHz. For our experiments, 

we allocated 1.5 mJ from this output to create a broad spectrum of visible light. This was 

achieved by focusing the beam into an argon-filled tube generating white light that spanned 

450 nm to 700 nm for broadband detection. The broadband pulses were temporally compressed 

using chirped mirrors (Laser Quantum). Following compression, the broadband light was split 

into pump and probe beams. The intensity of the pump beam was controlled using a variable 

neutral density filter, consisting of a waveplate and polarizer duo, before being shaped by a 

Dazzler (FASTLITE) pulse shaper. Post-shaping, the pump beam exhibited a uniform intensity 
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profile with a spectral range of 570 nm and 630 nm. The probe beam also passed through a 

variable neutral density filter and was delayed relative to the pump pulse using a mechanical 

delay line (DL325, Newport). The pump and probe were focused to the sample position using 

150 mm and 100 mm focal length lenses, respectively, resulting in a focal spot size of 100 µm. 

The signal was collected using a SpectraPro HRS-300 spectrometer and a PIXIS 400 CCD 

camera (Princeton Instruments). To determine the temporal resolution of the pulses, a BBO 

crystal was utilized to generate a second harmonic signal for cross-correlation. This signal was 

measured using a silicon-based detector (Det10A2) from Thorlabs connected to a lock-in 

amplifier. The temporal width of the pulses was ~40 fs as shown in Figure S1 (see supporting 

information). The power at the sample position was approximately 50 nJ. 

 

Result and Discussion 

Figure 1 inset shows the structure of the helical carbenium ion, N,N′-di-n-propyl-1,13-

dimethoxyquinacridinium (nPr-DMQA+) with a 𝐵𝐹!" counter ion. The steady state absorption 

spectrum of nPr-DMQA+ in N, N-dimethylformamide (DMF) is presented in Figure 1. The 

main feature at 620 nm corresponds to the S0 to S1 with a shoulder around 585 nm42, 49 associated 

with a vibrational mode. The fluorescence, shown in Figure 1, is maximized at 685 nm, 

corresponding to a Stoke shift of 0.2 eV.  
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Figure 1. Normalized absorption (blue trace) and fluorescence (red trace) spectra of nPr-

DMQA+ dissolved in N, N-Dimethylformamide (DMF). Inset top right: structure of nPr-

DMQA+ with a 𝐵𝐹!" counter ion. Carbon-bonded hydrogen atoms are omitted for clarity. 

 

nPr-DMQA+ is used here to catalyze the oxidative hydroxylation reaction of phenylboronic 

acid (PhB(OH)2) in the presence of  DIPEA. DIPEA acts as a sacrificial amine while PhB(OH)2 

is the reagent. The absorption spectrum of nPr-DMQA+ does not exhibit a spectral shift when 

in solution with either DIPEA, and/or PhB(OH)2. However, the fluorescence is quenched by 

about 60% in the presence of DIPEA with no shift in the peak position of the emission (see 

Figure S2 in the supporting information). The presence of PhB(OH)2 does not affect the nPr-

DMQA+ fluorescence.  

Figure 2 presents TCSPC traces of nPr-DMQA+ fluorescence in DMF with and without 

DIPEA. The recorded fluorescence lifetime of nPr-DMQA+ is 5.8 ± 0.8 ns, which is unchanged 
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by the presence of PhB(OH)2. In the presence of DIPEA, this lifetime is quenched to 2.0 ± 0.3 

ns. 

 

Figure 2. (a) Comparison between TCPSC data for nPr-DMQA+ alone in DMF alone (blue) and 

in the presence of both DIPEA and PhB(OH)2 in DMF (reaction condition, red). The solid 

traces show a single exponential fit to the corresponding data. (b) Comparison between the 

TCPSC data for nPr-DMQA+ in the presence of PhB(OH)2 (purple) and DIPEA (green). The 

solid traces of the respective colors show fits to the corresponding data. Both plots are on a 

semi-log scale.  
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TA data for nPr-DMQA+ in DMF is presented in Figure 3a. A large ground state bleach (GSB) 

signal is observed around 625 nm immediately after pump excitation. This GSB signal exhibits 

red shift of ~16 meV by 150 ps. Complete recovery of this bleach was not achieved within the 

1.4 ns maximum observation time of the measurements. Another bleach minimum feature 

centered at 585 nm exhibited a similar response. A third bleach feature associated with 

stimulated emission (SE) was also observed at 680 nm. Complete recovery of the bleach did 

not occur within the maximum delay time of the experiment, consistent with the TCSPC 

lifetime of 5.8 ± 0.8 ns.  

The excited state absorption (ESA) feature that appears at wavelengths lower than 500 nm 

provides further insight into the nPr-DMQA+ dynamics. An ESA centered at 485 nm shifted to 

495 nm over the first 200 ps and then maintained most of its amplitude by the end of 1.4 ns 

experimental timespan. A gradually evolving ESA signal was observed around 530 nm, 

although this was initially obscured by the broad negative bleach. The signal changes sign 

around 100 ps, and reached its maximum positive amplitude around 300 ps. The slow rise and 

persistence of this signal beyond 1.4 ns suggests it originates from the S1 state, potentially 

corresponding to transitions from S1 to higher lying triplet states.50 
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Figure 3. (a) TA traces of nPr-DMQA+ in DMF at different delay times. (b) Comparison 

between the normalized traces produced after integrating the highlighted region in panel (a) 

highlighting the slower recovery of bleach for nPr-DMQA+ alone in DMF (blue trace) in 

comparison to when DIPEA is present (red trace) in the solution with y-axis on log scale. 

 

TA data for nPr-DMQA+ in the presence of PhB(OH)2 is shown in Figure S3 (see supporting 

information). The ultrafast dynamics of nPr-DMQA+ are unchanged in the presence of 

PhB(OH)2. TA data of nPr-DMQA+ in DMF following excitation at 620 nm in the presence of 

DIPEA is shown in Figure S4 (see supporting information). Following pump excitation, a GSB 

feature centered around 625 nm is observed. This GSB undergoes a red shift of ~16 meV over 

150 ps, consistent with that observed for the photocatalyst alone. The immediate photoinduced 

response is confirmed by the bleach minimum established within the instrument response 

time, accompanied by rapid recovery within 0.5 ps. Although the bleach did not fully recover 

over the experimental timescale, its recovery was faster compared to nPr-DMQA+ with or 

https://doi.org/10.26434/chemrxiv-2024-cnc9w ORCID: https://orcid.org/0000-0001-9692-5312 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-cnc9w
https://orcid.org/0000-0001-9692-5312
https://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

without PhB(OH)2 (see Figure 3b), consistent with quenching in the presence of the amine. 

This observation of overall faster bleach recovery is consistent with the TCSPC measurement 

for nPr-DMQA+ in the presence of DIPEA shown in Figure 2b with a lifetime of 2.0 ± 0.3 ns. 

The ESA at ~485 nm is present immediately following pump excitation, while the other ESA 

feature emerges at ~530 nm after 100 ps, initially as part of the broad bleach feature and is 

possibly associated with transition from excited state to higher lying triplet state. Both ESA 

features persist throughout the maximum delay of the measurement, indicating a long-lived 

nature similar to that observed for nPr-DMQA+ alone. 

 

Figure 4. TA spectral traces of nPr-DMQA+ in the presence of DIPEA and PhB(OH)2 in DMF 

at different delay times. 

 

TA data of nPr-DMQA+ in DMF in the presence of DIPEA and PhB(OH)2 is presented in 

Figure 4. The combination of DIPEA and PhB(OH)2 at 100:50 ratios to that of nPr-DMQA+ in 

DMF corresponds to the previously demonstrated conditions for a photocatalytic oxidative 
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hydroxylation reaction.42 The TA data shown in Figure 4 is similar to that of  nPr-DMQA+ alone 

although with faster bleach recovery, as observed in the case when only DIPEA is present (see 

Figure S4 in supporting information). The negative signal from 500 nm to 700 nm appears 

immediately following pump excitation. Within the negative feature there are three minima 

at ~685 nm, ~625 nm, and ~585 nm. GSB is observed around 625 nm post pump excitation, 

with a red shift of ~16 meV over 150 ps, consistent with that observed for the photocatalyst 

alone. The prompt photoinduced response is confirmed by the bleach minimum established 

within the instrument response time, accompanied by rapid recovery within 0.5 ps. Although 

the bleach does not fully recover over the experimental timescale, its recovery is faster 

compared to nPr-DMQA+ with or without PhB(OH)2, which is consistent with quenching in 

the presence of the amine (see Figure 3b). This observation of overall faster bleach recovery is 

consistent with the TCSPC measurement shown in Figure 2a, with a lifetime of 2.0 ± 0.3 ns, 

corresponding with quenching in the presence of the amine. Similar to previous observations, 

the ESA at ~485 nm is present following pump excitation, while the other ESA feature emerges 

around 530 nm after 100 ps, initially as part of the broad bleach feature. Both ESA features 

persist throughout the maximum delay of the measurement. 

For all TA measurements presented here, we observe a broad negative signal extending from 

500 nm to 700 nm, associated with GSB and SE. Moreover, characteristic bleach features 

associated with SE and GSB are consistently observed around 685 nm, 625 nm, and 585 nm, 

respectively. Additionally, we observe ESA signals around 485 nm and 530 nm, which persist 

throughout the experimental timescale. However, notable differences arise in the overall 
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recovery dynamics of the bleach features at longer delay times. In the presence of DIPEA and 

for the reaction conditions with both DIPEA and PhB(OH)2, the recovery of the negative 

signal between 580 nm and 700 nm is faster compared to nPr-DMQA+ alone, supporting the 

effect of amine quenching on the excited state lifetime. In addition, the presence of PhB(OH)2 

does not alter the dynamics of the nPr-DMQA+ cation (see Figure S3 in supporting 

information). 

To analyze the TA data, we have constructed a kinetic model building upon prior 

investigations into helicenes, in particular, pathways involving intersystem crossing to triplet 

states,45, 47, 51-54 which can be enhanced in nonplanar aromatic molecules.44, 46, 55 Target analysis 

of the TA data was conducted based on the model depicted in Figure 5c using Python-based 

package, KIMOPACK.56 In all cases, the best fit to the data was achieved by considering a total 

of five decay rates, with the rate for intersystem crossing from the triplet state to the singlet 

ground state held as an offset due to its microsecond timescale44, 45, 53, 57 which is significantly 

longer than the maximum delay time of the TA experiments. 
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Figure 5. (a) Species-associated spectra (SAS) from the targeted analysis using the model shown 

in panel (c), and (b) raw TA data (dots) and fit (solid traces) for nPr-DMQA+ in DMF. (c) Kinetic 

model used in the target analysis with (d) corresponding kinetics for the model with the delay 

axis on log-scale. 

 

Spectral analysis of the TA data reveals distinct features across the five species-associated 

spectra (SAS). Figure 5 presents the results for nPr-DMQA+ alone in DMF. The first three SAS 

exhibit a bleach minimum centered around the ground state bleach (GSB) minimum at 625 
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nm, accompanied by a shoulder at 585 nm, corresponding to a vibronic sub-band observed in 

the absorption spectrum. The first two SAS display similar spectral characteristics. SAS1 

undergoes decay within 130 ± 60 fs (all error estimates based on a 95% confidence interval), 

attributed to solvent-induced vibrational cooling. It is accompanied by positive amplitude 

below 500 nm, corresponding to ESA to higher-lying Sn states. In contrast, SAS2 decays over a 

longer timescale of 3.4 ± 0.5 ps, attributed to intramolecular vibrational redistribution (IVR). 

SAS3, corresponding to a time constant of 5.8 ns consistent with our TCSPC results, has 

another local minimum beyond 660 nm related to SE and represents the S1 to S0 decay along 

with residual GSB. We assign SAS4 to ISC from the excited singlet state to the triplet manifold, 

with an associated timescale of 110 ± 18 ps.58-62 Spectrally centered around 530 nm, this 

component has a local minimum around 620 nm, associated with GSB. Previous reports on 

azahelicenes compounds have indicated a typical S1-T1 energy gap to be more than 0.5 eV.44, 52 

This is consistent with the absence of phosphorescence observed up to 900 nm at cryogenic 

temperatures for nPr-DMQA+ (see Figure S5 in supporting information). 

Given the timescale associated with ISC in this system, the population of the S1 state may 

initially transition to a higher-lying Tn state, followed by rapid internal conversion to T1 and 

subsequent return to the S0 ground state. This sequence has been reported previously for 

aza[7]helicene and other conjugated systems.47, 55 Ultrafast ISC has been previously observed 

in organic molecules,58, 60, 61, 63-66 despite the absence of heavy atoms. This phenomenon has been 

attributed to the very small energy difference between the excited S1 and Tn states.58, 60-62 

Reports also highlight enhanced spin-orbit coupling in nonplanar aromatic compounds, which 
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facilitates transitions between states with different spin.44, 46, 62, 65 The amplitude of SAS5 is 

similar to that of SAS1 and SAS2 (see Figure 5a). We proposed that it is associated with ISC 

from T1 to S0. This non-decaying offset is consistent with the long lifetimes associated with 

such transitions.44, 45, 53, 57  

The results of the target analysis on the TA data for nPr-DMQA+ and PhB(OH)2 in DMF are 

the same as those of the cation alone, indicating that the acid does not influence the 

photocatalyst dynamics (see Table S1 in supporting information). Figure 6 summarizes these 

results and compares them with the raw TA data. All the SAS are associated with the same 

components as in the case of the photocatalyst alone in DMF and have similar timescales. As 

before, SAS1 and SAS2 follow each other, while SAS3 shows bleach near 680 nm consistent 

with emission from the photocatalyst. SAS4 remains unchanged from the previous case when 

only the photocatalyst is present in DMF, while SAS5 represents an offset associated with the 

transition from T1 to S0 state. 

 

https://doi.org/10.26434/chemrxiv-2024-cnc9w ORCID: https://orcid.org/0000-0001-9692-5312 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-cnc9w
https://orcid.org/0000-0001-9692-5312
https://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

 

Figure 6. (a) SAS from the target analysis based on the model shown in Figure 5c and (b) raw 

TA data (dots) and fit (solid traces) for nPr-DMQA+ in the presence of PhB(OH)2 in DMF and 

(c) corresponding kinetics with the delay axis on log-scale. 
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Target analysis of the TA data for nPr-DMQA+ in DMF in the presence of DIPEA is 

summarized in Figure 7. The lifetimes of SAS1 and SAS2 remain nearly unchanged at 112 ± 60 

fs and 3.3 ± 0.6 ps, respectively, with bleach minima situated around 625 nm, mirroring those 

of nPr-DMQA+ alone. SAS3, with a lifetime of 2.0 ns (consistent with TCSPC measurements 

shown in Figure 2b, exhibits excited state quenching in the presence of amine. This is 

attributed to the introduction of additional non-radiative decay pathways.67-69 SAS4 (assigned 

to ISC) has approximately the same timescale (110 ± 18 ps) as in the data for the cation alone 

but shows significant change in the spectral distribution. This includes a bleach minimum shift 

from 530 nm to 570 nm and a pronounced bleach near 610 nm. The observed quenching of 

the S1 lifetime by the amine likely facilitates ISC to the triplet state. 69 This is suggested by the 

increased relative amplitude of SAS4 (Figure 7a) associated with an enhanced population 

transfer to the triplet state. After the triplet state is populated, an electron transfer occurs from 

the amine to this excited state as has been previously observed in other organic molecules.69-74 

This is further supported by the difference observed in the spectral profile of SAS5, an offset 

associated with the transition from T1 to S0, with diminished amplitude in comparison to SAS1 

and SAS2 (Figure 7a).  
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Figure 7. (a) SAS from the targeted analysis and (b) raw TA data (dots) and fit (solid traces) for 

nPr-DMQA+ in the presence of DIPEA in DMF and (c) corresponding kinetics with the delay 

axis on log-scale. 

 

Global target analysis of the TA data for nPr-DMQA+ in DMF in the presence of PhB(OH)2, 

and DIPEA presented in Figure 8 is consistent with the results from the analysis of the TA data 
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for nPr-DMQA+ and DIPEA shown in Figure 7. The lifetimes associated with SAS1 and SAS2 

are similar to those observed for nPr-DMQA+ in DMF, which indicates that solvation and IVR 

processes are not significantly modified by the presence of DIPEA or PhB(OH)2 (see Table S2 

in supporting information). SAS3, has a 2.0 ns timescale consistent with the TCSPC 

measurements shown in Figure 2a. SAS4, with a 112 ± 21 ps lifetime, has the same spectral 

profile as shown in Figure 7a where DIPEA is present. This suggests that there is enhanced 

population transfer to the triplet state.69 Finally, SAS5, an offset associated with the transition 

from T1 to S0, has a lower amplitude compared to the first 3 SAS, consistent with the behavior 

in the presence of DIPEA alone (Figure 7a) when juxtaposed to the relative amplitude of SAS5 

with respect to SAS1 and SAS2 in the cases of the cation alone in DMF or when the reagent 

PhB(OH)2 is also present (Figure 5a and 6a). This suggests a depletion of the triplet state.  
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Figure 8. (a) SAS from the targeted analysis based on the model shown in Figure 5c, and (b) 

raw TA data (dots) and fit (solid traces) for nPr-DMQA+ in the presence of DIPEA and 

phenylboronic acid in DMF and (d) corresponding kinetics for the model with the delay axis 

on log-scale. 
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Analysis of the TA and TCSPC data suggests that the aerobic hydroxylation of PhB(OH)2 by 

nPr-DMQA+ proceeds through the triplet state as shown in Figure 9. The process begins with 

excitation to the S1 state, followed by vibrational cooling and solvent reorganization. The 

system returns to the ground state either by radiative or non-radiative transitions from S1 to S0 

or through ISC to triplet states followed by another ISC process from T1 to S0. The ISC process 

from S1 to Tn is enhanced in the presence of DIPEA and is associated with the quenching of 

the radiative lifetime. Kinetic analysis of the TA data supports the presence of a rapid ISC 

process to a higher-lying triplet state, which is close in energy to S1.60, 61, 64 Enhanced spin-orbit 

coupling can be associated with a nonplanar aromatic molecular structure, with the magnitude 

of the enhancement being directly proportional to the deviation from planarity.44, 46 This 

phenomenon has been previously observed in studies of aza[7]helicene, where the rate of ISC 

from S1 to T3 was found to be three orders of magnitude faster than that from S1 to T1.55 A 

similar trend has been observed for 4-dimethylaminochalcone, showing an ISC rate 

significantly exceeding the radiative transition.64 Electron transfer from DIPEA 

(iPr2NEt/iPr2NEt•+ = +0.72 V vs SCE in DMF) to an excited triplet state (E1/2(C+*/C•) = +1.18 V 

vs SCE in DMF) 43, 69-73 can then lead to the formation of the ground state neutral nPr-DMQA 

radical which can subsequently reduce oxygen to superoxide radical anion under aerobic 

conditions.75 Alternatively an oxidative pathway is also viable if the excited triplet state of the 

cationic nPr-DMQA (E1/2 (C•++/C+*) = −0.62 V vs SCE in DMF) is oxidized under aerobic 

condition (O2/O2•– = −0.57 V vs SCE in DMF43) generating dicationic radical species of the nPr-

DMQA and the superoxide radical anion. Both pathways are thermodynamically feasible. In 
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either case, the superoxide radical anion can then react with PhB(OH)2, producing phenol 

through a subsequent hydrolysis step. 

 

 

Figure 9. Mechanism for hydroxylation of PhB(OH)2 to phenol using nPr-DMQA+ as a 

photoredox catalyst. DIPEA enhances the triplet population of photocatalyst due to formation 

of a radical ion-pair which is facilitated by electron transfer from the amine to the triplet state 

of the photocatalyst. Alternatively, O2 in solution can react with the nPr-DMQA+ triplet state 

to form O2•−. The oxidative reaction of O2•− with PhB(OH)2 and subsequent hydrolysis results 

in the production of phenol. 

 

Conclusion 

Steady-state absorption, fluorescence spectroscopy, TCSPC, and TA data were used to study 

the mechanism of nPr-DMQA+ acting as a photoredox catalyst for the oxidative hydroxylation 

of PhB(OH)2. While the absorption of nPr-DMQA+ in DMF was insensitive to the presence of 
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either DIPEA or PhB(OH)2, the fluorescence was quenched by DIPEA. TA measurements 

tracked the ultrafast dynamics, revealing features consistent with rapid relaxation processes 

such as solvent reorganization and IVR, as well as longer-lived singlet and triplet excited states. 

Global target analysis of the TA data suggests that ISC is enhanced in the presence of DIPEA. 

This facilitates the formation of a long-lived triplet state which then can generate superoxide 

radical anion in two analogous pathways. This superoxide radical anion, in turn, interacts with 

PhB(OH)2, leading to the production of phenol. 

 

 

 

 

Supporting Information. Supplemental spectroscopic data including pulse characterization, 

steady-state fluorescence, and additional transient absorption data.  
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