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Abstract  16 

Air quality managers in areas exceeding air pollution standards are motivated to understand where there 17 
are further opportunities to reduce NOx emissions to improve ozone and PM2.5 air quality. In this project, 18 
we use a combination of aircraft remote sensing (i.e., GCAS), source apportionment models (i.e., CAMx), 19 
and regression models to investigate NOx emissions from individual source-sectors in Houston, TX. In prior 20 
work, GCAS column NO2 was shown to be close to the “truth” in validating column NO2 in model 21 
simulations. Column NO2 from CAMx was substantially low biased compared to Pandora (–20%) and 22 
GCAS measurements (–31%), suggesting an underestimate of local NOx emissions. We applied a flux 23 
divergence method to the GCAS and CAMx data to distinguish the linear shape of major highways and 24 
identify NO2 underestimates at highway locations. Using a multiple linear regression model, we isolated 25 
on-road, railyard, and “other” NOx emissions as the likeliest cause of this low bias, and simultaneously 26 
identified a potential overestimate of shipping NOx emissions. We modified on-road and shipping NOX 27 
emissions in a new CAMx simulation and increased the background NO2, and better agreement was found 28 
with GCAS measurements: bias improved from –31% to –10% and r2 improved from 0.78 to 0.80. This 29 
study outlines how remote sensing data, including fine spatial information from newer instruments such as 30 
TEMPO, can be used in concert with chemical transport models to provide actionable information for air 31 
quality managers to identify further opportunities to reduce NOx emissions. 32 
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Introduction 33 

Nitrogen oxide (NOx = NO + NO2) emissions are directly harmful to human health and a critical participant 34 
in ozone formation. Many North American cities already have NOx-limited ozone formation during the 35 
warm season1–3, and the remaining cities should have primarily NOx-limited conditions in the coming years4. 36 
Further reducing ozone pollution in metropolitan areas will therefore require improved quantification of 37 
NOx emissions. Exposure to NOx is also directly associated with asthma exacerbation in vulnerable 38 
groups5,6 and premature death7,8. One major limitation of our current observing network is the inability to 39 
accurately quantify NOx emissions on a sector-by-sector basis in a timely fashion, with the exception of 40 
continuous emissions monitoring systems (CEMS) on electricity generating units. Additionally, many non-41 
road sources of NOx emissions, such as industrial or construction emissions, have large uncertainties9. 42 

Typically, air pollutant emission rates for chemical species such as NOx are estimated using a “bottom-up” 43 
approach, which uses fuel consumption information, spatial surrogates (e.g., road density, population 44 
density, locations of known stack emissions), temporal surrogates (e.g., traffic patterns, industrial work 45 
schedules) and emission factors (mass of pollutant per mass of fuel burned) to estimate the spatiotemporal 46 
patterns of emissions across regions10,11. With investments in technology to better understand the 47 
spatiotemporal patterns of pollutants (e.g. incorporating real-time traffic data using speed and type of 48 
vehicle) and laboratory studies to better estimate the emission factors in a wide range of conditions, these 49 
“bottom-up” estimates can be improved12. These new and improved estimates can then be incorporated into 50 
a chemical transport model and evaluated against observations from ground monitors. Based on this 51 
comparison, the emission estimates can be further adjusted and improved if necessary. However, given the 52 
complexity of this cycle, “bottom-up” emission estimates typically take many years to compile by a large 53 
team of scientists, and subsequently, are delayed in time by several years from the actual emission time. 54 

A complementary method to estimate air pollutant emissions is in using a “top-down” approach. With this 55 
method, emissions are back calculated from pollutant measurements acquired across an entire airshed. This 56 
is typically done with a remote sensing instrument – in orbit13–15  or on an aircraft16–18. Analyses have been 57 
conducted for global megacities19–23 and power plants24,25 using the Tropospheric Monitoring Instrument 58 
(TROPOMI) and a complementary satellite instrument, the Ozone Monitoring Instrument (OMI). The 59 
emission rates are inferred by analyzing the concentration maps over a large region and incorporating the 60 
lifetime (chemical and dispersion lifetime) of the pollutant to back-calculate the emission rate at the source. 61 
The advantage of a “top-down” technique is that it is independent of the complex datasets needed to 62 
estimate “bottom-up” emissions rates. Typically these aggregated “top-down” estimates agree with the 63 
“bottom-up” estimates within 40% in North American cities (well within the uncertainty associated with 64 
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the ‘top-down’ method)13,26. Given TROPOMI’s spatial resolution (3.5 × 5.5 km2 at nadir) and temporal 65 
resolution (once daily), TROPOMI is most often used to calculate total emissions aggregated over the entire 66 
metropolitan area and seasonal/annual timescales, and assumptions are needed to infer emissions rate 67 
during morning and evening hours. Therefore, very limited, if any, sectoral or hourly information can be 68 
gleaned from an analysis using polar-orbiting satellite datasets, such as TROPOMI. 69 

In this project we used fine spatial resolution nitrogen dioxide (NO2) information (250 × 560 m2) from the 70 
Geostationary Coastal and air pollution events Airborne Simulator (GCAS) instrument27,28, available during 71 
the September 2021 NASA/TCEQ Tracking Aerosol Convection ExpeRiment – Air Quality (TRACER-72 
AQ) field campaign29, to better understand the fine-scale structure of NOx emissions in the Houston 73 
metropolitan area including a sector-by-sector analysis. Complementing the airborne observations, we 74 
perform a simulation using the Comprehensive Air Quality Model with Extensions (CAMx) at fine spatial 75 
resolution (444 × 444 m2). The model output has already been compared to data from GCAS and TROPOMI 76 
in a complementary paper30. In this project, we push further by using source-tagged NO2 information from 77 
CAMx and GCAS data to estimate more accurate contributions from different NOx emission sectors. We 78 
do this by using flux divergence methods on the GCAS data and by training a multiple linear regression 79 
model to the airborne retrievals, with the CAMx source-tagged NO2 as the independent variables. 80 
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Methods 81 

GCAS. The GCAS instrument was installed on the NASA G-V aircraft during the Tracking Aerosol 82 
Convection. ExpeRiment – Air Quality (TRACER-AQ) field campaign in Houston, Texas during 83 
September 2021. The GCAS instrument employs charge-coupled device array detectors to observe 84 
backscattered light. These data can be used to calculate column densities of gases, such as NO2, below the 85 
aircraft using differential optical absorption spectroscopy (DOAS)31.  86 

During TRACER-AQ, GCAS collected data over the Houston metropolitan area across 12 days during late 87 
August and throughout September 2021. The flight strategy of the aircraft included flying the plane in a 88 
‘lawnmower’ fashion with flight lines spaced 6.3 km apart, ensuring overlap at flight altitude (28,000 feet) 89 
with the instrument field of view of 45 degrees creating one gapless map of NO2 up to three times per flight 90 
day. GCAS has a native pixel resolution of approximately 250 m × 250 m at flight altitude. Observations 91 
from two of the flight days – a test flight (August 30) and a flight over the Gulf of Mexico (September 27) 92 
are excluded from this study because they provided no meaningful data over Houston. Given the relatively 93 
short timeframe of flight data collection; meteorological conditions have an influence on the fine-scale 94 
patterns in NO2 columns observations.  95 

Air mass factors use modeled scattering weights and vertical profile information to account for altitude-96 
dependent sensitivities in remote-sensing observations32,33. The original vertical profiles in the dataset were 97 
derived from a global model, GEOS-CF34, that had a coarser spatial resolution (0.25° × 0.25°), but in this 98 
study we only show GCAS column NO2 measurements processed with vertical profile information from 99 
CAMx. To directly compare GCAS measurements to the CAMx NO2 column concentrations we re-grid 100 
them to the fine-scale WRF-CAMx grid. Only cloud-free GCAS data is considered in this analysis. An 101 
example of daily and monthly averaged GCAS data is shown in Figure 1. The differences in these two 102 
timescales highlights the complexity of NO2 variance in cities, such as Houston. Diurnal column NO2 103 
patterns are shown in Figure S1. 104 

 105 
Figure 1. GCAS Column NO2 measurements during the September 2021 Houston TRACER-AQ field 106 
campaign. Left panel showing all GCAS measurements during ten flight days between September 1 – 26, 107 
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2021 averaged together. Right panel showing all measurements during the September 8, 2021 flight day 108 
averaged together. Areas of large NOx emissions are labeled on both panels. 109 

Pandora. Observations from three Pandora monitoring sites were available during the TRACER-AQ field 110 

campaign to validate the GCAS, satellite, and model column NO2 measurements. Critical to this project, 111 
we found in previous work30 that the GCAS measurements of column NO2 during the TRACER-AQ 112 
campaign had an excellent correlation (r2 = 0.79) and minimal normalized mean bias (NMB = +3.4%) when 113 
compared to measurements of the same quantity from Pandora instruments, suggesting that the GCAS 114 
measurements acquired during the TRACER-AQ campaign are very close to the “truth”. The Pandora 115 
instruments were located in the suburban and urban neighborhoods.  116 

WRF-CAMx simulation. For this study, a set of simulations were conducted employing version 4.3.3 117 
of the Advanced Research Weather Research and Forecasting (WRF) model35 jointly with the 118 
Comprehensive Air Quality Model with Extensions (CAMx) v7.2036 with the CB6r5 chemical mechanism 119 
for a simulation period that matched the September 2021 TRACER-AQ domain and timeframe. The 120 
36/12/4/1.33/0.444 km model domains can be seen in Figure S2. Prior work evaluated this WRF simulation 121 
and found minimal systematic biases in surface-level wind speed, direction, temperature, and water vapor 122 
mixing ratio compared to observations from sixteen ground-level monitors30. A longer description of the 123 
WRF-CAMx model options is included in the supplemental including the WRF physics options (Table S1), 124 
vertical layer mapping from WRF to CAMx (Table S2), and CAMx science options (Table S3). For 125 
emissions in CAMx, we start with an emissions inventory developed by the TCEQ for the Dallas-Fort 126 
Worth (DFW) and Houston-Galveston-Brazoria (HGB) Attainment Demonstration (AD) SIP revisions and 127 
implement further minor changes as discussed in the Supplemental.  128 

Source Apportionment. We used the CAMx OSAT source apportionment tool to track NO2 from several 129 
emission source sectors as listed in Table S4. To select individual electric generating units (EGUs) in our 130 
0.444 km CAMx domain for NO2 tracking we used a threshold of 0.8 tons per day of NOx emissions. This 131 
threshold identified nine EGUs shown in the first nine rows of Table S4. We also selected on-road mobile, 132 
railyards, shipping and the George Bush Intercontinental (KIAH) and William P. Hobby (KHOU) airports 133 
for NO2 tracking. All remaining NOx emissions were tracked together in the “other” category. Relevant for 134 
this project, average weekday NOx emissions for the 0.444 m domain were 372.9 tons per day (123 Gg/yr). 135 
The total amount of NOx emissions in each sector can be seen in Table S5 and Figures S3 and S4. Examples 136 
of the NO2 source apportionment can be seen in Figure 2. 137 
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 138 
Figure 2. Examples of six of the CAMx tagged surface NO2 concentrations at 8:00 AM local time on 139 
September 8, 2021. 140 
 141 
Flux divergence top-down emissions quantification. The flux divergence method can identify point 142 
sources in the TROPOMI NO2 retrievals with higher resolution than averaged vertical column densities. 143 
The method was first applied over Riyadh, Germany and South Africa to estimate NOx emissions from 144 
large point sources15,25. Due to TROPOMI’s higher spatial resolution compared with OMI, the flux 145 
divergence method can identify emissions within individual urban areas26,37–39.  146 

The flux divergence method works best with long temporal averages; for TROPOMI analyses, annual or 147 
multi-year averages are used. We adapted the method for the current project to handle GCAS data from 27 148 
individual scenes spanning 10 days. We found that the method worked best when the GCAS data was 149 
oversampled to the 444 × 444 m2 CAMx grid. Only pixels with an aircraft roll angle below 0.5° were used. 150 
We interpolated the WRF-CAMx winds to the time of the GCAS overpass. We used second-order 151 
differences and performed the flux divergences along the x/y axes (i.e., using the cells to the north, south, 152 
east, and west of the central cell). We also calculated the flux divergence for the cross-terms (i.e., using the 153 
cells to the north-east, south-east, south-west and north-west of the central cell). Averaging both the x/y 154 
estimate and the cross-estimate led to smoother divergence fields with less noise. 155 

The method was initially performed using the GCAS standard retrievals and the ERA5 wind reanalysis 156 
product40. While this gave good results, we found that the level of noise was reduced and the known sources 157 
were better identified when we used the GCAS retrievals that were corrected using the CAMx air mass 158 
factors, and when we used the WRF-CAMx meteorology. These sensitivity tests revealed that CAMx 159 
simulations can be used to yield clear improvements in the flux divergence method. 160 
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Multiple linear regression model. For this study, we built a multiple linear regression (MLR) model 161 
to find the optimal combination of the sectoral emissions simulated by CAMx that matches the GCAS 162 
tropospheric vertical columns. CAMx simulations were made in Source Apportionment mode to separate 163 
the NO2 vertical column densities associated with the 15 individual sources (e.g., EGU) and groups of 164 
sources (on-road mobile) (Table S4). In practice, some of the emission sources in OSAT are too close 165 
together to be able to be clearly distinguished from each other. We therefore merged the following: 1. 166 
Channelview Cogeneration Facility and Odyssey Energy Altura Cogen, LLC; 2. Deer Park Energy Center 167 
and Pasadena Power Plant; 3. Texas City Cogeneration, South Houston Green Power Site, and the “other” 168 
category. Equation 1 shows the MLR model: the tropospheric vertical column density of GCAS is 169 
represented as an optimal combination of the CAMx VCD from the 10 contributing sectors with a residual 170 
given by ε. . In seeking an optimal match to the GCAS columns, it is important to apply a regularization 171 
term to prevent unphysical results41. The optimal parameters (β) were determined by minimising the cost 172 
function in Equation 2. The residual ε is minimised subject to the regularization parameter λ applied to the 173 
magnitude of the scale factors (β). Equation 2 can be solved in a single Least Squares inversion41. We 174 
applied the MLR model to the entire field campaign, and we also performed simulations separately for 175 
weekdays and for weekends. 176 

𝑉𝐶𝐷!"#$ =% β%𝑉𝐶𝐷"#&',% + 	𝜀
)*
%+)     (1) 177 

𝐽 = 	 ‖𝜀‖, +	𝜆,‖𝛽‖,     (2) 178 

The regularization term, λ in Equation 2, imposes a cost on the departure of the posterior emissions from 179 
the prior emissions. In this work, we chose a value of 25 because it balances the desire to maximize the 180 
improvements in the model (lower grid residuals) while minimizing the departure from the prior (lower 181 
emission residuals). By selecting this value, we achieve most of the improvements in the correlation 182 
coefficient of the model without ending up with unrealistic scaling factors. The algorithm then balances the 183 
cost in the change of the emissions with the cost of the mismatch between the GCAS retrievals and the sum 184 
of the scaled fields from the source apportionment simulations. We assume as a prior that all scaling factors 185 
are 1. 186 
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Results and Discussion 187 

The first step in this project is to qualitatively compare the GCAS column NO2 measurements with 188 
coincident measurements from TROPOMI and model output from CAMx. Spatial plots of column NO2 in 189 
the early afternoon at the TROPOMI overpass time are shown in Figure 3 for a 10-day average and a single 190 
day. By observing the 10-day average (top row), we can see that GCAS measurements are generally larger 191 
than both the TROPOMI measurements and CAMx model output. TROPOMI captures the broad spatial 192 
patterns observed by GCAS with a notable low bias. The TROPOMI low bias is partially driven by the 3.5 193 
x 5.5 km2 spatial resolution which is unable to capture the peaks of the NO2 pollution, especially the NO2 194 
in narrow point source plume42. Previous work shows that the air mass factor is a small contributor to this 195 
low satellite bias in this area30, but this can vary by region43. The low satellite bias is consistent with 196 
comparisons completed by the TROPOMI Cal-Val team44. 197 

The GCAS versus CAMx intercomparison suggests that the point source plumes are captured by the model 198 
with decent accuracy, but that NO2 is severely underestimated in the downtown area of Houston, as well as 199 
in the outer portions of the model domain. This suggests two issues with the NO2 in CAMx: an 200 
underestimate of NOx emissions near downtown Houston, and an underestimate of NO2 advected into the 201 
model domain from the boundary conditions. In following sections, we explore these model biases 202 
quantitatively.  203 

 204 
Figure 3. Column NO2 over Houston from two remote sensing observational platforms, and CAMx model 205 
simulation in the early afternoon: 12 – 3 PM local time. Left column shows measurements from TROPOMI, 206 
center column shows measurements from GCAS, and right column shows the CAMx model. Top row shows 207 
measurements during all 10 flight days in September 2021, while bottom row shows September 8, 2021 only. 208 
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NOx emissions using Flux divergence applied to GCAS. The flux divergence (FD) method applied 209 
to the GCAS aircraft data quantified NO2 fluxes (μg/m2). To our knowledge, this paper is the first to quantify 210 
NO2 fluxes by applying the FD method to aircraft remote sensing data. We identified many of the major 211 
NOx sources individually in the Houston CAMx domain: power plants and refineries as well as the IAH 212 
international airport (Figure 4 left panel). In addition, the method identified the area of the ship channel as 213 
well as the route of the ships sailing through the Galveston Bay. Finally, the method clearly identified the 214 
major highways in the region. The center panel of Figure 4 shows the flux divergence method applied to 215 
the CAMx simulation. In this case, the sources are known and so these simulations serve to evaluate the 216 
accuracy of the method. The method clearly recovers the main point and line sources used in the CAMx 217 
simulations. The right panel of Figure 4 shows the ratio of the NO2 flux divergence (i.e., (CAMx-218 
GCAS)/GCAS) for the GCAS grid cells exceeding 0.2 μg-m2-s-1. Over the large point sources near the ship 219 
channel, the values are a mix of positive and negative values suggesting that the emissions inventory is 220 
relatively accurate in this location. Over highways, the values are strongly negative suggesting that actual 221 
on-road emissions may be underestimated in the current inventory used as input to the CAMx model. In 222 
theory, the 444 m spatial resolution model should be capturing the near-road NO2 concentrations with the 223 
same precision as the GCAS which has similar spatial resolution. Over the ship paths, especially closer to 224 
the Gulf of Mexico, the values are positive suggesting that some of the ship NOx emissions may be 225 
overestimated in the inventory. 226 

 227 
Figure 4. Left panel shows the net NO2 fluxes (μg/m2-s) using the FD method applied to all GCAS 228 
measurements. Fluxes are positive when there are NOx emissions originating from a grid cell, fluxes are 229 
negative if there is a net NOx sink in a grid cell. Center panel shows the net NO2 fluxes (ug/m2) using the 230 
FD method applied to all coincident CAMx output. Right panel is the ratio (CAMx-GCAS)/GCAS in 231 
areas where the GCAS NO2 fluxes are >0.2 ug/m2-s. 232 
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Use of machine learning to estimate emission factors for individual sectors. We applied the 233 
MLR model to CAMx source apportionment NO2 sectoral output and GCAS NO2 data, as shown in 234 
Equations 1 and 2, to estimate scaling factors for the sectoral NO2. All median scaling factors were between 235 
a value of 0.5 and 2.5 as shown in Figure 5. A median value below 1 indicates the sector needs a NOx 236 
decrease, while a median value greater than 1 indicates the sector needs a NOx increase. The box-and-237 
whisker plots represent the uncertainties of the scaling factors quantified by bootstrapping on two different 238 
levels. The most important level for bootstrapping was randomly selecting, with replacement, the GCAS 239 
rasters included in the optimization. For the full time series, there were 27 rasters over 10 days. In addition 240 
to performing the simulations for these 27 rasters, we performed 100 simulations with random selections 241 
of the 27 rasters. The second level for bootstrapping was to randomly select grid blocks within each raster 242 
for use in the analysis. We randomly select 7 x 7 blocks of cells within the CAMx grid cells and include 243 
them until we have the same number of points as in the initial grid. We did this 100 times for each selection 244 
of rasters, leading to a total of 10,000 simulations.  245 

The box-and-whisker plots in Figure 5 show that on-road mobile NOx emissions representing 19% of 246 
domain emissions may be underestimated in the model and need to be scaled up by a median factor of 1.68, 247 
which is consistent with findings using the FD method. Similarly, the MLR found railyard NOx emissions 248 
should by increased by a median factor of 1.5. In contrast, the shipping NOx emissions representing 17% 249 
of domain emissions may be overestimated and should be scaled by a median factor of 0.77, which is also 250 
consistent with findings using the FD method, though it should be noted that the sign of the shipping 251 
adjustment changes with the regularization factor. The EGU point sources are close to a scale factor of one, 252 
which is expected given the use of emissions obtained from CAMPD measurements. The “other” sources 253 
representing 54% of domain NOx emissions are underestimated, although this factor is particularly sensitive 254 
to the regularization factor because it encompasses a diverse set of point and nonpoint sources. Finally, the 255 
boxplot suggests that the NO2 background concentration is underestimated by CAMx by a median value of 256 
0.7 x 1015 molec/cm2, which equates to a scaling factor of 2.2, and is consistent with qualitative findings 257 
discussed earlier. 258 
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 259 
Figure 5. Box-and-whisker plot of scaling factors obtained from the Multi Linear Regression Model with 260 
100 bootstrapped selection of rasters each consisting of 100 bootstrapped selection of grid blocks included 261 
in the analysis. Percentages show the fraction of domain-wide NOx emissions from each sector. 262 
 263 
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Results from an “Optimized NOx” CAMx simulation. We then performed a new “Optimized NOx” 264 
CAMx simulation with on-road mobile and shipping NOx emissions adjusted to be in alignment with 265 
findings from using the MLR. On-road mobile NOx emissions were increased by a factor of 1.68, and 266 
shipping NOx emissions were decreased by multiplying by a factor of 0.77. Despite a large change to the 267 
on-road NOx, the total NOx emissions in the domain only increased by 8.6% from 373 to 405 tons per day 268 
(Table S5). We chose not to adjust the railyards and airport sectors because combined they represent less 269 
than 3% of domain NOx emissions. We chose not to adjust the “other” sector or background / boundary 270 
NO2 since there is no straightforward modification for those contributions. 271 

When comparing the column NO2 from the Baseline and “Optimized NOx” simulations to the GCAS 272 
measurements, we found better agreement and an improvement in bias, albeit a smaller improvement than 273 
we had expected (Figure 6). The column NO2 low bias improved from –30.6% to –25.2% with a small 274 
increase in correlation from r2=0.78 to r2=0.80. When we further add an artificial 0.7 x 1015 molec/cm2 275 
column NO2 enhancement domain-wide – value acquired from the MLR – the NO2 low bias improves 276 
further to –10.0%. The remaining low bias is likely due to not adjusting the “other” NOx emissions, which 277 
represented 54% of domain NOx emissions in the Baseline simulation.  278 

 279 
Figure 6. CAMx column NO2 evaluated against the same quantity from GCAS measurements. Left panel 280 
is the baseline simulation. Center panel is the “Optimized NOx” simulation (1.68x on-road mobile and 0.77x 281 
shipping). Right panel is “Optimized NOx” simulation + an additional 0.7 x 1015 column NO2 background 282 
NO2 using scaling factor from the MLR. 283 

When comparing the column NO2 from the Baseline and “Optimized NOx” simulations to the Pandora 284 
measurements, we found better agreement and an improvement in bias, albeit a smaller improvement than 285 
we had expected (Figure 7). The column NO2 low bias improved from -20.2% to -17.8% with a small 286 
increase in correlation from r2=0.39 to r2=0.41. However, much of the apparent low bias appears to be 287 
driven by the large Pandora measured values. When then exclude values exceeding 10e15 molec/cm2 – 288 
which approximate fine-scale NO2 plumes that we cannot expect CAMx to recreate in space due to the need 289 
to match wind speed and direction. For moderately polluted scenes (values <10e15), the NO2 low bias is 290 
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only -6.8%. When evaluating the new model simulation improved from -6.8% to -3.4%; the correlation is 291 
notably poor in both scenarios due to the smaller range of values.  292 

 293 

Figure 7. CAMx vs. Pandora total column NO2 intercomparisons. Left column shows intercomparisons 294 
during all conditions. Right column shows intercomparisons during moderately polluted and clean 295 
conditions (< 10 x 1015 molec/cm2). Top row shows the baseline CAMx simulation. Middle row shows the 296 
“Optimized NOx” CAMx simulation. Bottom row shows the “Optimized NOx” CAMx simulation + 297 
Background NO2 correction (a uniform addition of 0.7 x 1015 molec/cm2). Different colors represent the 298 
three Pandora measurement sites as discussed in Nawaz et al., 2024.  299 
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Figure 8 shows a ratio difference plot of modeled column NO2 between the Baseline and “Optimized NOx” 300 
simulations. The largest NO2 enhancements in the “Optimized NOx” simulation occurred in areas of west 301 
Houston where there were no Pandora measurements (denoted as square boxes on the figure). The 302 
maximum change in column NO2 was an increase of 29.6% in west Houston near a major highway 303 
intersection, with a median column NO2 enhancement of +4.2% across the full model domain. Although 304 
the model domain NOx emissions increased +8.6%, column NO2 only increased +4.2% because a 305 
substantial amount of NO2 originates beyond the model domain.  306 

 307 

Figure 8. Column NO2 ratio plot between the CAMx “Optimized NOx” simulation vs. CAMx baseline 308 
simulation during the early afternoon (12:00 – 15:00 local time). 309 

When comparing the MLR results between the Baseline and Optimized NOx simulations, we see substantial 310 
improvement in the coefficients attributed to on-road and shipping emissions (Figure 9), while all other 311 
coefficients remain largely steady. This indicates both the robustness of the method as well as a strong 312 
indication that the adjustments made to the NOx emissions were appropriate. The on-road NOx emissions 313 
may have been slightly overcorrected, and the “other” NOx emissions still need an adjustment up. As 314 
expected, the coefficient attributed to the background NO2 did not change, and this would be more difficult 315 
to control without modifying the boundary conditions or the NO2 lifetime. A longer discussion on the 316 
influence of NO2 long-range transport on the MLR can be found in the supporting information.  317 
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 318 
Figure 9. Box-and-whisker plot of scaling factors of the baseline and updated CAMx simulation obtained 319 
from the Multi Linear Regression Model with 100 bootstrapped selection of rasters and 100 bootstrapped 320 
selection of grid blocks to include in the analysis. 321 

Discussion. In this project, we were able to conduct a thorough analysis of NOx emissions in Houston, 322 
Texas during September 2021 during the TRACER-AQ campaign. Prior work found column NO2 from 323 
GCAS to have excellent agreement with Pandora measurements (r2=0.79 and NMB of +2.4%)30, suggesting 324 
it can be used as the “truth” in validating the column NO2 CAMx model simulation. Column NO2 from 325 
CAMx showed a substantial low bias when compared with Pandora (–20%) and GCAS measurements (–326 
31%), suggesting an underestimate of local NOx emissions. 327 

This study expands upon previous work30 by applying additional measures to identify and quantify the 328 
magnitude of NOx emissions. The FD method was able to distinguish the linear shape of major highways, 329 
many of the large point sources, and the Galveston Bay ship track. The NO2 FD comparison between 330 
CAMx and GCAS shows underestimates at highway locations. Through a multiple linear regression 331 
model, we were able to isolate on-road, railyard, and “other” NOx emissions as the likeliest cause of this 332 
low bias, while simultaneously finding that shipping NOx emissions may be overestimated.  A new 333 
“Optimized NOx” simulation was performed with on-road NOx emissions increased by a factor of 1.68 334 
and shipping NOx emissions decreased by a factor of 0.77, and confirmed that these NOx adjustments 335 
made to the inventory were reasonable and yielded better agreement with NO2 measurements acquired 336 
during the TRACER-AQ campaign.   337 

To our knowledge, this is the first time a source apportionment model was coupled with aircraft 338 
measurements to identify uncertainties in the gridded NOx emissions inventory. Our analyses were 339 
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primarily conducted using column NO2 instead of surface NO2 to diagnose NOx emissions since vertical 340 
mixing can be a source of error in a surface-only comparison. With finer spatial resolution and more 341 
numerous NO2 measurements now available from TEMPO starting in August 2023, it is feasible that a 342 
similar analysis could be conducted using satellite data. This project provides actionable information to 343 
policymakers looking to understand where there are further opportunities to reduce NOx emissions and 344 
improve ozone and PM2.5 air quality in metropolitan areas.  345 
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