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ABSTRACT: Posttranslational modifications (PTMs) greatly
enhance the functional diversity of proteins, surpassing the
number of gene-encoded variations. One intriguing PTM is
ADP-ribosylation, which utilizes nicotinamide adenine dinu-
cleotide (NAD¥) as a substrate and is essential in cell signaling
pathways regulating cellular responses. Here, we report the
first cell-permeable NAD* analogs and demonstrate their util-
ity for investigating cellular ADP-ribosylation. Using a des-
thiobiotin-labelled analog for affinity enrichment of proteins
that are ADP-ribosylated in living cells under oxidative stress,
we identified protein targets associated with host-virus inter-
actions, DNA damage and repair, protein biosynthesis, and ri-
bosome biogenesis. Most of these targets have been noted in
various literature sources, highlighting the potential of our
probes for cellular ADP-ribosylome studies.

Posttranslational modifications (PTMs) contribute to the
large variety of functional proteoforms.! One PTM is ADP-
ribosylation, which is catalyzed by enzymes known as ADP-
ribosyl transferases (ARTs), initially identified in the context
of some bacterial toxins.> ARTs are also termed PARPs
(poly(ADP-ribose)polymerases).3 These enzymes employ
NAD+ as a donor of ADP-ribose, transferring it to specific
amino acid side chains like Arg, Glu, Asp, Lys, Cys, and Ser,
which leads to the formation of a mono-ADP-ribosylated
(MARylated) protein.+ This modification is often further ex-
tended by the consecutive attachment of ADP-ribose units
through the 2-O of adenosine leading to poly-ADP-
ribosylation (PARylation). In mammals, there are 17 known
members of the PARP family,? 5 each catalyzing either MARy-
lation or PARylation. PARylation is recognized as a crucial
mechanism for regulating various aspects of cellular physiol-
ogy such as DNA damage response,® translation control,” and
viral infectivity.® The role of MARylation is still not well un-
derstood, although it has been reported that it is involved in
processes such as RNA metabolism, cellular transport, and
stress respone.® Malfunction of the PTMs machinery can lead

to various pathogenic processes, such as carcinogenesis.”® Fur-
thermore, inhibition of ADP-ribosylation can induce tumor
cell death and suppress pro-inflammatory signaling by main-
taining cellular bioenergetics and resulted in the development
of approved drugs.” Hence, the development of new tools for
further inside into ADP-ribosylation is of a great importance.

Several nucleotide-based tools have been designed for this
purpose.’> 3415 However, due to the presence of a negatively
charged phosphate chain, these nucleotides cannot penetrate
the cell membrane, which hinders their utility for studies in
living cells. Therefore, the identification of ADP-ribosylation
targets has been primarily conducted in cell lysates. Besides
invasive approaches for cellular delivery of NAD+ analogs'
that may result in cell damage and cell death,7 transfection
agents have only recently been used to be employed for cellu-
lar internalization of NAD* analogs.'+'> '8 Here, we report on
the development of the first cell permeable NAD+ analogs ex-
ploiting two mechanism of cellular uptake: modification by
cholesterol (Chol, passive diffusion) and by the cell penetrat-
ing peptide RgK (direct translocation and endocytosis).2
These NAD+ modifications were attached through ester bonds
at 2’-0/3’-O nicotinamide ribose that are expected to be hy-
drolyzed by cellular esterases, a strategy exploited in prodrug
approaches.? To this end, we synthesized new double modi-
fied NAD* analogs, each containing either a TAMRA fluores-
cent tag (TMR) or a desthiobiotin affinity tag (DTB), in com-
bination with a cell-permeability-promoting ligand (Chol or
RsK; Scheme 1). In brief, to modify the B-nicotinamide mon-
onucleotide (B-NMN) with an ester that contains the cell-per-
meability-promoting ligand, it turned out that first esterifica-
tion with an alkyne-containing acid and subsequent Cu-cata-
lyzed azide-alkyne cycloaddition (CuAAC)> with the azide-
containing ligand was the most proficient. Thus, B-NMN was
reacted with 4-pentynoic acid to form 2',3’-O diester (1a) or 2’-
0/3’-O monoester mixture (1b). NMR analysis of the latter
showed 1:2 ratio of 2’-O to 3’-O isomer (SI). In order to exam-
ine the impact of the linker length connecting the cell-perme-
able ligand with nicotinamide ribose, we also synthesized
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Scheme 1. Synthesis of cell-permeable NAD* analogs?
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6-heptynoic (1c) and 10-undecynoic (1d) B-NMN monoesters,
each in a mixture of 2’-O/3’-O isomers. The synthesis of the
adenosine-5’-monophosphate (AMP) residues started with
the previously reported® analogs AMP-TMR and AMP-DTB
that were converted into P-imidazolides 2 and 3% and then
coupled with 1in DMF / DMSO or formamide, in the presence
of Mg>* to yield the NAD* analogs 4 and 5. Ultimately, we ob-
tained five NAD+* analogs containing either a diester 4-
pentynoic or monoester 4-pentynoic, 6-heptynoic or 10-un-
decynoic modification and either a TMR (4a-b) or DTB (5a-c)
tag (Scheme 1). To further modify the NAD* probe with a cell
permeability-promoting ligand, we employed CuAAC chemis-
try, utilizing either cholesteryl-TEG-azide (Chol-N;, Scheme
1) or a short peptide consisting of eight arginines and N-ter-
minal lysine modified with an azide group within the back-
bone (RsK-Nj; Scheme 1). Interestingly, the synthesis of the
latter required the presence of concentrated urea (Figure S1).
The resulting products were purified using analytical or semi-
preparative HPLC (Table S1). More information is detailed in
the SI.

Next, we incubated HeLa cells with NAD-TMR probes
functionalized with Chol- and RgK-, and investigated them by
fluorescence confocal microscopy. Images of fixed HeLa cells
were captured after incubation with probes, and a control
probe precursor, bearing TMR and two pentynoic substitu-
tions (4a; Figure S2). The Chol-modified probe Chol-2-NAD-
TMR exhibited a punctate cytoplasmic distribution, while the
RsK-modified analogs (RsK-2-NAD-TMR and 2RsK-2-NAD-
TMR) displayed an even distribution within the cytoplasm.
Additionally, RgK-labelled NADs were observed in the nucle-

RgK-2-NAD-DTB: n = 1, R; = DTB, Ry = RgK

oli, although this might have been caused by the fixation pro-
cess.2¢ Double cholesterol modified NAD-TMR (2Chol-2-
NAD-TMR) precipitated significantly, making it challenging
to control its concentration. Furthermore, the cells incubated
with double peptide-modified NAD-TMR (2RgK-2-NAD-
TMR) at 20 uM exhibited signs of apoptosis, indicating in-
creased cytotoxicity (Figure Sz). Overall, mono-substitution
with Chol or RgK was sufficient for the delivery of NAD-TMR.
Hence, for the further studies, we focused on mono-function-
alized NADs. Additionally, we investigated cell-permeability
of probes Chol-2-NAD-TMR and RgK-2-NAD-TMR in living
HelLa cells. The Chol-2-NAD-TMR probe was again localized
in the cytoplasm, while RgK was observed in both cytoplasm
and nucleus, with a notably higher concentration in the latter
(Figure 1A). We evaluated further the cell permeability of our
probes using flow-cytometry analysis (Figure 1B). We pro-
ceeded to investigate the second set of probes functionalized
with DTB. HelLa cells were incubated with Chol- and RgK- la-
belled NAD-DTB compounds Chol-2-NAD-DTB and RgK-2-
NAD-DTB. Subsequently, the cells were fixed with paraform-
aldehyde and incubated with a Cys-streptavidin conjugate to
enable DTB visualization (Figure 1C, S3). As controls we used
NAD-DTB analogs bearing 2’-O/3’-O alkyne linker (5a-c) and
NAD-DTB.® Fluorescence confocal microscopy images of the
cells indicated that both probes were localized in the cyto-
plasm. The peptide probe's (RsK-2-NAD-DTB) presence
within the nucleolus likely resulted from the cell fixation pro-
cess once again.
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Figure 1. Cellular uptake of NAD-TMR conjugates featuring
Chol- or RgK- by living HelLa cells, investigated by A. confocal
microscopy and B. flow-cytometry; C. confocal imaging of
fixed HeLa cells previously incubated with NAD-DTB conju-
gates featuring Chol- or RgK-. Scale bar: 20 pm.

We next assessed the substrate susceptibility of choles-
terol-modified NAD-TMR (Chol-2-NAD-TMR), by conduct-
ing an in vitro auto-ADP-ribosylation with PARP1, using pre-
viously reported assay.*4 Briefly, Chol-2-NAD-TMR was incu-
bated with PARP1 and short dsDNA, both alone and in a mix-
ture with natural NAD* or NAD-TMR. Additionally, com-
pounds were pre-incubated for 24 h or pig liver esterase (PLE)
was added to induce hydrolysis of the ester bond connecting
the cell-permeable ligand with nicotinamide ribose. After-
wards, the samples were analyzed using SDS-PAGE with TMR
fluorescence detection or Coomassie staining (Figure 2A).
The data shows that the NAD+* analog was accepted to some
extent as a substrate for PARP1, despite its modification.
When subjected to a 24 h pre-incubation or used in a 1:1 mix-
ture with natural NAD* or NAD-TMR, the formation of longer
PAR chains was observed. Afterwards, we assessed substrate
susceptibility of Chol-2-NAD-DTB to various PARP enzymes

A
Chol-2-NAD-TMR - - - - 50 50 50 50 50 50 100100 [uM]
NAD-TMR - - 5050 -850 - - - - - - [uM]
NAD -5 - - 50 « - - - = [uM]
PLE - - - - - 5555[U/mL]
time 00 024 00024024024 [h]
[
o
c
@
o
0
e
o
3
[T
Q
‘n
n
©
£
o
<]
o
B
Chol-2-NAD-DTB- - - - 50 50 50 50 50 50100100 [uM]
NAD-DTB - - 5050 - 50 - - - [uM]
NAD -5 - - 5 - - - [uM]
PLE —---5555[U/mL]
time 0 0 0 24 0 0 0 240240 24 [h]
®
- - aad £
o] e TEM. s
70 <
S
551 %
w
130 _". " - - - (14
& <
70— &
S
55=1 ©
—i - (]
130 ey .~ == 3
7 ©
° & e | E
55— - a1 ‘ 8
o

Figure 2. Acceptance of A. Chol-2-NAD-TMR or B. Chol-2-
NAD-DTB by PARP1.

(PARP1-3, 6, 10, 14, and TNKS1-2), using previously described
in vitro auto-ADP-ribosylation assays.’®* The same experi-
mental conditions and control samples were examined as for
Chol-2-NAD-TMR. Reaction mixtures were analyzed through
immunoblotting using ExtraAvidin®-Peroxidase for DTB visu-
alization or poly(ADP-ribose) monoclonal antibody (10H) to
visualize PAR chains (Figure 2B, S4). We concluded, that
probe Chol-2-NAD-DTB serves as a substrate for all of the
tested PARPs. We observed weak auto-ADP-ribosylation by
PARP1 and 2. TNKS1-2, (PARylating enzymes) most likely uti-
lized the probe primarily for MARylation or the short PAR
chains formation. The PARPs, classified as MARylating pro-
teins, also demonstrated the ability to utilize Chol-2-NAD-
DTB as a substrate. Preincubation of Chol-2-NAD-DTB for 24
h resulted in more efficient ADP-ribosylation, attributed to
the hydrolysis of the ester bond. In the presence of natural
NAD* or NAD-DTB, longer PAR chains were formed, indicat-
ing that probe Chol-2-NAD-DTB is not the preferred sub-
strate. Application of the RgK-2-NAD-DTB for in vitro protein
ADP-ribosylation showed similar outcome (Figure Ss).

Afterwards we moved to the application of NAD-DTBs for
protein ADP-ribosylation in HelLa cells. Initially, cells were
treated with NAD* probes and ADP-ribosylation was induced
by H,O,-mediated oxidative stress. Subsequently, cell lysates
were subjected to analysis using immunoblotting with Ex-
traAvidin®-Peroxidase (DTB visualization), an anti-PAN-
binding reagent that interacts with ADP-ribose, and SDS-
PAGE with Coomassie staining as a loading control
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Figure 3. Analysis of lysates from HeLa cells, previously incu-
bated with NAD-DTB probes containing different A. cell-per-
meable ligand and B. length of the linker connecting ligand
with nicotinamide ribose.

(Figure 3A). The DTB signals were detected in all samples
containing cell-permeable probes and corresponded to the
ADP-ribose ones, which confirmed the incorporation of DTB-
tagged ADP-ribose units into the proteins. The difference in
the DTB signal intensity between lysates from non-stressed
and H,O,-stressed HeLa cells was the most significant for
compound Chol-2-NAD-DTB, hence, we focused on choles-
terol-tagged NADs for further structure activity studies. We
investigated different linker lengths connecting cholesterol-
TEG-triazole with the 2’-O/3’-O position of nicotinamide ri-
boside (three - Chol-2-NAD-DTB, five - Chol-4-NAD-DTB,
or nine ~Chol-8-NAD-DTB carbon atoms). The most signifi-
cant increase in DTB signal after H,O, treatment was observed
for the probe with the shortest linker, Chol-2-NAD-DTB (Fig-
ure 3B). In the end the sensitivity of this probe was higher
comparing to our previous approach® allowing for a tenfold
reduction of its concentration. We also assessed the cytotoxi-
city of NAD-DTBs (Figure S6). Cholesterol-modified probes
exhibited greater cytotoxicity compared to peptide-modified
ones, albeit still minor at 10 pM.

Next, we employed the optimized probe Chol-2-NAD-
DTB for affinity enrichment of proteins that are ADP-
ribosylated upon H,O,-induced oxidative stress in HeLa cells.
Using a modified workflow established for NAD-DTB,"® pro-
teins were enriched, trypsin-digested (Figure 44, S7), and an-
alyzed via LC-MS/MS (four biological replicates, each meas-
ured in technical duplicate). Using a label-free quantification
approach?s we found 1465 proteins and identified 121 potential
protein targets (Figure S4B, SI) after statistical validation us-
ing ANOVA (FDR = 0.05, so = 0.1) and post-hoc Tukey HSD

(FDR = 0.05). To gain a deeper insight into the localization
and potential function of the identified proteins, we used the
DAVID tool*¢ to analyze their respective genes (Figure 4C;
SI). Our analysis revealed a comparable number of proteins
localized in the nucleus (56) and cytoplasm (67), associated
with processes that have been linked to ADP-ribosylation,
such as host-virus interactions, DNA damage, mRNA pro-
cessing or ribosome biogenesis.?” Further evaluation by com-
parison with the ADPriboDB 2.0 database?® revealed that
genes of only 8 out of our 121 significantly enriched proteins
were not present in this database (Table S3). However, these
8 hits have close relationships with proteins included in the
database, encoded by genes like FMNL2, STATsA, PREP,
CD1s51, OSBPL8, ACTR3, and AP3D1. Limited data exists on the
ADP-ribosylation of IFIT-5 (gene: IFIT5), although recent
findings indicate that PARPg can increase IFIT1 expression in
B cells.>9 Additionally, we investigated protein-protein inter-
action networks using the STRING database,3° revealing two
primary networks: one involved in DNA repair and metabolic
processes, the other in RNA-related processes and ribosome
biogenesis, which have already been discussed in the context
of ADP-ribosylation (Figure $8).73' Numerous proteins were
also found to play roles in stress responses. We compared
these proteins with previously identified ADP-ribosylation
targets.”» 83> Overlap between various enrichment strategies
ranged from 1 to 27% (Figure Sg), comprising 3 to 22% for
methods not involving nucleotides and 1 to 27% for nucleo-
tide-derived probes. Overall, we found 56% of our protein hits
within the selected literature data (SI). The lack of the remain-
ing proteins may result from a different detection system
(non-nucleotide approaches, nucleosides with low specific-
ity), utilization of living cells instead of cell extracts (cellular
compartmentalization), different cell lines or additional cell-
stress by the transfection reagent.

In conclusion, we report the first cell-permeable NAD+ an-
alogs and demonstrate their suitability for investigating pro-
tein ADP-ribosylation in living cells. Utilizing DTB-tagged
probes, we characterized ADP-ribosylome changes during ox-
idative stress in HelLa cells. Enhanced sensitivity of these
probes allowed for a tenfold reduction of its concentration
compared to our previous method (NAD-DTB with DOTAP
transfection).”® Using our approach we identified proteins pre-
viously described as ADP-ribosylation targets or closely asso-
ciated with them in addition to potential novel targets. We
believe that the herein reported cell-permeable NAD* probes
offer reliable tools for a comprehensive investigation of ADP-
ribosylation in living cells and to increase the understanding
of cellular responses to stress.
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