
Autonomous battery optimisation by
deploying distributed experiments and

simulations
Monika Vogler1,2,11, Simon K. Steensen4,11, Francisco Fernando Ramirez5, Leon Merker1, Jonas

Busk4, Johan M. Carlsson6, Laura Hannemose Rieger4, Bojing Zhang1,3, François Liot5,
Giovanni Pizzi7,5, Felix Hanke8, Eibar Flores9, Hamidreza Hajiyani6, Stefan Fuchs1, Alexey
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Non-trivial relationships link individual materials properties to device-level
performance. Device optimisation therefore calls for new automation ap-
proaches beyond the laboratory bench with tight integration of different re-
search methods. We demonstrate a Materials Acceleration Platform (MAP)
in the field of battery research based on our problem-agnostic Fast INtention-
Agnostic LEarning Server (FINALES) framework, which integrates simula-
tions and physical experiments without centrally controlling them. The con-
nected capabilities entail the formulation and characterisation of electrolytes,
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cell assembly and testing, early lifetime prediction, and ontology-mapped
data storage provided by institutions distributed across Europe. The in-
frastructure is used to optimise the ionic conductivity of electrolytes and
the End Of Life (EOL) of lithium-ion coin cells by varying the electrolyte
formulation. We rediscover trends in ionic conductivity and investigate the
effect of the electrolyte formulation on the EOL. We further demonstrate
the capability of our MAP to bridge diverse research modalities, scales, and
institutions enabling system-level investigations under asynchronous condi-
tions while handling concurrent workflows on the material- and system-level,
demonstrating true intention-agnosticism.

1 Introduction

The slow process of discovering new materials with enhanced properties, long term dura-
bility and ease of device integration is the critical bottleneck in the green transition.
Automated materials discovery and optimisation mark a breakthrough in this direction
often captured by the general concept of a self-driving laboratory (SDL) [1] and in a
broader context as Materials Acceleration Platforms (MAPs) [2, 3]. This approach in-
volves autonomous or closed-loop experimentation, integrating robotics and Artificial
Intelligence (AI) to autonomously conduct, assess, and steer experiments using data
analysed through machine learning (ML). Such platforms transcend conventional lab
automation by solving problems without the need for human interaction.
Conventional studies in battery research focus on the optimisation of a preselected set

of materials properties before finally testing the optimised materials in cells. Due to the
multitude of materials and interfaces in battery cells, this Edisonian one-variable-at-a-
time method makes the discovery of new materials for high-performing batteries a time
and resource intensive task, because the characteristics of the systems are not merely the
aggregate of the components. For example, the performance and degradation resistance
of a device (e.g. a battery) depend on the interplay of its constituent materials and
resulting interfaces [4, 5]. Materials discovery therefore requires an optimisation across
all time and length scales, as well as among all involved materials. Directly targeting the
optimisation of the system has the potential to significantly shorten the time-to-market,
while still gaining knowledge about the complex interplay between the materials and the
interfaces.
Combining accelerated autonomous discovery capability with a device level perspec-

tive has very recently been introduced for opto-electronic systems [6], but has been out
of reach for electrochemical system discovery. Electrochemical materials discovery and
development is a complex, multi-pronged process spanning prediction, synthesis, char-
acterisation, and device testing processes. Related critical research tasks often hinge on
the access to bespoke equipment, e.g., AI-supercomputers for generative design of new
materials using foundation models [7], or high-fidelity synthesis and characterisation
equipment in large-scale facilities [8]. Such resources often have limited and delayed ac-
cess that requires peer-reviewed applications for compute resources or beamtime. Com-
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bining such infrastructure within a MAP requires a novel direction in MAP architecture
in terms of distributed operation and decentralisation by design. Surpassing pure accel-
eration [9] and establishing reliability of discovery [10], such a MAP will encourage the
thorough characterisation and testing of full systems rather than individual materials
or components. This also provides dual benefits of higher throughput and better repro-
ducibility by removing human error and providing improved automated documentation
of experiments including negative results. The practice of publishing complete datasets
from SDL operation alongside the adoption of standardised machine readable data for-
mats, holds the promise of boosting data reusability and, consequently, further resource
efficiency. By leveraging carefully designed autonomous experiments in conjunction with
experiment planning algorithms, it is possible not only to reduce material usage but also
enhance efficiency by minimising downtime of the instruments.
To address the aforementioned challenges, we discuss here the versatile and ontology-

linked Fast INtention-Agnostic LEarning Server (FINALES) framework capable of pro-
viding Application Programming Interface (API)-access to a distributed MAP enabling
fully autonomous operation. The use of clearly defined data structures permits a uni-
fied and unambiguous communication without the need for human intervention. Since
the framework passively enables the communication without actively triggering actions
within the MAP, new clients (tenants) may be added without necessitating alterations
in the internal processes and workflows. This agile construct leads us to expect facile
scalability of MAPs based on the FINALES framework. Integrating patterns [11] and
automated analysis frameworks like the Modular and Autonomous Data Analysis Plat-
form (MADAP) [12] empowers even non-expert users to deploy the capabilities offered
in the MAP. The link to the BattINFO [13, 14] ontology enables the datasets to be
found by semantic searches while the connection to the BIG-MAP Archive [15] ensures
a timely dissemination of the generated data using similar technology as the Materials
Cloud Archive [16].
In this study, we demonstrate an internationally distributed MAP orchestrated by FI-

NALES as shown in Figure 1 working on two independent optimisation tasks in parallel.
Both optimisation tasks vary the composition of a battery electrolyte composed of ethy-
lene carbonate (EC), ethyl methyl carbonate (EMC), and lithium hexafluorophosphate
(LiPF6), but one targets the optimisation of the ionic conductivity, while the other aims
to maximise the End Of Life (EOL) of coin cells. We showcase the hierarchical accel-
eration in complex device level MAPs, both by intelligent sampling of the design space
(here the chemical space of the electrolyte) as well as accelerating individual slow and
resource-intensive tasks (here EOL testing) with ML. We further demonstrate the use of
complementary methods for determining the ionic conductivity enlarging the chemical
space accessible to the MAP as a whole. Moreover, we show the multi-tasking capability
of our MAP by running the two optimisation tasks in parallel on the same infrastruc-
ture. The setup was able to discover the correlation between the concentration of the salt
and the ionic conductivity of the electrolyte and showed reasonable agreement between
predicted and experimentally determined median EOL.
To perform the optimisations, the following tenants were registered in FINALES with

capabilities stated in parenthesis: ASAB tenant (formulates electrolytes and measures
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Figure 1: The layout of the MAP centred around FINALES. The tenants involved in the
workflow related to the optimisation of the EOL orchestrated by the OVER-
Looking ORchestrating Tenant (Overlort) are spanned by the blue arc. The
communication is realised exclusively via FINALES.

ionic conductivity), Molecular Dynamics tenant (estimates ionic conductivity), Auto-
BASS tenant (assembling coin cells), Cycler tenant (battery cycling), Degradation model
tenant (early lifetime prediction), Transportation tenant (transportation of physical sam-
ples), Overlort (workflow management), F2Opt (active learning optimiser). Additionally,
the Archiving tenant (archiving results) interacted with FINALES. Further details on
the tenants are provided in section 4.3.

2 Results and Discussion

The study consist of two phases. In the single-task phase, only the tenants involved
in the optimisation of the ionic conductivity of the electrolytes are active. The multi-
task phase starts with a new, empty database and includes the optimisation of ionic
conductivity in parallel to the optimisation of the EOL with all the tenants listed in
section 4.3. Further details on the phases are reported in section 4.4.

2.1 Ionic conductivity and chemical space

Figure 2 presents the chemical space accessible to the Molecular Dynamics (MD) and
Autonomous Synthesis and Analysis of Battery electrolytes (ASAB) tenant including
the requested formulations and the reported results. Additionally, predictions for the
formulations providing maximum ionic conductivity are indicated for each of the tenants.
These predictions are obtained from an optimiser model after training it on the final data
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available in the database after completion of the data acquisition. The optima include a
predicted global optimum (best predicted global), a predicted optimum respecting the
limitations of the respective tenant (best predicted limited) and the highest mean ionic
conductivity observed in the reported results (best observed). The numerical values
of the identified optima are reported in Table SI-3. The top part of Figure 2 further
shows a change of the limitations for the ASAB tenant, which was necessary because
the initially included lower limit for EMC of 0.35mol.−% (set based on the solubility
limit reported by Ding, Xu, and Jow [17]) was practically not accessible using the stock
solutions chosen for this study.
The formulations with maximum ionic conductivity are found in the same band of

LiPF6 concentrations for the single-task phase and the multi-task phase, suggesting that
the results and insights generated by the MAP are reproducible. The reproducibility
is also evident from the value of maximum ionic conductivity, which is obtained for
very similar formulations repeatedly tested in the high ionic conductivity region. Also,
Figure 2 shows that the chemical space that can be explored by the MAP is significantly
enlarged by using the MD tenant in addition to the ASAB tenant.

It also gets clear from the top part of Figure 2 that the optimiser explored more of the
chemical space for the MD tenant than for the ASAB tenant. Possibly, this is due to the
significantly larger region of the chemical space being accessible to the MD tenant than
to the ASAB tenant. However, it also gets obvious that the optimiser requests a lot of
formulations close to the edges of the chemical space of the MD tenant. This behaviour
likely occurs due to the model trained by the optimiser having a high uncertainty near
the edges of the accessible chemical space. Regions with high predicted values and high
uncertainty bear the potential for formulations with high ionic conductivity and are
therefore sampled by the optimiser acquisition function. A larger number of randomly
selected starting formulations (1 in the single-task phase vs. 10 in the multi-task phase)
seems to have resulted in a better initial model and consequently improved exploration
of the chemical space in the multi-task phase of the campaign as can be seen in the
bottom part of Figure 2.

2.2 Ionic conductivity and EOL

A plot of the ionic conductivity versus the molality of LiPF6 in the electrolyte formula-
tion as shown in Figure 3a reveals an increasing ionic conductivity for increasing LiPF6

concentration at low molalities. At approximately 1m LiPF6, the ionic conductivity
reaches a maximum at approximately 1.0 Sm−1 prior to a decrease at higher molality.
This observation matches with the behaviour frequently reported in the literature [18–
24]. The data obtained from the empirical model published by Ding et al. [18] used in
this study for calibration of the conductivity measurement and simulation taking the
molality of the salt, the mole fraction of EC in the solvent and the temperature into
account is also shown in Figure 3a. Besides, data published by Choobar et al. [23] and
Logan et al. [25] is presented in the graph, which is in good agreement with the data
obtained from our MAP. It needs to be mentioned that the graphs shown in Figure 3a
comprise averaged ionic conductivity values for all the formulations, which are reported
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Figure 2: The chemical space accessible to the MD tenant and the ASAB tenant in the
single-task phase (top) and the multi-task phase (bottom) of the study, in-
cluding the formulations for which conductivity data was generated. The for-
mulations requested in the context of the workflow associated with the EOL
optimisation are included, although no conductivity data are available for those
samples. The colouring of the data points is based on the mean ionic conduc-
tivity. The colourbar and legend are valid for both graphs.
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in Figure 2. Therefore, the composition of the solvent is varied besides the molality
of the salt. However, the effect of changes of the salt concentration is reported to be
significantly stronger than the influence of the solvent composition [18–20], which is also
found in our data as visible in the Figures SI-15 - SI-18 in the Supplementary Information
(SI). Variations in temperature are also not considered in Figure 3a, which is expected
to cause some additional variation in the reported values for ionic conductivity. The
observation of the same trend with molality in the single-task phase and the multi-task
phase proves the reproducibility of the insights generated by our MAP.
Additional to the ionic conductivity, the EOL is investigated in the multi-task phase

of the campaign. A second instance of the optimiser performs this fully independent
optimisation task on the same hardware and software infrastructure on which the single-
task phase optimisation was run previously. Since the early lifetime predictions require a
complex, multi-step workflow involving hardware and software operations, the Overlort
tenant is demonstrated to handle this workflow. The optimisation of the EOL was
started on 13th of November, 2023.
In the typical mode of operation, requests are posted by the optimiser. To investigate

whether an electrolyte formulation optimised for ionic conductivity also yields an opti-
mised EOL, additional requests are manually posted to FINALES during the multi-task
phase. These manually posted requests include the formulation optimised for ionic con-
ductivity and two non-optimised formulations as identified in the single-task phase. It
must be noted that the predicted optimised formulations used for the manual requests
in the multi-task phase differ from the optimised formulations reported in Figure 2 and
Table SI-3, since the model is retrained after each iteration and therefore the predictions
based on a model trained later differ from earlier models. The electrolyte formulations
included in the manually posted requests are reported in Table SI-4.
As shown in Figure 3b, the median EOL appears to show a slight trend towards higher

values for increasing molality of the electrolyte formulation. Considering the distribution
of the EOL data within and in between the batches, this trend does not persist due to the
strong overlap of the distributions. The maximum experimentally determined median
EOL is observed for 1.07m LiPF6.
From the comparison of Figure 3a and Figure 3b, higher ionic conductivity as well as

median EOL are observed for increasing molality of LiPF6 until 1m LiPF6 is reached.
Further increasing molality is found to decrease both quantities. The data generated in
this study suggest an agreement between the two optima around 1m LiPF6. Further
investigation is, however, needed to validate this observation.
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Figure 3: (a) The average ionic conductivity (κavg) plotted against the molality of LiPF6

as recorded during the single-task phase (top) and multi-task phase (bottom) of
the campaign. Including the predicted optima globally (best predicted global)
and respecting the limitations of the tenants (best predicted limited) as well as
the highest observed value (best observed) for the MD and the ASAB tenant,
respectively. Variations in temperature are not represented in this graph. The
insets show a zoomed-in view of the region of maximum κavg. Literature data
are obtained from the empirical model reported by Ding et al. [18] and from
the publications of Choobar et al. [23], and Logan et al. [25]. (b) EOL data
generated in the multi-task phase of the campaign versus the molality of LiPF6

in the electrolytes. Note that the composition of the solvent in the electrolyte
also differs between the datapoints.
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3 Conclusion

In this study, we demonstrated that an internationally distributed MAP based on the
FINALES framework and composed of several software and hardware tenants can run
two distinct optimisation tasks while seamlessly integrating computational and experi-
mental capabilities and bridging the gap between the material and system scales. The
system was shown to reproducibly identify regions of high ionic conductivity within an
electrolyte system composed of LiPF6, EC, and EMC. Computational and experimen-
tal tenants connected to FINALES complemented each other, widening the chemical
space accessible to the MAP as a whole. Furthermore, the communication of limitations
for individual tenants, and the extensive use of identifiers and timestamps, allowed for
improved data management and traceability in comparison to the previous version of
FINALES [3].
Our study demonstrated ML acceleration of the electrolyte optimisation and the cy-

cling task by early prediction of the EOL. This shows that in MAPs centred around
FINALES, the overall optimisation task as well as the tasks of individual tenants can
be accelerated using ML. Besides, this study demonstrated the ability of our MAP to
handle tenants with significantly different rates of data generation. To accommodate
these differences, it is inevitable to allow each tenant to operate at its own schedule in
an asynchronous fashion. Marking requests as reserved once they are processed en-
ables a distribution of the tasks among faster and slower tenants providing the same
quantity. The modular design of the FINALES-based MAP leads us to expect seamless
connection of new tenants and, hence, scalability to larger MAPs. We anticipate that
the multi-modal and multi-fidelity nature of the data generated in such MAPs benefits
the robustness of models trained with the data. Future studies deploying our MAP
concept will additionally benefit from the possibility to prepopulate a database with
selected existing data. This is powered by FINALES accepting unsolicited results which
do not reference to a request. Starting from existing data will reduce the need for initial
random experiments and therefore accelerate optimisation tasks.
We are convinced that this robust demonstration of an operating, distributed MAP

centred around a passive brokering server with mostly intention-agnostic tenants proves
our approach to be valid even for complex optimisations. Future optimisation tasks
for MAPs powered by FINALES will therefore encompass multi-objective optimisations
requiring the identification of Pareto-optimal solutions. These approaches shall continue
following the scale-bridging approach presented in this study. Since this study also
included significant efforts in designing and developing tenants, we expect a further
acceleration of data generation once more mature tenants are available.

4 Methods

4.1 FINALES Brokering Framework

The FINALES architecture encompasses a server framework designed to provide com-
munication protocols and access to a database to affiliated clients, referred to as tenants.
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Moreover, it hosts a centralised queue for task requests enabling the tenants to pull new
tasks for processing and subsequently post the results. Interactions are possible via a
web server interface through the implementation of the HTTP REST API protocol. The
backend offers a well-structured relational database, where all incoming requests and re-
sults are stored. Alongside the scientific data, details about connected tenants as well
as information about the quantities and methods available from the MAP are saved.
Further, the database holds information about the data provenance and a history of the
status of tenants, methods, quantities, requests and results. Quantities in the sense of
the FINALES framework may be measurable quantities, but can also refer to a service
like e.g. the transportation of a sample. The term method refers to a means of providing
a value for a quantity, which may be an experimental or computational procedure. Since
only combinations of quantities and methods are required to be unique in the FINALES
setup, this combination is referred to as a capability. Tenants are therefore clients that
provide one or more capabilities in the MAP. This means, they regularly call the server
for requests related to their associated quantity and, after applying a computational
or experimental method, return a result for that quantity. FINALES does not restrict
its tenants regarding their source of data or the type of their method. Experimental
setups and laboratories run by humans as well as data-driven models or physics-based
simulations are accepted as tenants.
The modular approach of the framework allows for facile registration of new tenants

while explicitly allowing for several tenants offering the same capabilities. We refer to
this concept as multitenancy. FINALES enables modularity and diversity of the tenants
by not actively triggering actions in the MAP, but passively providing access to the
data to all the tenants. Since tenants pull requests for capabilities that they can serve
from FINALES, the MAP operates asynchronously and each tenant may process the
requests at its own schedule. This permits multi-task operation of the MAP with several
optimisers sending requests related to their respective and potentially independent tasks.
Depending on the degree of automation of the tenant, a MAP based on FINALES can
operate fully autonomously exceeding the limitations of a single laboratory or institution.
The communication within the MAP is based on JSON (JavaScript Object Notation)

schemas, which are registered with FINALES and allow for the validation of submitted
data structures. The overall schema design is developed to be problem-agnostic, allowing
it to accommodate several capabilities, going beyond the specific implementation relevant
for the optimisation of electrolyte formulations that we demonstrate in this study. The
JSON schemas developed for this study are detailed in section 4.2.
In a typical iteration of an optimisation task, an optimiser tenant posts a request

for a certain quantity. Requests must specify only one quantity but may include a list
of acceptable methods. According to the multitenancy approach, several tenants may
therefore be allowed to serve the request. This enables an improved use of instruments
and resources as the earliest available tenant will process a request accepting its method.
However, this requires the tenants to mark the request as reserved prior to start pro-
cessing it, to hinder other tenants from picking up the same request. Once a tenant
picked up the request and marked it as reserved, the relevant method of the tenant is
executed and the results are posted to FINALES after formatting them according to the
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applicable output schema. An optimiser tenant may subsequently check for new results
and generate a follow-up request starting the next iteration.
An earlier proof of concept (PoC) version of the framework [3] demonstrated the basic

concept of this MAP design. The present study utilises a new implementation of the
concept, and applies it to an optimisation of a battery electrolyte system including the si-
multaneous operation of two optimiser instances. The completely redesigned framework
has significantly updated communication schemas. The data structures implemented in
the latest version of FINALES presented here are well defined but sufficiently generic
to accommodate a variety of results for different quantities provided by diverse meth-
ods. These generic data structures are enhanced by external schemas, which are more
specific to the use case of the FINALES instance. The specific schemas can be ap-
plied to the MAP by a human administrator, who registers them with FINALES and
thus makes them binding for data related to the affected quantity and method. This
composite design of the schemas significantly enhances the flexibility of the FINALES
framework compared to the previous version, which based the communication on a single
set of data structures. Outcomes from the earlier PoC implementation of FINALES [3]
helped us identify the improvements needed during our reimplementation of the code.
We incorporated, among other improvements, a more robust database design, enhanced
scalability, and implementation of generic rigid schemas for registration and communica-
tion. The changes make the new implementation of FINALES configurable with respect
to the used schemas, which even allows for hot-swaps. Compared to the previous version
this is a significant improvement as it externalises the usecase-specific aspects from the
framework, rendering it more universal. Additionally, the ubiquitous use of timestamps
and Universially Unique Identifiers (UUIDs) in the new implementation improves the
traceability of data and events in the MAP.
The repository with the source code of the redesigned FINALES framework can be

found at https://github.com/BIG-MAP/FINALES2 and the version 1.1.0 of the FI-
NALES code used in this study is available at https://doi.org/10.5281/zenodo.

10987727.

4.1.1 Database design

The Python-based backend of FINALES deploys a relational database for data storage,
whose design is visualised in Figure 4. The code is currently set up with the SQLite [26]
database engine, with all database interactions performed via SQLAlchemy [27]. Util-
ising SQLAlchemy allows for future deployments of the server using any of the alter-
native supported engines such as PostgreSQL (https://www.postgresql.org/), MySQL
(https://www.mysql.com/), etc.

The database tables quantity, tenant, request, result, link quantity request,
link quantity result, status log request and status log result depicted in Fig-
ure 4 all have a uuid column as a primary key, and load time column time-stamping
when the row is first appended to the table. This design, along with a backend logger, en-
sures traceability and reproducibility, which facilitates an exact tracing of the sequence
of operations performed in the MAP at any point in time. The tables adhere to an
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append-only design, with only a few exceptions controlled through UPDATE interactions,
e.g., for fields defining whether specific quantity and tenant entries are currently active
in the MAP. A small expansion of the database schema allowing for a strict append-only
design can be found in Figure SI-1, which will be implemented in the release of version
2.0.0.

Figure 4: Database schema designed and implemented for FINALES. Arrows indicate
table relationships with the direction defining the origin of the primary key
mapped to a table as a foreign key. Besides this schema, a separate single
table database is used for user credentials.

FINALES is designed to be easily installable in any computer and to be self-contained,
so that a new independent installation (with its own independent database and secure
access credentials for the tenants) can be used for a given optimisation task, thus pre-
venting any risk of unwanted data leak and keeping different MAP optimisations fully
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independent. We call each installation a FINALES instance. Once capabilities and
tenants are registered in an instance of FINALES, the tenants can communicate to the
server through the web API endpoints. The Python framework FastAPI [28] is utilised
for constructing the RESTful API. In total, 17 endpoints are exposed to the tenants of
which one handles the necessary user authentication protecting the other 16 endpoints.
Several of the endpoints are however suited only for functionalities related to an op-
timiser and archiving tenant. A comprehensive explanation of all the API endpoints
can be found in section SI-1.2. The most relevant endpoints for an experimental or
computational tenant are pending requests/ for retrieving the currently pending re-
quests, requests/object id/update status/ e.g. for changing the status of a request
to reserved when it has been picked up by a tenant and results/ for posting results
based on a specific request. We stress that the exact parameters in the requests might
not be directly applicable to a given tenant implementation. For example, in this study,
the electrolyte formulation used in MD simulations may necessitate rounding ratios to
achieve an integer number of molecules, resulting in slight deviations from the original
formulation. An important design aspect is therefore that the parameters reported in
requests and results are allowed to differ, and both are stored in the server.
A core design challenge is the need for the server to provide a rigid framework for bro-

kering information, while remaining flexible to unforeseen circumstances. The proposed
solution is to allow the status of requests and results to be changed through endpoints.
This accounts for scenarios such as a tenant not being able to fulfil a request, or e.g. leak-
age of a solution is discovered in an experimental setup after posting results, making the
results unreliable. An additional embedded feature allows for prepopulating a database
with previously generated results, which enables the deployment of an optimiser with
initial training data for the specific optimisation.

4.2 Schemas

The JSON schemas used to define the various quantities and methods involved in this
study are available on GitHub with the URL https://github.com/BIG-MAP/FINALES2_

schemas. Together with the data, most of the tenants also provide metadata, such as
a success field reporting whether the method was executed successfully, and a rating
providing information about the data quality as judged by the tenant generating the
data on a scale from 1 (low quality) to 5 (high quality). An example for a definition of
a quality rating is reported in the section SI-1.3 of the SI.
The instances of the optimiser were configured to only consider results with

success == True and rating >= 3, if a rating is available. All entries, which do not
fulfil either of these requirements or are marked as deleted in their status are considered
invalid and therefore disregarded by the optimiser instances.

4.3 Tenants

As mentioned earlier, a tenant is a client connected to FINALES, which may be purely
software-based, hardware or even a human researcher performing tasks. The tenants
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used in this study are described in the following subsections.

4.3.1 Optimiser tenant (F2Opt)

The FINALES 2 Optimiser (F2Opt) is a software tenant implementing a Bayesian opti-
misation (BO) procedure. The role and responsibility of F2Opt in the MAP is to request
new results from the data-producing methods available in the MAP, with the aim to
optimise some predefined objective(s). In general, F2Opt is configured to iteratively
consume previously reported results from the FINALES database, use the data to train
a machine learning model, and apply a BO procedure to propose new electrolyte for-
mulations which are then included in new requests submitted to FINALES. The specific
optimisation task, including what data to consume and which quantities to optimise, is
specified in a configuration file and multiple configurations of F2Opt can be deployed in
parallel to accommodate the specific objectives of the MAP. In this work, we deployed
two instances of F2Opt configured to optimise conductivity (the OCond configuration)
and EOL (the OEOL configuration), respectively.
To fully utilise the capabilities of the MAP, the optimiser tenant must be capable of

considering measurements of different fidelity and from different data producing meth-
ods, including simulations and experiments. In general, data from different sources can
have different noise and bias as well as different associated cost of evaluation which need
to be considered. Additionally, it can be beneficial to co-optimise multiple objectives
at the same time. Therefore, the optimiser tenant should be capable of multi-source
multi-objective optimisation to enable a diverse set of optimisation tasks in the MAP.
To meet these requirements, the BO procedure implemented in the F2Opt tenant applies
a Gaussian process (GP) regression model, which is a smooth and highly flexible model
that provides uncertainty estimates and can accommodate small datasets, which is often
the starting point in optimisation tasks. These properties make GPs a popular choice
of model in BO. To handle data from multiple sources, we consider a multi-task GP [29]
and treat each data source as a separate output. This allows for separate predictions for
each data source while utilising correlations between data sources to improve the predic-
tions [30]. An acquisition function is then applied to propose new promising electrolyte
formulations. In particular the widely used Expected Improvement (EI) function is used.
Although not used in this work, multi-objective optimisation can be achieved by trans-
forming multiple objectives into a single objective with a scalarising function [31], which
can then be optimised using standard acquisition functions. Additionally, the optimiser
can be configured to initially sample a number of random points before switching to the
BO procedure when no initial data are available to fit a model. The F2Opt code was
developed in Python using the Pandas [32], PyTorch [33] and GPyTorch [34] packages
and is available online: https://github.com/BIG-MAP/F2Opt.

4.3.2 Molecular Dynamics (MD) tenant

The simulation tenant for calculating lithium ion conductivity is using MD and it is im-
plemented in BIOVIA Pipeline Pilot (BPP) [35]. The tenant is registered in FINALES as
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the 3DS tenant for the quantity conductivity and the method molecular dynamics.
A high-level outline of the workflow for the MD simulation tenant is shown in Figure SI-
2a in the SI. The workflow for the MD simulation tenant parses the requests from the
optimiser tenant to convert the requested electrolyte formulation into an atomistic 3D
model of the electrolyte. The molecular structure of each ingredient in the request is de-
scribed by SMILES and the fractional concentrations are converted into integer numbers
of molecules. The restriction to use complete molecules can lead to small differences to
the real-valued concentrations requested by the optimiser. The simulation tenant han-
dles up to a few hundred molecules, which places a lower limit on the concentration of
each individual ingredient at 0.5mol.−%. A physical limitation is that the lithium ions
start to cluster and become immobile at high salt concentrations, which places an upper
limit on the salt concentration around 50mol.−%. However, this restriction is not signif-
icant as we are focused on solutions with high lithium ion mobility. The tenant creates 5
randomly generated amorphous cells for each formulation. These supercells of the type
shown in Figure SI-2b in SI are the starting points for a sequence of MD simulations [36]
using the COMPASSIII force field [37]. The density is equilibrated in two steps by MD
in the NVT ensemble (constant volume, temperature and number of molecules) with the
velocity scale thermostat for 200 ps and NPT ensemble (constant pressure, temperature
and number of molecules) for 200 ps using the Nose-Hoover-Langevin (NHL) thermo-
stat [38] and the Andersen barostat [39]. The production run is performed by MD in
the NVE ensemble (constant volume, total energy and number of molecules) for 2.5 ns.
Diffusion coefficients are derived by an analysis of the mean square displacement via the
Einstein relation. The conductivity is extracted using the Nernst-Einstein equation [40].
Finally ionic conductivities, alongside the corresponding densities and temperatures for
all five configurations, are collected and posted to FINALES. More details about the
MD tenant are provided in the SI.

4.3.3 ASAB tenant

The system for the Autonomous Synthesis and Analysis of Battery electrolytes (ASAB)
serves as an experimental tenant providing the capability to formulate electrolytes and
measure ionic conductivity using a two electrode symmetric electrochemical cell. In
FINALES it is registered with the quantities conductivity and electrolyte with the
methods two electrode and flow, respectively. The in-house developed electrochemical
cell is made up from a polytetrafluoroethylene (PTFE) body equipped with two oppo-
sitely positioned stainless steel screws with sanded surfaces serving as the parallel elec-
trodes. The cell was calibrated using the results of repeated measurements of 1m LiPF6

in EC and EMC (EC:EMC 3:7 by weight) combined with data obtained from the empir-
ical model reported by Ding et al. [18]. Electrochemical Impedance Spectroscopy (EIS)
measurements are controlled by a PalmSens4 potentiostat (PalmSens B.V., Houten,
Netherlands) and the data are automatically analysed using the MADAP [12] version
1.1.0. The 6 syringe pump modules and 10 eleven-port rotary valve modules (Cetoni
GmbH, Korbussen, Germany) integrated into the ASAB hardware are used to formulate
electrolytes starting from stock solutions. Since the optimiser requests formulations in
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mole fractions, while ASAB doses the stock solutions in volume fractions, the specifi-
cations of the formulations need to be transformed. The resulting formulations may
only be approximations of the requested one, which is why the ASAB tenant reports
the mole fractions obtained from the transformed formulations rounded to two decimals
together with the corresponding ionic conductivity results. The hardware of the system
is operated inside a nitrogen filled glovebox. Due to a lack of active temperature control
inside the glovebox, the temperature is read manually from time to time and entered
in a configuration file, from where it is loaded by the ASAB tenant and reported to
FINALES together with the ionic conductivity results.
Details regarding the calibration procedure, the hardware setup, and the mode of

operation of the ASAB tenant can be found in section SI-2.2.

4.3.4 AutoBASS tenant

The Autonomous Battery Assembly System (AutoBASS) [41] is a modular automatic
coin cell assembly system. Devices connected to this system comprise three six-axis
robotic arms (Mecademic meca500 rev.3), a precision linear rail (Jenny Science Linax
LXS 1800), a digital coin cell crimping machine (MTI MSK-160E, China), two cameras,
and a 200 µL dispensing module (Sartorius rLine). The system has the capability to
assemble CR2032 coin cells within a nitrogen-filled glovebox and it is registered with
FINALES for the quantity cell assembly and the method autobass assembly.
The assembly process is carried out by orchestrated actions performed by the above-

mentioned devices, including pick-and-place of cell components, image recognition for
the auto-correction of the placement, dispensing of electrolyte, transfer, crimping and
placement in the storage holder. Tracking of the process is realised by collecting visual
information regarding the placement of components using an integrated camera, which is
part of the data generated by AutoBASS. The tenant of AutoBASS is structured based
on the reference tenant of FINALES, which is integrated into the interface of the local
system. The limitations of the tenant are currently specified in terms of the maximum
number of cells and the feasible battery chemistry.
Details regarding the AutoBASS tenant can be found in section SI-2.3.

4.3.5 Cycler tenant

The Cycler tenant and the corresponding data analysis service are build up based on
an already existing system of FastAPI servers. The implementation makes use of some
features of the manufacturer’s software, whereas the analysis is implemented in-house.
The tenant is capable of processing reservation requests for cycling channels and handling
the tests including the creation of a protocol, start and stop of the test, logging of errors,
exporting and saving the data as well as performing selected analyses. To fulfil its
tasks, it is registered in FINALES with the quantities cycling channel and capacity

with the corresponding methods service and cycling. The cycler saves the status,
errors, parameters and the request of each individual channel in a JSON document
and consequently is resistant to planned and unexpected stops. The tenant performs
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an intermediate export of the capacity trajectories after the duration estimated for at
least 40 cycles elapsed. The exported data are subsequently processed by the analysis
functionality and posted to FINALES. The experiments continue and are stopped once
200 cycles are finished. A final export is triggered after the estimated time required for
200 cycles elapsed. Since the optimisation of the EOL is based on the predicted EOL,
the data obtained from the final export is not posted to FINALES, but stored locally.
Details regarding the Cycler tenant can be found in section SI-2.4.

4.3.6 Degradation model tenant

The Degradation model tenant is a purely software-based tenant. It takes data from the
first cycles of a cell as the input and outputs a prediction over the capacity trajectory and
subsequent EOL along with the associated uncertainty early in the lifetime. It is therefore
registered with FINALES as the EOL tenant for the quantity degradationEOL and the
method degradation model. The underlying machine learning model, a Long Short-
Term Memory (LSTM) neural network is based on previous work by Rieger et al. [42].
The tenant receives the capacity trajectory of at least the first 40 cycles along with
the overpotential difference between the 10th and 40th cycle, the Coulombic efficiency,
and the variance between charge and discharge capacities [43]. Based on this input
the model predicts the complete cell trajectory. The EOL is calculated as the point at
which the cell capacity goes below 80% of the initial capacity. To capture uncertainty,
we use an ensemble of five models and extend the LSTM architecture to predict the
variance of the output along with the mean. If the cell chemistry and format from which
training data are obtained differ from the production data, the model predictions can
become unreliable. Mitigating this risk, the model is trained with a dataset of 44 cells
obtained from reference [44] after filtering out outliers. This data was generated using the
same cell type, hardware, and cycling protocol as the Cycler tenant. The uncertainty
output gives an indication of the prediction accuracy. The code for this tenant was
developed in PyTorch [33] and is available online: https://github.com/BIG-MAP/eol_
degradation_tenant.

4.3.7 Transportation tenant

The Transportation tenant deals with the transport of physical samples between de-
vices. In this study, electrolytes and coin cells need to be transported between different
setups. The transport itself is done manually, but the Transportation tenant handles
the communication with FINALES. It is set up as a chat service and registered in the
FINALES database with the quantity transport and the method transport service.
Once it picks up a request from FINALES, it broadcasts the information regarding the
physical location of the sample and the requested destination to the clients registered
with the internal chat service. The humans monitoring the chat perform the transport
and confirm it by a short, predefined chat message, which triggers the tenant to post a
successful response to FINALES.
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4.3.8 Overlort

The Overlort is a purely software-based workflow tenant to enable requests for predicted
EOL. In this study, the Overlort connects the hardware tenants of ASAB, AutoBASS and
the Cycler, as well as the software-based Transportation and Degradation model tenants
in a workflow. In FINALES, it is associated with the quantity degradationEOL and the
method degradation workflow. The limitations of the ASAB, AutoBASS, Cycler and
Degradation model tenants determine its accessible parameter space. Details regarding
the Overlort tenant can be found in section SI-2.5.

4.3.9 Archiving tenant

The Archiving tenant is a command-line client capable of fetching data from FINALES
and submitting the retrieved data to the API offered by the BIG-MAP Archive data
repository [15]. Since this tenant does not report results to FINALES and acts in the
background, it is not registered as a tenant in the FINALES database, but is granted
access to the data by specific credentials. It serves two specific purposes: (i) preventing
data loss in the event of potential corruption of the FINALES database and (ii) promptly
disseminating results of calculations and experiments shortly after their submission to
the server, to a broader consortium of researchers (in this case, the BIG-MAP project
members). The archiving is executed periodically by means of a “cron” job scheduler.
The tenant is optimised for efficient use of storage space and minimal upload time, by
linking unchanged files between versions of the same entry, and only creating one new
entry per campaign. Details regarding the Archiving tenant can be found in section SI-
2.6. Overall the defined data structures and archiving tenant (including the ontological
mapping) conform FINALES with the data management plan developed for the BIG-
MAP project [45] .

Ontology The communication among tenants relies on the compliance to the commonly
agreed exchange syntax underlying the structure of the requests and results posted for
each method. As the number of tenants grows and their functions diversify, the data
they exchange becomes structurally complex and susceptible to ambiguities. JSON keys
might repeat but refer to different concepts depending on their location in the schema.
E.g., temperature within a conductivity measurement might mean the internal tempera-
ture of an electrolyte solution, surface temperature of the cell, ambient temperature for
the chamber, etc. In addition to ambiguity, the data exchanged by tenants might not
be readily accessible. The exchange schemas are designed to support communication
between tenants, but such flexibility comes at the expense of syntactic complexity. For
instance, retrieving a conductivity result requires knowing the full data structure (albeit
this can be retrieved and investigated directly from FINALES) to locate the relevant
fields and values.

A remedy to ambiguity and accessibility is mapping data to controlled vocabularies
of concepts. Such mapping effectively upgrades a syntactic data model into a semantic
data model, where data fields are attributed an unambiguous meaning. As a tempera-
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ture key in the schema is mapped to the concept of SurfaceTemperature in a controlled
vocabulary, the intended meaning of the field becomes explicit and distinct to, e.g.,
SampleTemperature. Moreover, the association between a measurement (uniquely iden-
tified with a UUID), a vocabulary concept (e.g. Schema.org concept dateCreated), and
a value (e.g. 2024-02-16) can be represented as a Node-Edge-Node connection in a
network. Representing results as these Triples [46] in a Graph Database makes data
accessible irrespective of how it is syntactically encoded in the data model.
Identifiers should ideally be unique and resolve to a web resource that offers more in-

formation about the entity. For instance, the concept of Electrolyte is uniquely identified
with an Internationalised Resource Identifier (IRI) [47] that resolves in a web browser
to a description of the concept: https://w3id.org/emmo/domain/electrochemistry#
electrochemistry_fb0d9eef_92af_4628_8814_e065ca255d59. If the identifier cannot
be resolved, we attempt using URL prefixes that resolve to some general information
about the object. The implementation will facilitate search in a knowledge base. The ul-
timate purpose of this implementation is to make FINALES results available in a graph
database that can be flexibly queried using structured languages, such as SPARQL [48]
or CYPHER [49].
To enrich the data with semantically well-defined concepts, we employ the recently

developed ontology Battery Interface Ontology (BattINFO). BattINFO describes thou-
sands of concepts related to electrochemistry and batteries. Concepts are linked to each
other adhering to logically consistent relationships, thus rendering meaning machine-
readable [13]. The connections among data and concepts must be encoded using a stan-
dard method. In this work, JSON for Linked Data (JSON-LD) is used to link the results
from the conductivity and EOL tasks to ontology concepts in BattINFO and Schema.org.
BattINFO describes measurement fields related to batteries and electrochemistry, while
the Schema.org vocabulary describes tenant metadata, software resources and other non-
electrochemical concepts. For example, we enrich the descriptions of the request/result
posting tenant with the ORCID of the responsible person linked to the schema:author
type, and ROR-ID for the organisation linked to schema:creator type. These choices
improve data consistency, since they avoid reliance on other identifiers (such as email
addresses) that are subject to change. EOL and conductivity results in this study are all
expressed in JSON-LD files mapped to ontology concepts. Details and an example of the
semantic implementation of experimental results can be found in section SI-2.6 of the SI.
Development of the knowledge graph representation of the data was done subsequently
to the data collection. The graphs were therefore uploaded to the archive entries after
the optimisation phases had been completed.

4.4 The structure of this study

The campaign presented here comprises two optimisation tasks with separate objectives.
The first task is to identify an electrolyte formulation with maximum ionic conductivity
by using data generated from experiments and simulations. As for the second task,
the objective is to find an electrolyte formulation that maximises the EOL of coin cells.
Each of these tasks is associated with a separate instance and configuration of the F2Opt
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tenant, OCond and OEOL. We show, that the two optimisers can operate on the same
MAP through a common FINALES instance, while pursuing fully independent tasks.
The tenants involved in the single-task phase are the optimiser (OCond), the MD

tenant, the ASAB tenant, and the Archiving tenant. This phase is also used to confirm
the limitations set for these tenants or adjust them, if needed. In the multi-task phase,
a request with the conductivity-optimised formulation, as well as two non-optimised for-
mulations identified from the results obtained in the single-task phase of the campaign
are manually submitted to FINALES to investigate potential differences in the cycling
performance. The electrolyte system chosen for this study is composed of LiPF6 dis-
solved in EC and EMC, because this is a well-investigated electrolyte system for which
references are available [12, 18, 20, 23–25].

4.4.1 Single-task phase — ionic conductivity only

The single-task phase of the campaign was run from the 26th of September 2023 to the
28th of October 2023. It included the ASAB tenant and MD tenant, which posted its
first result 8 days after the first result was posted by the ASAB tenant.

After the end of the single-task phase, a total of 81 entries are stored in the FINALES
database. 12 of these entries are invalid. 72 of the total entries have a quality rating of 4
or 5. Only 3 entries have a rating of 3, while 6 have a rating of 2. In total, 69 entries in
the database are valid according to the requirements regarding the status and the rating
configured in the OCond optimiser.

4.4.2 Multi-task phase — ionic conductivity and end-of-life

The multi-task phase of the campaign included the optimisation of the EOL and the ionic
conductivity in parallel. The MD tenant and the ASAB tenant started their contribution
of results to the database approximately 5 hours apart, which is significantly shorter
than 8 days in the single-task phase. Both optimiser instances, OCond and OEOL, were
running at the same time, concurrently posting requests for their respective task. The
multi-task phase was started on the 6th of November 2023 and lasted until the last result
was posted on the 14th of December 2023. During this time, a total of 274 result entries
were posted to FINALES. In the multi-task phase, 7 quantities and 9 methods were
registered with FINALES. Out of the 274 results, 173 are valid.

5 Data availability

The data generated in the course of this study is publicly available under the DOI
https://doi.org/10.24435/materialscloud:qt-1s

6 Code availability

The code for the version 1.1.0 of the FINALES framework is available under the DOI
https://doi.org/10.5281/zenodo.10987727 and on GitHub https://github.com/
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BIG-MAP/FINALES2. The code of the FINALES schemas version 1.0.1 is available under
the DOI https://zenodo.org/records/11142866and the latest version of FINALES
schemas can be found on GitHub https://github.com/BIG-MAP/FINALES2_schemas.
The code associated with the individual tenants is available as stated in Table 1:

Table 1: The code availability for each of the tenants presented in this study.

Tenant Version Code availability

F2Opt v1.0.0
https://github.com/BIG-MAP/F2Opt

https://github.com/BIG-MAP/F2Opt/releases/tag/

v1.0.0

ASAB v2.0.1
https://github.com/Helge-Stein-Group/ASAB

https://doi.org/10.5281/zenodo.11146699

ASAB tenant
v1.0.0,
v1.0.1

https://github.com/BIG-MAP/FINALES_ASAB_tenant

https://doi.org/10.5281/zenodo.11144341

Overlort v1.0.0
https://github.com/BIG-MAP/FINALES_Overlort_

tenant

https://doi.org/10.5281/zenodo.11145783

AutoBASS v1.0.1
https://github.com/BIG-MAP/FINALES_AutoBASS_

tenant

https://doi.org/10.5281/zenodo.11145983

Cycler v1.0.0
https://github.com/BIG-MAP/FINALES_Cycler_

tenant

https://doi.org/10.5281/zenodo.11145850

Degradation
model

v1.0.0
https://github.com/BIG-MAP/eol_degradation_

tenant

https://github.com/BIG-MAP/eol_degradation_

tenant/releases/tag/v1.0.0

Archiving v1.1.0
https://github.com/materialscloud-org/

big-map-archive-api-client/blob/

2511f86ec08c44fc8d32e5d96953eb72e3ac89d9/

README.md#back-up-finales-databases

https://zenodo.org/records/11184798

Transportation v1.0.0
https://github.com/BIG-MAP/FINALES_

Transportation_tenant

https://doi.org/10.5281/zenodo.11120059
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