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Abstract

In the field of vibrational spectroscopy simulation, hybrid approximations to Kohn-

Sham density-functional theory (KS-DFT) are often claimed as computationally pro-

hibitive due to the large effort required to evaluate the exchange-correlation potential in

planevawe codes. In this Letter, we show that by taking advantage of KS-DFT porting

on GPU and machine-learning techniques, simulating IR and Raman spectra of real-life

chromophores in bulk aqueous solution becomes a routine application at this level of

theory.

With the recurrent developments of novel quantum mechanical tools to assist vibrational

spectroscopy,1–4 InfraRed (IR) and Raman techniques have gained progressively an interest

to characterize and identify structures of large molecular systems in complex environments.5

First restrained to the conventional double harmonic approximation of a potential energy

surface (PES), the computation of vibrational spectra evolved in time to more complex an-

harmonic approaches providing both more reliable wavenumbers and intensities but requiring

also more computational resources. From a computational point of view, anharmonic effects
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are either captured in a ‘static’ or ‘dynamic’ fashion. The static approach is as the name

suggest time-independent. It mainly relies on vibrational self-consistent field or perturbation

models recognized to be cost-effective but restricted to the treatment semi-rigid molecular

systems.6–9 Its ‘dynamic’ alternative, based for instance on ab initio molecular dynamics

(AIMD) simulations, is in principle not limited by the rigidity of the system. It is suit-

able for the treatment of large amplitude motions and goes beyond by allowing the explicit

treatment of solute-solvent interactions.10–15 Recent advances also showed that it can be

adapted to model other forms of vibrational spectroscopies such as resonance Raman16 or

Raman optical activities.17,18 Its main shortcoming comes from its prohibitive computational

cost which is in practise alleviated by introducing severe approximations on the electronic

structure method used to compute on-the-fly the PES.19

For their large majority, simulations run indeed on massively parallelized planewave

Kohn-Sham density-functional theory (KS-DFT)20,21 codes preferring semilocal density-functional

approximations to hybrids for scalability reasons.22 It is however well-known that the for-

mer approximation remains more prone to one-electron self-interaction error (SIE) and its

extension to many-electron systems.23,24 Notably while studying the stretching of covalent

bonds,25 a property in the center of attention in vibrational spectroscopy.

Although largely applied in ‘static’ computations since the beginning of the 90’,7,26–28 the

application of hybrid exchange-correlation approximations remain really rare in their ‘dy-

namic’ variant. While they are claimed to provide more reliable wavenumbers in strict com-

parison to experiments,19 the evaluation of their exact-like exchange term from planewave

basis set remains prohibitive in terms of computational cost. Out of the context of vibra-

tional computational spectroscopy, some possible strategies have recently emerged to bypass

such limitations. Just to cite some, we list the combination of the adaptively compressed ex-

change operator formulation and a multiple time step integration scheme,29,30 the coordinate

scaling approach,31 or the localization of the basis set.32–34

More generally, a more natural way to run AIMD with hybrid density functionals still
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remains localized Gaussian basis sets.35–37 They are of course more adapted to treat single

molecular instead of bulk phase systems. However, coupling them with molecular mechanics

(MM) so as to take into account a surrounding complex environment, and of course the

resulting solute-solvent interactions, becomes a robust alternative to compute IR and Raman

spectra of molecular compounds in solution.38,39 This approach is moreover facilitated by the

effort of the community to write and port KS-DFT algorithms on graphics processing unit

(GPU), a technical upgrade that enhances the scalability and improves the cost/accuracy

trade-off the AIMD simulation.40

In this context, we report in this Letter, our first advances in computing vibrational

spectroscopic properties of real-life molecular systems in solution. More precisely, we show

that the derivation of IR and Raman spectra of solvated chromophores from hybrid quantum

mechanical and molecular mechanical (QM/MM) AIMD simulations without making big

compromise on the methodology, that is applying hybrid density functionals and basis sets

containing diffuse functions, is currently affordable. We try to go further on this line by

demonstrating that polarizability tensors, key element to simulate Raman spectra, can be

directly obtained by solving coupled-perturbed Kohn-Sham (CPKS) equations, instead of

using approximate charge decomposition techniques as it is routinely the case. In this specific

time-consuming case, we will finally propose some machine learning alternatives to alleviate

the computation cost and shows that neural networks are a viable alternative to establish a

relationship between structure and dipole moment or polarizability tensors.

When we speak about real-life molecular systems in solution, we refer to compounds

routinely used by experimentalists for chemistry-relevant applications. We focus here on

4-aza-8,12-dioxo-triangulenium, commonly dubbed ADOTA+, a fused triarylcarbenium car-

bocation particularly appreciated for its impressive spectroscopic features and its robust

stability in solution, including in polar solvents (Figure 1).41,42 We start by comparing its IR

spectroscopic features simulated from AIMD trajectories in gas phase and water solution.
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In this framework, the frequency-dependent absorption coefficient reads

A(ω) ∝
∫ ∞

−∞
⟨µ̇(τ)µ̇(t+ τ)⟩τe−iωtdt (1)

where µ̇(t) is the time-derivative of the dipole moment vector processed by autocorrela-

tion. We refer the reader to state-of-the-art reviews and tutorials for deeper details on the

approach13,14,43 and to Section S1 in Supporting Information for the methodology applied

here.

The gas phase IR spectrum of ADOTA+ is derived from a 30 ps AIMD simulation running

at 300 K with a 0.2 fs time step (see Section S2 in Supporting Information for more details).

In reference to ‘static’ benchmarks and applications,7,26–28 we choose to describe the PES

by using a combination of the PBE0 hybrid density functional44,45 casting 25% of exact-like

exchange and the 6-31+G⋆ double-ζ basis set augmented with diffuse functions. The resulting

spectrum is depicted in Figure 2 and the corresponding pictures of the vibrational modes

obtained by principal component analysis (PCA) of the covariance matrix of the cartesian

coordinates along the trajectory are reported in Section S3 in Supporting Information.46

The spectrum is composed by a first intense band at 3612 cm−1 assigned by power spectrum

analysis to the aromatic N–H bond stretching. It is followed by a second broad and less

intense band spanning between 3200 and 3260 cm−1 which is this time attributed to the

stretching of the aromatic C–H bonds. The band which dominates the IR spectrum arrives

just after and is split in two maxima assigned to the in-plane C–C stretching perpendicular

and along the C2 axis of the molecule. The last and less energetics bands are finally attributed

to the in- and out-of-plane breathing of the heteroaromatic structure.

The IR spectrum of ADOTA+ in bulk water is obtained as for it from a 30 ps QM/MM

AIMD simulation running in the same conditions as mentioned above (see Section S2 in Sup-

porting Information for more details). Within the QM layer, the chromophore is described

at the same level of theory as above. It is however solvated by electronic embedding47 using

4

https://doi.org/10.26434/chemrxiv-2024-1f7t0 ORCID: https://orcid.org/0000-0002-8646-9365 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-1f7t0
https://orcid.org/0000-0002-8646-9365
https://creativecommons.org/licenses/by-nc-nd/4.0/


an explicit water box environment treated with the TIP3P force field.48 The resulting IR

spectrum appears much more noisy with respect to the gas phase one in consequence of the

interaction between the solute and surrounding water molecules (Figure 2). The first intense

band at 3722 cm−1 and its low-energy shoulder at 3697 cm−1 are assigned by power spectrum

analysis to the stretching of the O–H bonds of the surrounding water molecules belonging

to the MM layer. The second intense band at 3440 cm−1 corresponds to the aromatic N–H

bond stretching since it involves the vibration of both N and H atoms. The solute-solvent

interaction redshifts thus the band by -172 cm−1 with respect to gas phase computations.

This large redshift, which is a function of the strength of the weak interaction, is attributed

to a strong H-bond interaction between both solute and solvents.49 A third broad and intense

band with a maximum at 3265 cm−1 is then computed. It lies in the stretching region of the

aromatic C–H bonds but remains much more intense with respect than in gas phase. This

difference in intensity is here again attributed to the interaction with explicit water solvent

molecules. However, the absence of apparent redshit of the transition remains synonymous

of very weak interaction between the solvent and the aromatic C–H bonds. The emergence

of the next massif between 2000 and 2400 cm−1 is the signature of the combination bending-

rocking vibration of the water solvent.50,51 The most intense band of the spectrum is not

shifted by the solvent. However, the following less energetic bands attributed to the in-

and out-of-plane breathing of the heteroaromatic structure are broadened by the hindered

rotation and translation movements of solvent.

In direct comparison to the IR spectrum, the frequency-dependent Raman scattering

intensity is obtained by processing the autocorrelation function of the time-derivative of the

polarizability tensor α̇ such as

Ixx(ω) ∝
1

1− exp(− h̄ω

kBT
)

(ωin − ω)4

ω︸ ︷︷ ︸
g(ω)

∫ ∞

−∞
⟨ ˙αxx(τ) ˙αxx(t+ τ)⟩τe−iωtdt (2)
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where αxx is one of the nine components of the 3 × 3 polarizability tensor, and g(ω) a

frequency-dependent damping function which depends on the temperature T and the energy

of the polarized incident laser beam ωin taken here as 19455 cm−1. Again, the reader is refered

to more comprehensive details regarding Raman scattering spectroscopy in state-of-the-art

reviews and tutorials.13,14,43 We report however in Section S1 in Supporting Information

more details about the methodology used here, and notably the expression used to estimate

the perpendicular and parallel components of the Raman intensities. It is important to note

that by difference with most of the investigations dealing with Raman spectroscopy, the

polarizability tensor is computed at each MD steps by solving the CPKS equations. This

approach remains of course more time-consuming than using more standard Wannier local-

ization52 or Voronoi integration53 schemes but conserves the advantage to reduce empiricism

in deriving polarizability tensors and avoid artefacts in simulated spectra.

The Raman spectrum of ADOTA+ is less prone to solvent effects. The main differences

originate from the intensity of the bands. As depicted in Figure 2, the perpendicular intensity

I⊥ of the band at 3265 cm−1, assigned to the stretching of the aromatic C–H bonds, is

softened by solvent effects. Similar conclusions can be drawn for the bands lower in energy

than 500 cm−1 and ruling the in- and out-of-plane breathing of the heteroaromatic structure.

In the same way, the depolarization ratio I⊥/I∥ is slightly affected by solvent effects. It is

important to note that by difference with I⊥, the depolarization ratio detects the stretching

of the O–H bonds of the solvent at 3722 cm−1 as well as the aromatic N–H bond stretching

at 3440 cm−1 in H-bond interaction with the solvent.

As shown above, the high performance computing infrastructures available allow nowa-

days to simulate the vibrational spectroscopic properties of real-life molecular systems in

solution without introducing big sacrifices to the methodology. However, it is important to

depict the computational effort necessary to achieve such a simulation and to propose some

alternatives to reduce it. The AIMD simulations ran here in parallel with the release 1.95

of the Terachem software package on four NVIDIA RTX A4000 GPU cards. With the cor-
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responding KS-DFT level of theory, each AIMD step takes approximatively 8 s. This time

is mulplied by a factor of 4, i.e. ∼33 s, when the resolution of the CPKS equations is added

on top. Over 150,000 AIMD steps, it roughly corresponds to 14 and 58 days of simulation

for the IR and Raman spectra, respectively. At this point, it is thus important to take an

interest in alleviating the computational effort, especially in the case of Raman spectrum

simulation.

In this respect, some tentatives have recently emerged on the introduction of machine

learning (ML) techniques to boost and interpret AIMD simulations. We refer the reader

to Ref. 54 for a comprehensive review on the topic in the general context of computational

vibrational spectroscopy. More specifically here, we underline the work by Marquetand and

coworkers which exploits ML potentials to boost the simulation of IR spectra of small to large

organic molecules.55 We also remark the investigation by Schienbein which demonstrates that

ML techniques successfully reproduce atomic polar tensors (APT) charges of liquid water

from AIMD trajectories and lead to the accurate simulation of its IR spectrum.56

Following this path, we show here that a simple supervised neural network regression

model such as the multi-layer perceptron57 (MLP) can directly connect a set of cartesian

coordinates obtained from an AIMD simulation to the corresponding dipole moment or

polarizability tensor property. The resulting ML workflow, which takes benefit from the

MLP implementation of the Scikit-learn library,58 is detailed in Figure 3 and the code is

hosted on the GitHub platform.59 From a preliminary AIMD trajectory (I), snapshots are

randomly collected to build a training and test set. Each snapshot is characterized by the

cartesian coordinates of the system at a given time and the corresponding dipole moment and

polarizability tensor computed at DFT level. Within the training set, cartesian coordinates

are standardized (II). This important step consists in centering the center of mass of the

system at the origin, and then scaling it to the unit variance. The resulting standardized

inputs are then connected to the output dipole moment or polarizability tensor properties

by training the MLP model [IV, (see Section S4 in Supporting Information for more details
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about the ML model parameterization)]. The same preprocessing of the input coordinates

is finally run with the test set (IV) to simulate the machine-learned dipole moments or

polarizabilty tensors (V).

The snapshots are randomly picked within the last 20 ps of each AIMD trajectory (i.e.,

among a total of 100,000 snapshots) and split in different proportions to build a training

and test set of size n and 105 − n, respectively. The accuracy of the resulting MLP model,

function of the training set size, is given in Figure 3 through the calculation of the coefficient

of determination R2. Regarding the dipole moment property, with only one hidden layer, a

minimum number of 104 training points is required to reach a R2 of about 0.82 and 0.78 on

the training and test set, respectively. As reported in Figure S5 in Supporting Information,

the addition of more hidden layers, which in parallel increases the complexity of the model, a

very low accuracy improvement. For instance, for three hidden layers, R2 is about 0.91 and

0.88 for the same number of training points. Regarding the polarizability tensor property,

the accuracy convergence is much faster. Still for 104 training points, R2 is about 0.97 on

both training and test sets. We can thus conclude that the simple MLP model used here in

regression fast and better learn polarizability tensors than dipole moments, still keeping of

course a very good accuracy for the latter property.

It is now time to apply this robust ML tool for the simulation of IR and Raman vibrational

spectra. For that, 104 snapshots are first randomly picked from a 20 ps QM/MM trajectory to

train the MLP model, and then, the latter trained model is applied to another 20 ps QM/MM

trajectory, taking as input the cartesian coordinates to simulate a set of 105 machine-learned

dipole moments on the one hand, and polarizability tensors on the other hand. Their time

series analysis give the ML IR and Raman spectra depicted in Figure 4. At first look,

we observe that the ML IR spectrum reproduces only in part the original IR signature of

ADOTA+ in bulk water, and is especially noisy-less in comparison. Going deeper into details,

we remark that the first simulated band displaying two maxima at 3520 and 3460 cm−1

corresponds to the aromatic N–H bond stretching, while the second spanning between 3200
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and 3260 cm−1 is attributed to the stretching of the aromatic C–H bonds. The most intense

band of the spectrum comes just after and lies between 1640 and 1760 cm−1. It is again

assigned to the in-plane C–C stretching perpendicular and along the C2 axis of ADOTA+,

and it is followed by the in- and out-of-plane breathing of the heteroaromatic structure. Here,

there is no signature of the IR vibrations of the solvent, which in the QM/MM spectrum,

broadened the bands and leads to two broad bands around 3700 and 2200 −1. The ML model

acts thus like a filter which cleans the signal of the solvent but conserves the signature of

the interaction between the solute and solvent. The same conclusions can be drawn for the

Raman spectrum.

Finally, if we focus on the question of the reduction of the computational effort brought

by the ML methodology developed above, we can conclude that it is drastically decreased

in the case of the Raman spectrum but remains unchanged for IR. Indeed, since the ML

model takes as input the cartesian coordinates of an AIMD trajectory, and that the dipole

moment is systematically computed for each dynamics step, there is no apparent cost reduc-

tion. However, since the polarizability tensor is derived from an on-top and computationally

expensive CPKS procedure at each dynamics step, it means that only 104 CPKS computa-

tions are sufficient over a total of 105 AIMD steps, that corresponds to a cost reduction of

about 32%, i.e. 12 days instead of 38.

To sum up, we tackle in this Letter, the simulation of the IR and Raman vibrational

spectra of a real-life chromophore in bulk phase aqueous solution, the 4-aza-8,12-dioxo-

triangulenium. Taking advantage from the cost-effective porting of KS-DFT codes using

Gaussian basis sets on GPU, we show that deriving such a spectroscopic property from

QM/MM AIMD simulations is currently affordable without making big compromise on the

density-functional approximation and basis set size. More precisely, we emphasize that

hybrid functionals that are often claimed as computationally prohibitive but remains a ro-

bust barrier against SIE, are routinely applicable via this protocol, also in association with

Gaussian basis set containing diffuse functions. We push the limits in showing that Raman
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spectra can be obtained from a time series analysis of polarizability tensors derived directly

by solving CPKS equations at each AIMD step, and demonstrate finally that a very simple

neural network model connecting the cartesian coordinates of an AIMD trajectory to the

polarizability tensor reduces the computational effort to the one of a IR spectrum.
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Figure 1: Representation of the ADOTA+ chromophore investigated herein in gas and water
bulk phases.
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Figure 2: (top left) InfraRed and (bottom left) Raman scattering intensities of ADOTA+ in
gas and water bulk phases. The Raman depolarization ratio (I⊥/I∥) is provided in dashed
lines. Power spectra involving the N–H bond of ADOTA+ for the (top right) gas and (bottom
right) water bulk phases ab initio molecular dynamics trajectory. For the latter, the power
spectra of the O–H water bond in noncovalent interaction with ADOTA+ is also provided.
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of the size of the training set for (top) dipole moments and (bottom) polarizability tensors.
The success of the model is analyzed by calculation of the R2 coefficient of determination for
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mentation of the machine learning model (Section S4).
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