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ABSTRACT 

The computational design of alloy catalysts is hindered by the uncertainty in their structure and 

arrangement of constituent elements within the lattice of catalyst particles, i.e., their chemical 

ordering. Moreover, chemical ordering in alloy nanoparticles (nanoalloys) can be affected by the 

reaction temperature due to thermal disorder. In this study, we develop a method for realistic 

simulations of trimetallic alloy nanocrystallites with the lowest energy chemical ordering or 
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chemical ordering taking into account thermal disorder in the nanoalloy. This method is based on 

Monte Carlo simulations using topological lattice Hamiltonian, whose parameters are fitted to the 

results of density functional (DFT) simulations of thoughtfully designed archetypal nanoalloy 

structures. The implementation of this method in Python code is freely available online. Using this 

method, we characterized chemical orderings in nanoparticles composed of 79 and 338 atoms of 

metals with known catalytic activity in CO2 hydrogenation, namely, Pd-Pt-Cu, Ni-Pd-Cu, and Co-

Rh-Cu. Our simulations show that the thermal disorder in these alloys significantly affects the 

composition of surface sites. Such structural changes are demonstrated to affect the average 

binding energies of reaction intermediates to the catalyst surface by up to 1.1 eV, implying their 

critical effect on the alloy’s catalytic properties. Moreover, we demonstrate how the developed 

code can be used for brute-force evaluation of entropic contributions to mixing free energies in 

alloy nanoparticles. The demonstrated abilities of the proposed method to generate realistic models 

of trimetallic nanoalloys in a computationally efficient manner enable reliable simulations of 

catalytic properties of trimetallic catalysts for their in-depth understanding and computational 

design.  

1. INTRODUCTION 

The development of heterogeneous catalysts has evolved to include increasingly complex 

systems, such as single-atom,1,2 dual atom,3–6 bimetallic,7,8 and trimetallic alloy nanoparticle (NP) 

catalysts.9 In particular, trimetallic alloys often exhibit promising catalytic properties due to the 

abundance of polymetallic active sites, controllable effects of the alloying on the electronic 

structure and activity of the catalyst10–12 as well as their ability to catalyze reactions through 

qualitatively new mechanisms.13,14 For example, trimetallic catalysts could be employed9 in many 

processes deemed crucial for global economic development and sustainability, including the 
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hydrogenation of CO and CO2 into high-value alcohols and hydrocarbons,15–18 key 

dehydrogenation processes such as those involving formic acid19–21 and ammonia borane22–24 for 

hydrogen storage, and selective oxidations such as the conversion of methane to methanol.25 

Moreover, trimetallic alloys can also be used as precursors for the production of metal@oxide 

core@shell nanoparticles for catalytic and other applications through controlled oxidation.26,27 

The growing structural complexity of trimetallic alloy nanoparticles (nanoalloys) presents a 

significant challenge for computational catalyst design, simulations of catalytic reaction 

mechanisms, and electronic structure studies aimed at supporting experimental research. Indeed, 

reliable simulations require the identification of a realistic catalyst model among countless 

tentative structures28 with widely varying catalytic properties. Several computational strategies 

were employed to address this challenge. Integrating forcefield-based molecular dynamics or 

metadynamics with subsequent DFT optimizations is a popular approach that can predict chemical 

ordering and nanoparticle shape.29–31 For nanoparticles comprising up to several hundreds of 

atoms, global optimizations employing machine learning potentials and genetic algorithms are 

often preferred.32,33 In principle, empirical force fields can be used to study structures of even 

bigger NPs,28,34–36 yet the wide range of chemical environments within a nanoparticle and the 

diversity of atom-atom interactions complicate the selection of an accurate forcefield or require its 

re-parameterization for the given task. 

Fortunately, for bigger nanoparticles the problem of computational structural characterization of 

alloy nanoparticles can be alleviated due to their crystalline structure, which is typically 

experimentally observed in NPs with a few nm in size.37,38 In this case, the challenge of identifying 

the realistic alloy particle structure is transformed to optimizing the chemical ordering of elements 

within the predefined crystalline lattice, i.e., identifying the most thermodynamically stable 
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homotop.39 However, identifying realistic chemical ordering in moderately sized nanoalloys still 

requires extremely computationally efficient techniques due to an extremely high number of 

tentative homotops, e.g., around 1035 for an A26B26C27 nanocrystallite. Among these, only one 

structure has the lowest energy, which will be obtained by the catalyst at low temperatures in 

thermodynamic equilibrium. In bulk metals, the chemical ordering is typically simulated using 

lattice Hamiltonians constructed using the cluster expansion framework.40–42 However, the 

application of such techniques to nanoparticles is rare.43,44 

The bond-centric model has been recently proposed as a new approach that utilizes bond 

dissociation energies from metallic dimers for NP energy evaluations.45 This model, combined 

with genetic algorithm optimizations, is suitable for optimizing chemical ordering in multimetallic 

NPs.46,47 For example, the bond-centric model was effectively applied to predict the energies of 

various shapes of Rh nanoparticles, which are active in the CO methanation reaction step,48 as well 

as to calculate binding energies of catalytic intermediates to pure and alloy nanoparticles.49 

Among various techniques, the TOP method37 stands out due to its extreme computational 

efficiency and straightforward physical interpretation of its parameters reflecting the “topology” 

of the nanoalloy, i.e., heteroatomic bond formation and surface segregation of alloy components. 

Most importantly, its applicability was demonstrated for a wide range of bimetallic alloys with 

various types of structures, including complete50,51 or incomplete52,53 core-shell, layered37 and 

phase-separated alloys,54 as well as different kinds of intermediate structures.55 Briefly, this 

method screens various nanoalloys structures through the Metropolis Monte-Carlo algorithm by 

approximating the nanoalloy energy using a lattice Hamiltonian, whose parameters are fitted to 

the results of several dozen DFT calculations of nanoalloys with the same composition.  
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In this study, we extend the TOP method to the optimization of chemical ordering in trimetallic 

nanoalloys and apply it to the computational characterization of the structures of Ni-Pd-Cu, Pd-Pt-

Cu, and Co-Rh-Cu trimetallic nanoparticles with very different types of chemical ordering. We 

explore the structures of these alloys because their constituent elements are known for high 

catalytic activity in a diverse range of reactions, including CO2 hydrogenation.56 Cu is chosen as 

the foundational element in all considered alloys due to its proven catalytic efficiency of Cu-

containing catalysts in CO2 hydrogenation to liquid fuels,57 its relative abundance, and its capacity 

to form stable alloy nanoparticles with numerous metals.9 In selecting other metals, we give 

preference to metals that can facilitate CO2 hydrogenation by promoting elementary steps such as 

C≡O and -CHO insertion (Co and Rh, as well as Cu), 58,59 C≡O hydrogenation (the Cu-Pd pair),13 

and C-O bond cleavage (e.g., Co, Ni, Pd, as well as Cu).60–63 All these metals have been utilized 

in mono- and multimetallic CO and CO2 hydrogenation catalysts. 57,59 In particular, Co-Cu and 

Rh-Cu alloys were proposed for CO hydrogenation to higher alcohols and oxygenates, 

respectively, based on DFT calculations.64,65 

The activity of Pd-Pt-Cu alloys has been studied in such reactions as electrochemical CO2 

reduction, oxygen reduction, and alcohol oxidation reactions.66,67 In addition, Co-Rh-Cu alloys 

were active in the electrochemical NH3BH3 decomposition,68 whereas Ni-Pd-Cu alloys have been 

studied as components of hydrogen separation membranes and catalysts for electrochemical 

oxygen reduction reaction.69–71 

Similarly to the TOP method for bimetallic nanoparticles,37 the extended method accounts for 

thermal disorder in the alloy models under reaction conditions and enables the design of reliable 

models of trimetallic catalysts for further detailed simulations. Moreover, this method requires a 

limited number of DFT calculations to achieve good precision and accuracy of simulations (i.e., 
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below the energy of thermal disorder). We show that the thermal disorder significantly changes 

the surface structure of the considered alloy nanoparticles and the composition of active sites 

available on the alloy surface, affecting catalyst reactivity and stability under reaction conditions. 

 

2. COMPUTATIONAL METHODOLOGY 

2.1 The extension of the TOP method to trimetallic nanoparticles. In this study, we propose 

describing the relative energies of trimetallic A-B-C alloy nanocrystallites using the following 

extended TOP lattice Hamiltonian describing the “topology” of the nanoalloy: 

𝐸𝑇𝑂𝑃 = 𝐸0 + 𝜀𝐵𝑂𝑁𝐷
𝐴−𝐵 𝑁𝐵𝑂𝑁𝐷

𝐴−𝐵 + 𝜀𝐵𝑂𝑁𝐷
𝐵−𝐶 𝑁𝐵𝑂𝑁𝐷

𝐵−𝐶 + 𝜀𝐵𝑂𝑁𝐷
𝐴−𝐶 𝑁𝐵𝑂𝑁𝐷

𝐴−𝐶 + 

∑ 𝜀𝑛
𝐴𝑁𝑛

𝐴
𝑛=6,7,9 + ∑ 𝜀𝑛

𝐵𝑁𝑛
𝐵

𝑛=6,7,9  (1), 

In this formula, 𝐸0  is a constant minimizing the difference between nanoalloy energies 

calculated using TOP Hamiltonian and DFT calculations. In turn, the second, third, and fourth 

terms in this formula reflect the contributions of 𝑁𝐵𝑂𝑁𝐷
𝐴−𝐵 , 𝑁𝐵𝑂𝑁𝐷

𝐵−𝐶  and 𝑁𝐵𝑂𝑁𝐷
𝐴−𝐶  heteroatomic bonds 

formed between elements A and B, B and C, and A and C, respectively, to the nanoparticle energy. 

In turn, the last two sums reflect the contributions from 𝑁𝑛
𝐴 and 𝑁𝑛

𝐵 undercoordinated atoms of 

type A and B with coordination number 𝑛 to the nanoalloy stability. For example, in a truncated 

octahedral nanoparticle with fcc structure, coordination numbers 𝑛 of 6, 7, and 9 correspond to 

atoms on the corner, edge, and (1 1 1) facet, whereas bulk atoms have coordination number 12 

(Figure 1). Other coordination numbers may be present in nanoparticles of other shapes or with 

other lattice types, which can also be simulated using the present method by adjusting the shape 

of the last two terms in equation (1) to a particular case under consideration. Each structural 

descriptor 𝑁𝑌
𝑋 in this formula is multiplied by a corresponding energetic descriptor 𝜀𝑌

𝑋, reflecting 

how each structural feature contributes to the stabilization (𝜀𝑌
𝑋 < 0) or destabilization of the 
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nanoparticle (𝜀𝑌
𝑋 > 0). Similar to the TOP method for bimetallic alloys,37 the proposed lattice 

Hamiltonian contains neither contributions from homoatomic bonds A-A, B-B, and C-C nor 

contributions from undercoordinated atoms of type C. These terms are omitted because the 

respective structural descriptors 𝑁𝐵𝑂𝑁𝐷
𝑋−𝑋  (𝑋 = 𝐴, 𝐵, 𝐶) and 𝑁𝑛

𝐶  would not be linearly independent 

of the descriptors already present in the formula for the chosen size and shape of the nanoparticle 

lattice Hamiltonian, which would make the fitting procedure ambiguous. As a result, 𝜀𝐵𝑂𝑁𝐷
𝑋−𝑌  

parameters in equation (1) should be interpreted as the relative energy of heteroatomic X-Y bonds 

compared to monoatomic X-X and Y-Y bonds. In turn, the descriptors 𝜀𝑛
𝑋 should be interpreted as 

the energy change due to the substitution of atom C on a site with coordination number 𝑛 by atom 

X. 

 

 

Figure 1. Various coordination numbers of atoms in 79-atom truncated octahedral nanoparticles 

with fcc structure. 

 

2.2. Fitting of the TOP Hamiltonian to DFT results. For each nanoalloy composition, 

energetic descriptors in equation (1) can be fitted to approximate the energies of alloy nanoparticles 

from DFT calculations via linear regression procedure. To make the fitting more robust, we 

assembled a training set composed of 132 distinct homotops of trimetallic nanoparticle structures 

with archetypal chemical orderings that can be expected based on chemical intuition (Figure S1). 
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For example, these archetypal homotops include structures where the number of A-B, B-C, or A-

C bonds is either high or low due to their strong exothermicity or endothermicity. We have also 

included structures where a specific element A, B, or C occupies as many (or as few) as possible 

corner sites, edge sites, or terrace sites in the nanoparticle due to its strong preference for (or 

against) segregation on low-coordinated sites. These archetypal structures were prepared by 

performing optimization of chemical ordering in A-B-C nanoalloys using simplified lattice 

Hamiltonian from equation (1), where most energetic descriptors 𝜀𝑌
𝑋 were assumed to be 0 and 

only one or two energetic parameters 𝜀𝑌
𝑋 had extremely high positive or negative values above 10 

eV in magnitude (see Appendix in the Supplementary Information). All the archetypal structures 

can be generated using the code on the project's GitHub page.72 Since most existing nanoalloys 

have numerous energetic descriptors 𝜀𝑌
𝑋 with moderate values (between 0 and 10 eV), their low-

energy structures could be regarded as some intermediate configurations interpolated between the 

archetypal nanoalloy structures. In this way, we ensure that the performed optimization of 

chemical ordering in nanoalloys does not involve the extrapolation of the TOP Hamiltonian 

beyond its training set, which, in our experience, improves the robustness and the accuracy of the 

fitting. 

It is essential to highlight that this set of 132 structures is independent of the identities of 

elements in a trimetallic nanoalloy but depends on their ratios in the nanoparticle composition as 

well as on the size and shape of the NP. That is, we performed DFT calculations on the same set 

of 132 archetypal trimetallic nanoalloy structures to generate a training set for fitting of the lattice 

Hamiltonian for each Ni-Pd-Cu, Pd-Pt-Cu, and Co-Rh-Cu alloy (396 calculations total). In the 

calculations, atoms A, B, and C in each archetypal structure were replaced with the actual elements 

of the alloy and then subjected to spin-polarized DFT geometry optimization using computational 
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parameters described later in this section. Thus, the employed lattice Hamiltonians are fitted to the 

results of DFT calculations, taking into account the contribution of structural deformation and 

magnetism to the nanoalloy energy, which makes these contributions included in our analysis, 

although in an indirect fashion. We did not observe any significant reconstruction in the calculated 

particles upon geometry optimization using DFT methods, such as the formation of new 

intermetallic bonds or cleavage of the existing bonds. If such reconstruction occurred, the obtained 

structures would be excluded from the fitting since the structure implied in the lattice Hamiltonian 

could not describe these nanoalloys. 

Multiple linear regression was used to fit the energy descriptors 𝜀𝑌
𝑋 in equation (1) to minimize 

the differences between the energies of nanoalloys calculated using TOP Hamiltonian and DFT 

using the 5-fold cross-validation procedure implemented in the scikit-learn module.66 The reported 

descriptors are the values obtained by averaging the descriptors obtained in the individual cross-

validation fits. The root-mean-square error (𝑅𝑀𝑆𝐸 ) of the fitting was evaluated through the 

comparison of the relative energies of nanoalloys predicted from equation (1), 𝐸𝑇𝑂𝑃, to the same 

energies yielded by DFT calculations, 𝐸𝐷𝐹𝑇, by using the equation mentioned below: 

𝑅𝑀𝑆𝐸 = √
Σ(𝐸𝐷𝐹𝑇 − 𝐸𝑇𝑂𝑃)2

𝑁𝑇𝑅𝐴𝐼𝑁 − 𝑁𝑃𝐴𝑅
, 

Where 𝐸𝐷𝐹𝑇 is the energy calculated through density functional theory calculations, 𝐸𝑇𝑂𝑃 is the 

topological energy, 𝑁𝑇𝑅𝐴𝐼𝑁 corresponds to the total number of structures considered in the training 

set and 𝑁𝑃𝐴𝑅  corresponds to the total number of descriptors considered, which in this case equals 

10. To determine 95% confidence intervals of energetic descriptors, we first determined their 

standard errors (SE) by calculating the square root of covariance of the data set containing 𝐸𝐷𝐹𝑇 

and structural descriptors. For a significance level of 0.05, we obtained a “t” value of 1.97 from 
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the t-table (for degrees of freedom equal to 𝑁𝑇𝑅𝐴𝐼𝑁  −  𝑁𝑃𝐴𝑅). This “t” value was then multiplied 

with the standard error of individual descriptors to determine their 95% confidence intervals. 

2.3 Monte Carlo calculations using the TOP method. The TOP lattice Hamiltonian described 

in equation (1) can be used to conduct highly efficient Monte Carlo (MC) simulations using the 

Metropolis algorithm implemented in a Python code publicly available on GitHub.72 In the first 

approach, the temperature in MC simulations can be chosen sufficiently low to identify the lowest 

energy chemical ordering in the considered nanoalloy, which is in line with the global optimization 

approach employed extensively in the literature (Figure S2).73,74 In the second approach, the 

temperature in simulations can be chosen equal to the temperature during synthesis or application 

of the considered material to generate nanoalloy models that realistically take into account the 

thermal disorder in the chemical ordering under given conditions. 

In this study, we performed Metropolis Monte Carlo simulations employing canonical ensemble 

framework and using the TOP method for trimetallic truncated octahedral nanoparticles with fcc 

structure comprising 79 and 338 atoms with the size of 1.3 and 2.8 nm, respectively. For a 

nanoparticle containing 79 atoms, 1 million MC steps at a temperature of 40 K was enough to 

identify the lowest energy homotop, taking into account that each structure remained in its lowest 

energy state for over 50% of the simulation time at this temperature. The structures of 79-atom 

nanoparticles obtained from these MC simulations were recalculated with DFT to confirm their 

structural stability and low energy compared to other calculated structures for the respective alloy 

particle size and composition.  

Previous studies on bimetallic nanoparticles showed that the fitting parameters are more 

sensitive to the composition of alloy nanoparticles rather than their size or shape.37 These findings 

encouraged us to employ the descriptors fitted to DFT simulations of smaller nanoparticles to 
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much bigger species. For the 338-atom nanoparticles, the lowest-energy structures were obtained 

from MC simulations at 30 K with 50 million steps. To facilitate the convergence of such 

calculations, the energetic descriptors whose absolute values were below half of the thermal energy 

at room temperature (~13 meV) were set to zero. 

In turn, to obtain realistic models of trimetallic nanoalloys at given temperatures, we conducted 

MC simulations for 10 million steps for 79-atom particles and 50 million steps for 338-atom 

nanoparticles. From these simulations, we selected representative structures that reflected the 

average structural properties of the ensemble as closely as possible. 

2.4. Calculations of mixing energies. DFT mixing energy of a trimetallic nanoparticle can be 

calculated using the equation: 

𝐸𝑚𝑖𝑥(𝐴𝑥𝐵𝑦𝐶𝑧) =
𝑁𝐸𝐷𝐹𝑇(𝐴𝑥𝐵𝑦𝐶𝑧) − 𝑥𝐸𝐷𝐹𝑇(𝐴𝑁) − 𝑦𝐸𝐷𝐹𝑇(𝐵𝑁) − 𝑧𝐸𝐷𝐹𝑇(𝐶𝑁)

𝑁2
, 

Where 𝑁 =  𝑥 + 𝑦 + 𝑧 and 𝐸𝐷𝐹𝑇(𝐴𝑥𝐵𝑦𝐶𝑧) is the DFT energy of the trimetallic alloy nanoparticle, 

whereas 𝐸𝐷𝐹𝑇(𝐴𝑁), 𝐸𝐷𝐹𝑇(𝐵𝑁) and 𝐸𝐷𝐹𝑇(𝐶𝑁) are the energies of monometallic fcc nanoparticles 

with N atoms calculated with DFT. Similarly, the free energy of mixing can be calculated using 

the TOP method with the formula below, taking into account enthalpy and entropy of thermal 

disorder in the alloy: 

𝐺𝑚𝑖𝑥(𝐴𝑥𝐵𝑦𝐶𝑧) =
𝑁𝐺𝑇𝑂𝑃(𝐴𝑥𝐵𝑦𝐶𝑧) − 𝑥𝐸𝑇𝑂𝑃(𝐴𝑁) − 𝑦𝐸𝑇𝑂𝑃(𝐵𝑁) − 𝑧𝐸𝑇𝑂𝑃(𝐶𝑁)

𝑁2
. 

Here 𝐸𝑇𝑂𝑃(𝐴𝑁), 𝐸𝑇𝑂𝑃(𝐵𝑁) and 𝐸𝑇𝑂𝑃(𝐶𝑁) are the energies of monometallic nanoparticles with N 

atoms calculated using the TOP Hamiltonian. Within the methodology used, these energies are not 

affected by the thermal disorder at any temperature since all sites are populated by the same metal. 
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In turn, 𝐺𝑇𝑂𝑃(𝐴𝑥𝐵𝑦𝐶𝑧) is the free energy of the alloy nanoparticle calculated in a brute-force 

fashion as 

𝐺(𝐴𝑥𝐵𝑦𝐶𝑧) =  −𝑘𝐵𝑇 ln 𝑄, 

𝑄 = 𝑁𝑠𝑡𝑎𝑡𝑒𝑠 ∗ ∑
1

𝑁𝑠𝑡𝑒𝑝𝑠
exp (−

𝐸𝑆(𝐴𝑥𝐵𝑦𝐶𝑍)

𝑘𝐵𝑇
)

𝑠𝑡𝑒𝑝𝑠

, 

𝑁𝑠𝑡𝑎𝑡𝑒𝑠 =
𝑁!

𝑥! 𝑦! 𝑧!
. 

In these formulas, 𝑁𝑠𝑡𝑎𝑡𝑒𝑠 is the total number of states available to the system, 𝑁𝑠𝑡𝑒𝑝𝑠 is the total 

number of Monte-Carlo steps in the simulation, 𝐸𝑆(𝐴𝑥𝐵𝑦𝐶𝑍) is the TOP energy of the system at a 

particular Monte-Carlo step 𝑠, 𝑘𝐵 is the Boltzmann constant, and 𝑇 is the assumed temperature for 

the simulations.  

2.5 Details of DFT calculations. Spin-polarized DFT calculations involving 79-atom 

cuboctahedral trimetallic nanoparticles were performed using the VASP 6.3.275 with the revPBE 

exchange-correlation functional.76 A projector augmented wave approach77 was used to model the 

interaction between valence and core electrons. A plane-wave basis set with a cut-off energy of 

415 eV was used. The electronic convergence criterion in the Konh-Sham SCF procedure was 

equal to 1×10−5 eV. The Fermi-Dirac smearing scheme was applied with a smearing width of 0.05 

eV. D3 dispersion corrections with the Becke-Johnson damping function were employed.78,79 The 

linear mixing parameter was set to 0.02 to dampen charge density fluctuations. Only the gamma 

point was considered in the reciprocal space because of the non-periodicity of the model systems. 
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The default conjugate gradient algorithm implemented in VASP was used for the relaxation of ion 

positions with the convergence criterion of 0.03 eV/Å for the maximal force component. 

A vacuum of 10 Å was maintained between adjacent nanoparticles. All the nanoparticle shapes 

were constructed using the atomic simulation environment.80 To obtain the Special Quasirandom 

Structures (SQS), the ATAT code81 was used on a bulk system of a 2×2×2 supercell consisting of 

128 atoms.  Finally, a 79-atom SQS nanoparticle was constructed by removing some atoms from 

the obtained bulk alloy structure. 

 

3. RESULTS AND DISCUSSION 

We applied the extended TOP method to computationally characterize the chemical ordering in 

~1.3 nm large Ni26Pd27Cu26, Pd26Pt27Cu26, and Co26Rh27Cu26 alloys nanoparticles, which display 

different types of chemical ordering. In particular, we focused on the lowest energy chemical 

ordering (i.e., global minimum structure within the fixed nanoparticle lattice) and representative 

chemical orderings under typical application temperatures. The energetic descriptors in the 

topological Hamiltonians for these 79-atom nanoparticles were fitted to the energies of the 

nanoparticles of the same size, shape, and composition calculated using DFT. The RMSE of the 

fitted Hamiltonians amounts to 8-14 meV/atom. Such a degree of precision is significantly below 

the thermal energy at room temperature, 25 meV/atom, and allows one to design realistic models 

of trimetallic nanoalloys for most applications. Nevertheless, much higher precision of the TOP 

method was reported previously for bimetallic nanoparticles,37 due to significantly lower 

mismatches between atomic sizes and simpler mixing patterns. In line with our previous studies,37 

the obtained energy descriptors were also used to characterize chemical ordering in much larger 

alloy nanoparticles whose direct calculations using DFT are not currently feasible. 
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To facilitate the discussion of various factors governing the nanocrystallite structure and 

stability, we analyze their contributions to the nanoalloy energy using the following metric:  

𝐸%(𝜀𝑌
𝑋) = 100% ∗ 𝜀𝑌

𝑋𝑁𝑌
𝑋 ∑|𝜀𝑗

𝑖𝑁𝑗
𝑖|

𝑖,𝑗

.⁄  

Note that 𝐸% is positive for the structural features destabilizing the nanoparticle (i.e., increasing 

its energy) and negative for features increasing its thermodynamic stability. 

 

 

Figure 2. Representative structures of 1.3 nm and 2.8 nm large Ni-Pd-Cu nanoalloys at various 

temperatures.  

 

3.1. Chemical ordering in Ni-Pd-Cu nanoalloys. According to our calculations, the low-

temperature structure of Ni-Pd-Cu alloy nanocrystallites features Pd-rich Pd-Cu alloy on the 

surface and the core composed of either pure Ni or segregated Ni and Cu (Figure 2). In the lowest 

energy structure of Ni26Pd27Cu26 nanoalloys, the nanoparticle core is composed of 19 Ni atoms, 

while the remaining 7 Ni atoms predominantly occupy terrace sites because there are no more core 
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sites available for them. On the surface, most of the edge sites are occupied by Cu (83%), whereas 

edge sites and terrace sites are occupied mostly by both Pd and Cu (Ni0.04Pd0.63Cu0.33 composition 

for edges and Ni0.21Pd0.46Cu0.33 for terraces). At 500 K, the core-shell structure is perturbed, with 

more Ni atoms occupying the terrace and edge sites and a few Pd and Cu atoms moving into the 

core region (Supplementary Table S1).  

 

Table 1. Reference values for metal surface energies82 (in J/m2) and atomic radii83 (in Å) of 

nanoalloy constituents. 

Metal  Atomic radius Surface energya 

Co 1.52 2.775 

Ni  1.49 2.011  

Cu  1.45 1.952 

Rh 1.73 2.472 

Pd  1.69 1.920 

Pt 1.77 2.299 

a The energy is given for the most stable surface, i.e. (111) for fcc metals and (0001) for hcp Co.  

 

The Ni@PdCu core@shell structure of the nanoparticle is fully formed in larger Ni113Pd113Cu112 

at low temperatures. In this case, around 73% of the edge positions are occupied by Cu atoms, 

whereas the corner positions are populated by equal amounts of Cu and Pd atoms. In turn, 73% of 

terrace sites are occupied by Pd. At higher temperatures, the larger nanoparticles form a structure 

where around 23% of the total Ni atoms occupy the edge and terrace positions, whereas 9% of Pd 

atoms and 20% of Cu atoms move from the surface to the core (Table S2). 
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Table 2. Calculated energetic descriptors (in meV) for Ni-Pd-Cu, Pd-Pt-Cu, and Co-Rh-Cu 

nanoparticles. 95% confidence intervals are given for each descriptor value. The RMSE of the 

fitting is given in meV/atom.  

Ni26Pd27Cu26 Pd26Pt27Cu26 Co26Rh27Cu26 

𝜀𝐵𝑂𝑁𝐷
𝑁𝑖−𝐶𝑢 20 ± 7 𝜀𝐵𝑂𝑁𝐷

𝑃𝑑−𝐶𝑢 −27 ± 4 𝜀𝐵𝑂𝑁𝐷
𝐶𝑜−𝐶𝑢 58 ± 6 

𝜀𝐵𝑂𝑁𝐷
𝑃𝑑−𝐶𝑢 −29 ± 6 𝜀𝐵𝑂𝑁𝐷

𝑃𝑡−𝐶𝑢 −39 ± 4 𝜀𝐵𝑂𝑁𝐷
𝑅ℎ−𝐶𝑢 −3 ± 6 

𝜀𝐵𝑂𝑁𝐷
𝑁𝑖−𝑃𝑑 −7 ± 6 𝜀𝐵𝑂𝑁𝐷

𝑃𝑑−𝑃𝑡 −5 ± 4 𝜀𝐵𝑂𝑁𝐷
𝐶𝑜−𝑅ℎ −23 ± 6 

𝜀6
𝑁𝑖 231 ± 43 𝜀6

𝑃𝑑 −186 ± 38 𝜀6
𝐶𝑜 427 ± 50 

𝜀7
𝑁𝑖 154 ± 66 𝜀7

𝑃𝑑 −134 ± 57 𝜀7
𝐶𝑜 449 ± 73 

𝜀9
𝑁𝑖 167 ± 45 𝜀9

𝑃𝑑 −167 ± 37 𝜀9
𝐶𝑜 254 ± 50 

𝜀6
𝑃𝑑 −347 ± 71 𝜀6

𝑃𝑡 41 ± 40 𝜀6
𝑅ℎ 163 ± 68 

𝜀7
𝑃𝑑 −304 ± 101 𝜀7

𝑃𝑡 −13 ± 57 𝜀7
𝑅ℎ 55 ± 97 

𝜀9
𝑃𝑑 −299 ± 66 𝜀9

𝑃𝑡 −210 ± 35 𝜀9
𝑅ℎ −66 ± 64 

RMSE 13.6 RMSE 7.3 RMSE 12.2 

 

  

The obtained structures of Ni-Pd-Cu nanoalloys can be rationalized from the known properties 

of constituting elements and the previous characterization of their bimetallic alloys. Indeed, the 

propensity of Ni to occupy core sites in Ni-Pd-Cu nanoparticles can be explained by the 

significantly higher surface energy of Ni compared to Pd and Cu (Table 1). As a result, the 

energetic descriptors for Ni segregation on low-coordinated sites in Ni-Pd-Cu particles are 

markedly positive, which leads to the small amount of Ni on the surface of low-energy Ni-Pd-Cu 

alloy nanoparticles. The preferential occupation of core sites by Ni was also noted in experimental 

and computational studies of bimetallic Pd-Ni84,85 and Ni-Cu alloys.86 Ni-Pd bond formation was 

calculated to be slightly exothermic with 𝜀𝐵𝑂𝑁𝐷
𝑁𝑖−𝑃𝑑 − 7 𝑚𝑒𝑉. In turn, with the positive energy of the 

descriptor for Ni-Cu bond formation 𝜀𝐵𝑂𝑁𝐷
𝑁𝑖−𝐶𝑢 = 20 𝑚𝑒𝑉  is in line with the previously noted 
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tendency to segregation in Ni-Cu alloys that depended on synthesis temperature (Table 2).87 The 

formation of Pd-Cu bonds was exothermic, 𝜀𝐵𝑂𝑁𝐷
𝑃𝑑−𝐶𝑢 = −29 𝑚𝑒𝑉 , which aligns well with the 

propensity of Pd and Cu to form alloys in bulk and nanoparticle forms.37,88,89   

 

  

Figure 3. 𝐸% metric for the relative energy contributions (%) to the topological energy of the 

lowest energy structures of A26B27Cu26 according to DFT calculations. Only major contributions 

are labeled, whereas minor contributions are shown as gray boxes; see Table S1 for all the 

contributions. 

 

The proposed rationalization of the structure of Ni-Pd-Cu nanoalloys through various factors 

can be quantified using the proposed 𝐸% metric. The most important energetic contribution to the 

nanoparticle energy comes from the stabilization of Pd atoms on the NP surface, 𝐸%(𝜀6
𝑃𝑑) =

−37% and 𝐸%(𝜀9
𝑃𝑑) = −23%  (Figure 3 and Table S1). The surface is also populated by Cu 
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atoms in a way that maximizes the number of thermodynamically stable Pd-Cu bonds 

𝐸%(𝜀𝐵𝑂𝑁𝐷
𝑃𝑑−𝐶𝑢) = −19% and minimizes thermodynamically unstable Cu-Ni bonds, 𝐸%(𝜀𝐵𝑂𝑁𝐷

𝑁𝑖−𝐶𝑢) =

7%. 

3.2. Chemical ordering in Pd-Pt-Cu nanoalloys. In turn, Pd-Pt-Cu nanoalloys develop a 

partially segregated structure with Cu-rich mixed Pd-Pt-Cu core and mostly Pd-Pt shell, which is 

in line with the “Pd-Pt dual site layer core-shell” structure of Pd-Pt-Cu alloys proposed 

experimentally.67 The concentration of Cu in the core of Pd26Pt27Cu26 amounts to 74% at low 

temperatures, whereas Pt occupies the rest of the core sites. As a result, the concentration of Cu 

atoms on the surface of Pd26Pt27Cu26 is also notable (20%), although significantly less than 

concentrations of Pd and Pt (Figure 4). In particular, Pd atoms occupy almost all corner sites in 

the nanoparticle, whereas Pt occupies almost all terrace sites and Cu occupies most edge sites. As 

the temperature increases, the structure of Pd26Pt27Cu26 turns into a well-mixed solid solution, with 

only 58% of the core occupied by Cu atoms, and the remaining core sites are occupied by Pd and 

Pt atoms. Cu atoms are also scattered on the corner (25% of corner sites), edge (58% of edge sites), 

and to a lesser extent on terrace sites. Similar to the low-temperature structure, the terrace sites of 

the high-temperature structure are also predominantly occupied by Pt atoms (80%). Around 63% 

of the corner sites and 42% of the edge sites are occupied by Pd atoms. 

The bigger Pd113Pt113Cu112 manifests a partially segregated structure more clearly, with the core 

containing a mixture of  61% Cu atoms, 37% Pt atoms, and just 2% Pd atoms. These Pd atoms are 

found in the first layer beneath the nanoparticle's surface. On the surface, Cu predominantly 

occupies the edge sites (31% of total edge sites) compared to terrace and corner sites. Pd atoms 

occupy all the corner sites of the bigger nanoparticle. In turn, the terraces of Pd113Pt113Cu112 are 

occupied by Pd and Pt in roughly equal proportions. Some Pd atoms occupying the surface sites 

https://doi.org/10.26434/chemrxiv-2024-m3mln ORCID: https://orcid.org/0000-0002-5559-0066 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-m3mln
https://orcid.org/0000-0002-5559-0066
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

 19 

migrate into the core at the increased temperature. This reduces the percentage of Pd atoms 

observed on the surface sites from 58% to 42% and increases the percentage of Pt atoms observed 

on the surface to 38%. Apart from that, a 70% increase is observed in the total number of Cu atoms 

on the surface sites.  

 

 

Figure 4. Representative structures of 1.3 nm and 2.8 nm large Pd-Pt-Cu nanoalloys at various 

temperatures.  

 

The chemical ordering of elements within Pd-Pt-Cu alloy nanoparticles can be rationalized by 

the difference in the atomic sizes of the constituent elements, which outweighs rather moderate 

differences between their surface energies. Indeed, the core of these nanoalloys is composed 

mainly of smaller Cu atoms, whereas the surface is populated by larger Pd and Pt atoms. The 

segregation energies of Pd atoms on the NP surface are around -150 meV, whereas Pt segregation 

is thermodynamically favorable only on terrace sites with 𝜀9
𝑃𝑡 = −210 meV. The higher surface 
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concentration of Pd compared to Pt in our simulations aligns with previous computational studies 

of Pd-Pt bimetallic alloys.42,90,91 In turn, the Cu-rich cores in the obtained structures are in line 

with core@shell structures developed by Cu@Pt alloys. 92 At the same time, bimetallic Pd-Cu 

alloys were shown through experiments93 and simulations to form well-mixed structures,37 which 

are also in line with the pronounced mixing between Pd and Cu in the Pd-Ni-Cu trimetallic 

nanoparticles considered above. However, in the obtained structures of Pd-Pt-Cu alloys, Pd atoms 

form more heteroatomic bonds with Pt atoms and a relatively insignificant amount of heteroatomic 

bonds with Cu. Thus, the presence of Pt in Pd-Pt-Cu alloy alters the usual mixing patterns between 

Pd and Cu observed in other alloys. 

According to the E% metric, the segregation of Pd and Pt to the nanoparticle surface contributes 

the most to the nanoparticle stability with 𝐸%(𝜀6
𝑃𝑑) = −27% and 𝐸%(𝜀9

𝑃𝑡) = −29%, although the 

formation of Pd-Cu and Pt-Cu bonds are also important factors, with 𝐸%(𝜀𝐵𝑂𝑁𝐷
𝑃𝑑−𝐶𝑢) = −9% and 

𝐸%(𝜀𝐵𝑂𝑁𝐷
𝑃𝑡−𝐶𝑢) = −31%. The importance of the latter interactions results in the presence of some Pd 

and Pt atoms in the core of Pd-Pt-Cu nanoparticles and the emergence of some Cu atoms on the 

nanoalloy surface facilitated by the heteroatomic bond formation. The strength of Pd-Cu bonds 

was also noted in our previous studies of bimetallic particles.37 In turn, the strength of Pd-Pt 

interactions was not significant enough to significantly affect the nanoparticle structure, which 

aligns with previous studies.84 

3.3 Chemical ordering in Co-Rh-Cu nanoalloys. In principle, Co-Rh-Cu nanoalloys are 

calculated to adopt Co core @ Rh-Cu shell structure, i.e., the same type of structure as Pd-Ni-Cu 

(Figure 5). In the lowest energy structure of Co26Rh27Cu26 nanoparticle, Co atoms occupy all core 

sites and ~15% of terrace and corner sites, where they are less stable. In turn, most (88%) of the 

terrace sites are occupied by Rh, with a few Rh atoms also present on edges and corners at a 
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concentration of 33% and 8%, respectively. Finally, Cu occupies 75% of the corner sites and 67% 

of the edge sites in the nanoparticle.  

At higher temperatures, Co atoms move from the core of Co26Rh27Cu26 NPs to the corners and 

edges, where their concentration increases to ~33%, although these sites were occupied entirely 

by Cu at low temperatures. Moreover, around 22% of the Rh atoms migrate to the core region, 

with the rest mainly remaining on terrace sites and, to a lesser extent, on edge sites. 

 

 

Figure 5. Representative structures of 1.3 nm and 2.8 nm large Co-Rh-Cu nanoalloys at various 

temperatures.  

 

The qualitative differences between the structures of Co-Rh-Cu and Pd-Ni-Cu nanoalloys 

become more apparent for larger nanoparticles. Unlike Ni113Pd113Cu112 particle, there is little 

mixing between elements in Co113Rh113Cu112 particles due to the negligible exothermicity of Cu-

Rh bonds and significant endothermicity of Cu-Co bonds with 𝜀𝐵𝑂𝑁𝐷
𝐶𝑜−𝐶𝑢 = 58 meV. In the lowest 

energy structure of Co113Rh113Cu114, the core is composed of Co-Rh alloy due to the exothermic 
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nature of Co-Rh bond formation with 𝜀𝐵𝑂𝑁𝐷
𝐶𝑜−𝑅ℎ = −23 meV. In turn, the edges and corners of these 

nanoparticles are composed of pure Cu, whereas the terraces predominantly expose Rh clusters 

(49% of the terrace sites). At higher temperatures, the thermal disorder in this structure leads to 

around 20% of the terrace sites being occupied by Co atoms. The percentage of Cu atoms found 

in the surface sites is also reduced by 20%, while the percentage of Rh atoms on the surface 

remains nearly the same. As expected, the thermal disorder also greatly reduces the clustering of 

the components in the alloy, which appears as a typical partially segregated core@shell structure 

at high temperatures.  

The chemical ordering in Co-Rh-Cu can again be rationalized with the surface energies of the 

involved elements. For example, Cu has the lowest surface energy and occupies unsaturated corner 

and edge sites in the nanoparticles, whereas Co has the highest surface energy and occupies the 

core sites. Co segregation on the NP surface is significantly endothermic by >400 meV for edge 

and concern sites and by >250 meV for terrace sites, which is in line with Co@Cu core@shell 

structure of bimetallic CoCu NPs reported in some experiments.94 Finally, Rh occupies the terrace 

sites with moderate coordination because its surface energy has an intermediate value between the 

surface energies of Co and Cu (Table 1). As a result, Rh exhibits insignificant surface segregation 

energies in our simulations, which aligns with small Rh segregation energies in bimetallic Rh-Cu 

alloys, where the segregation energies could even change sign depending on the alloy 

composition.95 In addition, no conclusive evidence of surface Rh segregation can be found in 

previous experimental studies of Rh-Cu alloys, which report alloys with both Rh or Cu-rich 

surfaces.96,97  

Analyzing the bond energy descriptors, we see that the formation of Co-Cu bonds is endothermic 

with an energy of 57.5 meV, which is in line with the facile segregation of Co and Cu into adjacent 
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monometallic NPs in catalysts for higher alcohol synthesis from CO.98 In contrast, Co-Rh bond 

formation is markedly exothermic by −23 meV, which is in line with the tendency of Co and Rh 

to form well-mixed alloys.98,99 The strong preference for Rh-Co bond formation, coupled with 

cobalt’s propensity to occupy bulk sites, results in Rh atoms favoring terrace sites, where they are 

likely to interact with subsurface Co atoms (Figure 5). As a result of Rh-Co interactions, the 

segregation of Rh and Cu is induced in the nanoparticle despite the slight exothermicity of Rh-Cu 

bond formation (−2.6 meV). 

According to our energy decomposition scheme, most of the stabilizing contributions in the case 

of Co26Rh27Cu26 at low temperatures come from Rh-Co bonds, 𝐸%(𝜀𝐵𝑂𝑁𝐷
𝑅ℎ−𝐶𝑜) = −26%, and Rh 

segregation on terrace sites, 𝐸%(𝜀9
𝑅ℎ) = −17%. The presence of Co atoms on the nanoparticle 

surface due to insufficient core sites to accommodate all Co atoms destabilizes the nanoparticle. 

Another destabilizing contribution comes from Cu-Co contacts, 𝐸%(𝜀𝐵𝑂𝑁𝐷
𝐶𝑜−𝐶𝑢) = 19% , which 

cannot be avoided in such small nanoparticles as Co26Rh27Cu26 despite their endothermicity.83 

3.4 The Reactivity of Co26Rh27Cu26 Nanoparticles towards C Atoms. The reliable 

determination of chemical ordering in nanoalloys is of paramount importance for studies of their 

catalytic properties, which are governed to a large extent by the structure and composition of active 

sites developed on the nanoalloys' surface. To examine the effect of chemical ordering in 

nanoalloys on their reactivity, we examined the interactions of Co26Rh27Cu26 nanoparticles with C 

atoms, which are key intermediates during coke formation.100,101 Moreover, previous studies of 

linear scaling relations revealed that the binding energies of many reaction intermediates attaching 

to the surface via C atoms strongly correlate with the binding energies of isolated C atoms on the 

catalyst surface.102 As a result, binding energies of C atoms to the catalyst surface are often used 
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as catalytic activity descriptors in the analysis of Sabatier volcano relations for the activity of 

various catalysts in a given reaction.103  

Since chemical ordering in trimetallic nanoalloys is shown to depend on the simulation 

temperature significantly, we prepared three different models of Co26Rh27Cu26 nanoparticles 

representing different application conditions (Figure 6). As the first model, we considered the 

nanoparticle structure with the lowest energy chemical ordering, which corresponds to the 

equilibrium structure of the nanoparticles at low temperatures (LT), e.g., ~10 K. In this structure, 

all core atoms were occupied by Co, and most of the terrace atoms were occupied by Rh, whereas 

Cu occupied most of the edge and corner sites. The second model was obtained as a representative 

structure from our Monte-Carlo simulations of Co26Rh27Cu26 nanoparticles at a medium 

temperature (MT) of 573.15 K using the fitted lattice Hamiltonian. According to our DFT 

calculations, the MT structure of the Co26Rh27Cu26 nanoparticle had 38 meV/atom (i.e., 2.97 eV 

per particle) higher energy than the low-temperature structure. In this structure of Co26Rh27Cu26, a 

few Cu and Rh atoms penetrate into the nanoparticle bulk, and 4 Co atoms emerge on the low-

coordinated sites on the surface, displacing Cu atoms previously occupying them onto the terrace 

sites. Finally, the structure of the alloy at high temperatures (HT) was obtained by using the ATAT 

code81 to generate a special quasirandom structure (SQS), which maximizes the thermal disorder 

in the alloy. The high-temperature model was 127 meV/atom or 10.06 eV per particle higher in 

energy than our low-temperature structure, which should roughly correspond to the thermal energy 

at ~1500 K. The chemical ordering of alloy components in this structure shows no trends due to 

its quasirandom nature. Such structure could be obtained experimentally by rapid quenching of 

melted Co-Rh-Cu nanoparticles.  
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Figure 6. The considered low-temperature (LT), medium-temperature (MT), and special 

quasirandom high-temperature (HT) structures of the Co26Rh26Cu27 nanoparticle. Table S3 

contains the corresponding structural descriptors. 

 

To investigate the differences between the reactivities of all these models, we modeled the 

adsorption of C atoms on each of the triangular hollow fcc and hcp sites on their surfaces. The 

obtained binding energy distributions show that sites containing Cu atoms tend to bind C atoms 

more weakly in all models, which could be expected because Cu is a coinage metal (Figure 7). The 

only exception to this trend is the presence of Cu in strongly binding sites in the high-temperature 

model. A closer look reveals that these sites have mixed CoRhCu composition, and the former two 

elements induce the strong binding energy of C on them. The analysis of these distributions also 

https://doi.org/10.26434/chemrxiv-2024-m3mln ORCID: https://orcid.org/0000-0002-5559-0066 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-m3mln
https://orcid.org/0000-0002-5559-0066
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

 26 

reveals that Rh atoms are present in the composition of almost every hollow site on the surface in 

LT and MT models, whereas they are contained in a much lower number of hollow sites on the 

surface of the high-temperature model. Finally, Co-containing sites could be expected to bind C 

atoms very strongly due to the propensity of Co to form carbides.14,104,105 However, the correlation 

between the C binding energy and the Co presence in the surface site composition is apparent only 

for low-temperature models. In contrast, MT and HT models show more complicated variations 

of C binding energies with the site composition. 

 

  

Figure 7. Histograms of carbon atom binding energies to the LT, MT, and HT structures of the 

Co26Rh27Cu26 nanoparticle. The color coding of histogram bins indicates the proportion of hollow 

sites that include at least one Co, Rh, or Cu atom among the three atoms forming a hollow site on 

the (1 1 1) surface. 
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Due to the significant heterogeneity of the reactivities of various surface sites on the surface of 

Co26Rh26Cu27 nanoalloys, it is more appropriate to analyze them statistically. On average, the 

binding strength of C was −5.74 ± 0.40 eV on the low-temperature model, −6.82 ± 0.57 eV on the 

medium-temperature model, and −6.17 ± 0.40 eV on quasirandom high-temperature model. Such 

temperature-induced changes in the reactivity of alloys towards C atoms would result in dramatic 

differences in the catalytic activity and stability of these nanoparticles in most applications. These 

findings highlight the necessity of selecting a nanoparticle model that accurately reflects the 

conditions of the considered application. Utilizing the proposed topological approach, we were 

able to generate reliable models of trimetallic nanoparticles with a realistic representation of 

thermal alloy disorder in only 90 minutes of computational time on a laptop. 

3.5 Efficient Computation of Mixing Free Energies. To further demonstrate the exceptional 

computational efficiency of the proposed approach, we used the obtained topological Hamiltonians 

to calculate alloy mixing free energies through direct brute force evaluation of entropic 

contributions to the free energies of alloy nanoparticles through their partition functions. Namely, 

we evaluated the mixing free energies of trimetallic nanoparticles composed of 79 atoms for 

various alloy compositions at various temperatures (Figure 8). Whereas at the lowest considered 

temperature of 10 K, the free energy of alloy mixing is essentially determined by the energy of the 

lowest energy homotop, countless homotops contribute to the internal energy and entropy of 

mixing at higher temperatures. 

Generally, each trimetallic nanoalloy is predicted to be miscible, i.e., to exhibit exothermic 

mixing energies for mixed compositions. Direct DFT calculations confirm the exothermic mixing 

in the obtained low-temperature structures of Ni26Pd27Cu26, Pd26Pt27Cu26, and Co26Rh27Cu26 

nanoparticles (Table S4). For a more profound analysis, we compare the obtained mixing energies 
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of trimetallic alloys to those of bimetallic alloys with structures optimized using the same TOP 

Hamiltonians as for trimetallic alloys (Figure S3).  

 

 

Figure 8. Mixing free energies of 79-atom Ni-Pd-Cu, Pd-Pt-Cu, and Co-Rh-Cu nanoalloys 

computed with Monte-Carlo simulations at 10 and 500 K. Mono- and bimetallic sectors in the 

diagrams were intentionally left blank. 

 

In general, Ni-Pd-Cu nanoalloys become more stable at Pd-rich composition, achieving the most 

exothermic mixing energy at Ni20Pd47Cu12 composition at 10 K and Ni20Pd43Cu16 composition at 

500 K, which can be explained by the weak binding between Ni and Cu. In this way, the presence 

of Pd in the composition of Ni-Pd-Cu alloys facilitates the mixing between Cu and Ni, whose 

calculated mixing energy in bimetallic Cu-Ni nanoalloy is close to zero or positive. Thus, our 

computational results align with the experimental evidence of facile phase separation in Ni-Cu 

alloys. 101 
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In turn, all components in Pd-Pt-Cu alloys mix well, which is illustrated by the exothermic 

mixing energies of the respective bimetallic alloys. Pd-Pt-Cu nanoalloys generally are more stable 

in the Pd-poor region due to highly exothermic mixing between Pt and Cu. So, the most exothermic 

mixing is achieved with the Pd12Pt27Cu40 composition of Pd-Pt-Cu at 10 K and with the 

Pd20Pt27Cu32 composition at 500 K.  

Finally, weak interactions between Co and Cu in Co-Rh-Cu alloys push the area of significant 

mixing energies towards Rh-rich compositions. In fact, bimetallic Co-Cu alloys are calculated to 

exhibit endothermic mixing energies, which suggest highly favorable separation between Co and 

Cu in line with experimental studies. 106,107 As a result, the highest magnitude of mixing energies 

is achieved at Co12Rh43Cu24 composition at low temperatures and Co16Rh39Cu24 composition at 

500 K.  

It should be noted that our analysis takes into account the contributions of the segregation of 

alloy components on terrace, edge, and corner sites of nanoparticles to their thermodynamic 

stability. Thus, these results are expected to be affected by the nanoparticle size, which governs 

the fraction of terrace, edge, and corner atoms in the nanoparticle structure. 

 

4. SUMMARY  

In conclusion, the developed method for designing realistic models of trimetallic alloy 

nanocrystallites allowed us to characterize the chemical ordering in Pd-Pt-Cu, Ni-Pd-Cu, and Co-

Rh-Cu nanoparticles with fcc structures. This method was based on Monte-Carlo simulations using 

the proposed lattice Hamiltonian containing just 10 semi-empirical parameters with clear physical 

interpretation, whose values were fitted to the results of ~130 density functional calculations of 

nanoalloys via multiple linear regression. We proposed a training set composed of distinct 

archetypal chemical orderings that could be expected in nanoalloys based on chemical intuition to 
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make the fitting more robust. The high computational efficiency of the developed method allowed 

us to determine the chemical orderings with the lowest energy or with a realistic thermal disorder 

in alloy nanoparticles with 79 and 338 atoms. Moreover, we demonstrated the capabilities of the 

proposed method to calculate mixing free energies in the 79-atom alloy nanoparticles in a brute-

force fashion through the direct evaluation of partition functions of nanoalloys. The Python code 

implementing this computational approach is openly accessible via GitHub.72  

The obtained lowest-energy nanoalloy structures were in line with the previous experimental 

and computational studies of alloy nanoparticles composed of the respective metals and could be 

rationalized through physically meaningful fitting parameters in the employed Hamiltonians. For 

example, the high surface energy of Ni and strong Pd-Cu bonds stabilize the structure of Pd-Ni-

Cu nanoparticles with Ni core and well-mixed Pd-Cu shell. In turn, the structure of Pd-Pt-Cu alloys 

is governed by the sizes of the involved atoms, which favor a higher concentration of smaller Cu 

atoms in the mixed Pd-Pt-Cu core and a larger concentration of well-mixed Pd and Pt in the 

nanoparticle shell. These findings align with the experimental characterization of the Pd-Pt-Cu 

nanoalloy structure in previous studies.67 Finally, Co-Rh-Cu alloys also adopt a core-shell structure 

with Co in the core, whereas Rh and Cu form separated patches on the surface at low temperatures 

due to relatively weak Rh-Cu bonds.  

However, the thermal disorder significantly affects the chemical ordering in these nanoparticles. 

In particular, the temperature is demonstrated to change the composition of adsorption sites on the 

nanoalloy surface and, hence, the reactivity of the alloy. For example, the average binding energy 

of C species on Co-Rh-Cu is calculated to change by up to 1.1 eV depending on the simulation 

temperature. Such changes would strongly affect the catalyst interaction with C-containing 

reaction intermediates and its propensity to form coke or carbide phases.  
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Thus, this study demonstrates the importance of thermal disorder for the reactivity of nanoalloys 

and proposes a highly efficient method (implemented in a freely available Python code) to generate 

models of trimetallic alloy nanoparticles with low energy or realistic thermal disorder. The models 

generated with this method will make simulations of nanoalloy catalysts more realistic and make 

their computational design more reliable.  
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