
Generative Foundation Model for On-demand

Reverse Polymer Design

Haoke Qiu†,‡ and Zhao-Yan Sun∗,†,‡

†State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied

Chemistry, Chinese Academy of Sciences, Changchun 130022, China

‡School of Applied Chemistry and Engineering, University of Science and Technology of

China, Hefei 230026, China

E-mail: zysun@ciac.ac.cn

Phone: +86 (0431) 85262896

Abstract

Forward screening and reverse design of drug molecules, inorganic molecules, and

polymers with better properties are crucial engines for shortening the laboratory-to-

market cycle. Particularly, due to the lack of large-scale datasets, polymer discovery

based on materials informatics is more formidable. Despite this, polymer scientists

have developed a series of machine learning models on polymer structure-property re-

lationships using only small polymer datasets, thereby driving the forward screening

process of polymers. However, the success of this paradigm ultimately hinges on the

capacity of the candidate pool, while exhaustively enumerating all polymer structures

through human imagination is challenging. Therefore, achieving on-demand reverse

design of polymers is crucial. In this work, we curate a polymer dataset containing

nearly one million polymeric structure-property pairs based on expert intuition. Using

this dataset, we propose a generative pre-trained model for polymer on-demand genera-

tion using a large language model. The model produce polymers with 99.27% chemical
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validity in top-1 generation mode (approximately 200k generated polymers), marking

the highest reported success rate among polymer generative models. In addition, the

average R2 between the properties of the generated molecules and their expected values

across 15 predefined properties is 0.96. To further assess the pre-trained model’s perfor-

mance in generating additional user-defined polymer properties for downstream tasks,

we conduct fine-tuning experiments on three publicly available small polymer datasets

using semi-template and template-free generation paradigm. Through these extensive

experiments, we demonstrate that our pre-trained model and fine-tuned models are

capable of achieving on-demand reverse design of polymers with specified properties,

whether in (semi-)template generation or the more challenging template-free generation

scenarios.

Introduction

On Earth, the candidate pool of potential materials is vast, with a reasonable estimate reach-

ing 1060.1 However, this number could be even larger in reality, considering factors such as

lattice defects in inorganic materials and the stochastic, multi-scale structures of polymers.

In the monumental task of efficiently discovering candidate structures that can serve as ’ma-

terials’, machine learning (ML) has demonstrated its impressive accuracy and efficiency on

inorganic materials,2,3 metal materials,4 organic molecules,5 and polymer materials.6 Com-

pared to other materials, the development of polymer materials is more challenging due to the

limited data and complex cross-scale structure-property relationships.7–12 In the implemen-

tation of ML-assisted polymeric materials discovery, two main types can be distinguished:

Forward Screening and Reverse Design. The Forward Screening-based ML workflow

relies on models to screen candidate structures from a predefined pool of candidate poly-

mers. Various simple to complex ML models and deep learning models, such as convolutional

neural networks,13 graph neural networks,14,15 recurrent neural networks,16 and the recent

Transformer,12,17,18 have been used to establish surrogate models for polymer forward screen-
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ing. Although this paradigm is highly effective, especially for small polymer datasets,10,19,20

there is a possibility that structures beyond human imagination may be overlooked.21,22

Fortunately, the latter paradigm achieves the direct on-demand reverse design of candidate

structures that satisfy performance requirements, without the need for a predefined pool of

candidates. This represents a more ideal strategy for on-demand polymer design and has

the potential to generate candidate structures that experts may find difficult to imagine. At

the technical level, this paradigm is implemented based on generative models and has seen

groundbreaking and impressive cases in the design of small organic molecules,23–25 with the

percentage of chemically valid small organic molecules generated exceeding 99%.24

Inspired by these successes, polymer scientists are also attempting to develop generative

models for polymers to meet evolving application demands. Batra et al.21 proposed a modi-

fied variational autoencoder (VAE) to generate polymer repeat units based on SMILES, but

the chemical validity of the generated polymers was found to be less than 30%. Compared

to generative models for organic small molecules, the significantly reduced chemical validity

of generated polymers is mostly attributed to the presence of two special characters (’*’)

in polymer SMILES strings.11,21 These characters do not represent any chemical elements

but denote unique polymerization points26 and increase complexity of polymer generation,11

leading to a sharp decrease in the performance of generative models trained on small poly-

mer datasets. Indeed, training on larger datasets holds promise for enabling the model to

learn this polymer knowledge. Meanwhile, polymer scientists are also attempting to rep-

resent polymers using another molecular representation method, namely molecular graphs,

in order to enhance the chemical validity of generated polymers. Kim et al.,11 Liu et al.,27

and Gurnani et al.22 respectively trained polymer generative models using graph neural net-

works, resulting in an increase in the proportion of chemically valid molecules generated by

the models to 16.07 to 89.40%, 44.03%, and 93%.

Although there has been improvement in the proportion of chemically valid polymers

generated at present, current polymer generative models still face several challenges: 1)
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First of all, there is a lack of pre-trained models for polymer generation. Due to the limita-

tions of polymer datasets, polymer scientists usually train their polymer generative models

from scratch using small datasets tailored to specific properties, such as dielectric perfor-

mance.22,27 A unified pre-trained model holds the promise of leveraging small datasets for

various polymer properties, enabling the accurate generation of polymers with multiple prop-

erties. 2) The current polymer generative models are trained based on SMILES-to-SMILES

translation21 or graph-to-graph translation11,22,27 (or reconstruction), while the unsupervised

nature of this strategy inherently requires more data to learn hidden chemical patterns. As

a result, the ability of the current polymer generative models to generate chemically valid

polymers is limited. 3) When generating new molecules, these unsupervised approaches typi-

cally rely on editing the numeric representation in the hidden layers of the generative models

to generate new molecules via decoder layer. This implies that typically there needs to be a

template polymer with the desired properties. However, finding such template polymers is

actually a daunting task.28 Besides, due to the large dimensionality of the editable numeric

representation of the template polymer, the directionality of reverse design is partially out

of control,23,27 introducing uncertainty to the screening task. 4) Additionally, as generation

often occurs within the neighborhood of the template polymer,27 it’s difficult to efficiently

explore the diverse polymer space as polymers with low structural similarity may exhibit sim-

ilar properties. For instance, a polymer chain containing hydrogen bonding interactions may

exhibit a similar glass transition temperature to another polymer chain containing multiple

benzene rings.28

To address these challenges, we refined a polymer structure-property dataset contain-

ing nearly 1,000,000 entries based on the largest unlabeled polymer dataset, PI1M.29 Using

this curated structure-property dataset, we propose a polymer generative pre-trained large

language model (LLM) via supervised learning. The pre-trained model demonstrates impres-

sive polymer generation capabilities, with chemical validity exceeding 99% when generating

a total of approximately 200,000 polymers in top-1 mode. We evaluated the 15 input fun-
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damental properties of the generated polymers, showing extremely high prediction accuracy

with the expected values (the average R2 is 0.96). We further tested its ability to generate

polymers with other user-defined properties in three downstream tasks and also explored the

feasibility of semi-template and completely template-free polymer generation. The results

demonstrate its excellent performance in on-demand reverse polymer generation, and the

generated polymers exhibits diverse structural features, which showcases the model’s ability

to thoroughly explore the polymer space.

Methods

Polymer structure-property dataset

The largest publicly available polymer structure-property dataset currently is PolyInfo, con-

taining around 20,000 polymer structure-property pairs. However, this dataset is insufficient

for training a LLM. Recently, a virtual polymer database, PI1M,29 has been extended from

PolyInfo, comprising nearly one million polymer structures but lacking corresponding prop-

erty values. Researchers have utilized PI1M for unsupervised pretraining for polymer genera-

tion but this unsupervised pretraining paradigm results in the limited capacity of generating

chemically valid polymers.27 To achieve unprecedented large-scale supervised learning on

this largest polymer dataset, we opted to compute foundational properties for each polymer

structure in PI1M as descriptors. Due to the significant influence of molecular interactions

and chain structure on the properties of polymers at the microscopic level, we carefully se-

lected 15 descriptors related to the factors mentioned above. Specifically, we considered: 1)

Molecular weight, providing an approximate constraint on the number and types of atoms

in the repeat unit. 2) Hydrogen bonds, including the types and quantities of hydrogen bond

donors and acceptors. 3) Atom types, including the number of heteroatoms apart from the

common carbon and hydrogen atoms in polymers. 4) Chain structure, including the types

and quantities of rings and the number of rotatable bonds, which account for the flexibility
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of polymer molecules. For the specific list and the corresponding description, please refer to

Section 1 of the Supporting Information (S1). The above foundational properties and their

corresponding SMILES constitute our polymer structure-property dataset.

Prompt Engineering

Like any LLM, designing high-quality prompts is crucial for on-demand generation by the

model. We computed 15 physicochemical properties for each polymer repeat unit’s SMILES

and concatenated them to form the input prompts for the pretrain model. Except for

molecular weight, all other physicochemical properties are of integer type. To reduce the

input token size and improve training efficiency, we also converted the molecular weight to an

integer type. In fact, this approach, imprecisely specifying the molecular weight and instead

slightly "fuzzifying" it, increases the model’s freedom when generating new molecules, thus

facilitating the generation of structurally diverse molecules (as shown in S2).

Model Settings

Currently, there are many open-source large language models (LLMs) available for pretrain-

ing in chemical tasks. However, our previous research demonstrates that LLM based on a

deep understanding of chemical knowledge may perform better even on less data.18 Taking

into account both model complexity and computational device requirements, we have cho-

sen our previously developed PolyNC18 as the foundational model. PolyNC is a LLM based

on polymer structures, capable of predicting various properties such as the glass transition

temperature of polymers. This model possesses over 22 million parameters, thus providing

ample capacity to accomplish this ambitious task.
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Polymer generative pretraining via large-scale supervised learning

During the pretraining, the foundational properties will be concatenated as input, while the

corresponding structures (SMILES) serve as the output (Figure 1a). Compared to generative

models using SMILES-to-SMILES translation and graph-to-graph translation, our paradigm

of property-to-SMILES aims to enable the model to capture more foundational properties

of polymers and their corresponding structures (SMILES). We randomly partitioned the

polymer structure-property dataset into a training set (80%, ∼0.8 million) and a test set

(20%, ∼0.2 million) for pretraining. During fine-tuning for "semi-template" generation, we

added other polymer’s properties as additional vectors to the input prompt (Figure 1(b)-(d)).
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Figure 1: Generation workflow. (a) Model Pretraining. Using a set of 15 predefined struc-
tural features related to polymers as input, supervised learning for conditional generation
has demonstrated impressive accuracy in generating polymer repeat units that satisfy these
features, expressed as SMILES strings. Subsequently, we validated the model’s ability to
generate polymers with specific properties by assessing its capability to generate polymers
with specified band gaps (b), atomization energy(c), and electron affinity(d).
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Model Metrics

For molecular generative models, the primary metric of interest is the chemical Validity (the

percentage of chemically valid molecules), which is our foremost consideration. Addition-

ally, LLM can produce multiple outputs for the same input (i.e., top-k generation), which is

beneficial for generating structurally diverse candidate molecules and helps assess the stabil-

ity of the model’s generation capability. Therefore, for top-k generation scenarios, we also

evaluate the Uniqueness (the percentage of chemically valid molecules generated that are

mutually unique in each generation of the k times generation) and Novelty (the percentage

of generated valid molecules not in the training set and the test set in each generation of the

k times generation) of the generated polymers.

It is worth mentioning that previous polymer generative models rarely discussed the

similarity of generated polymers to existing polymers and, more importantly, the synthetic

feasibility of the generated polymers. Thus, in top-k generation scenarios, we additionally

assess the Similarity (i.e., Tanimoto similarity30) and synthetic feasibility31 (SAscore) of

the generated polymers.

Results and discussion

Performance of the pre-trained model on polymer generation

Top-1 generation

We first ran top-1 generation testing (i.e., generating one polymer for each input) using

the pre-trained model on the test set, resulting in a total of 199,159 samples generated.

Among the generated polymers, 99.27% were chemically valid molecules, which represents

the highest value among existing polymer generative models to date and was achieved on

the largest test sample (Table 1). This demonstrates that the model has deeply learned

the mapping between polymeric fundamental properties and SMILES after pretraining via

8

https://doi.org/10.26434/chemrxiv-2024-3z7tw ORCID: https://orcid.org/0000-0003-4083-5507 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-3z7tw
https://orcid.org/0000-0003-4083-5507
https://creativecommons.org/licenses/by-nc-nd/4.0/


large-scale supervised learning.

Table 1: Performance of the pre-trained model on the test test via top-1 generation. #
Data: number of training data; # Gen.: number of generated polymers; Val.: validity;
UNC: unconditional; CND: conditional.a Results for two polymer properties (glass transition
temperature and band gap). b Results for one polymer properties (logP). c Results for 15
polymer properties (as illustrated in Methods).

Model Architecture Mode # Data # Gen. Val./% ↑ Average R2↑

SD-VAE21 CNN UNC 250k 1k 13-27 0.65a

polyG2G22 GNN UNC 13k 58k 93

IGGM27 GNN UNC 250k 10k 44.03

Mole. Chef11 GNN UNC 120k 16.07-89.40 0.96b

Ours Transformer CND 800k 199k 99.27 0.96c

We conducted a statistical analysis of the types of chemical elements present in our poly-

mer structure-property dataset and the generated polymers (Figure 2). The most abundant

elements are C, N, and O, followed by other inorganic elements such as S and F, while

metal elements constitute a smaller proportion, which aligns with the empirical knowledge

in polymer science. The distribution of element proportions in the training set (Figure 2a)

is similar to that in the test set (Figure 2b), indicating a relatively uniform dataset parti-

tion. Interestingly, in the polymers generated using the top-1 mode, some metal elements

are not generated (Figure 2c). This is because that each LLM generates tokens (i.e., chem-

ical elements) based on the probability of each token’s occurrence, so tokens with very low

probabilities may not be generated. If necessary, this can be optimized by increasing the

proportion of metal polymers in downstream tasks.

9

https://doi.org/10.26434/chemrxiv-2024-3z7tw ORCID: https://orcid.org/0000-0003-4083-5507 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-3z7tw
https://orcid.org/0000-0003-4083-5507
https://creativecommons.org/licenses/by-nc-nd/4.0/


H

Li

Na

K

Rb

Be

Mg

Ca

Sr

Sc Ti V Cr Mn Fe Co Ni Cu Zn

Y Zr Nb Mo Tc Ru Rh Pd Ag Cd

B C N O F Ne

Al Si P S Cl Ar

Ga Ge As Se Br Kr

In Sn Sb Te I Xe

Pb

He

Train

H

Li

Na

K

Rb

Be

Mg

Ca

Sr

Sc Ti V Cr Mn Fe Co Ni Cu Zn

Y Zr Nb Mo Tc Ru Rh Pd Ag Cd

B C N O F Ne

Al Si P S Cl Ar

Ga Ge As Se Br Kr

In Sn Sb Te I Xe

Pb

He

Test

H

Li

Na

K

Rb

Be

Mg

Ca

Sr

Sc Ti V Cr Mn Fe Co Ni Cu Zn

Y Zr Nb Mo Tc Ru Rh Pd Ag Cd

B C N O F Ne

Al Si P S Cl Ar

Ga Ge As Se Br Kr

In Sn Sb Te I Xe

Pb

He

Gen.

< 0.01%

0.01~1%

1~10%

> 50%

Not applicable

10~50%

(a)

(b)

(c)

Figure 2: Statistical analysis of the types of chemical elements of the: training set (a), test
set (b) and generated polymers (c). Gen.: Generated.

In order to demonstrate whether the generated polymers possess the expected fundamen-

tal properties specified in the input parameters, we examined the aforementioned properties

of the generated polymers, where we found a high degree of agreement between them (Figure

3). For the chemically valid and unique polymers generated by the pre-trained model, the

average R2 value across the 15 polymer properties is 0.96. This indicates that the model can

preliminarily achieve the on-demand generation of polymers with specified properties. This

result instills confidence in our model’s ability to generate polymers with other properties,

as discussed in the Applications of the pre-trained model in generating polymers with spe-

cific properties section. Interestingly, for certain properties, such as the number of aliphatic

carboncycles (NumAliphaticCarboncycles) and the number of aliphatic heterocycles (Nu-
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mAliphaticHeterocycles), the generated polymers exhibit relatively poor consistency. How-

ever, these inconsistencies are advantageous for the model to produce structurally diverse

polymers, facilitating the the generation of various ring structures (as illustrated in S2).

R2=0.993 R2=0.995

R2=0.980

R2=0.993

R2=0.763 R2=0.882

R2=0.942

R2=0.904

R2=0.996

R2=0.984

R2=0.991

R2=0.982

R2=0.990 R2=0.995

R2=0.998

Figure 3: The fitting plots of the properties generated by the model (Generation) against
the expected properties (Ground Truth).

Top-k (k>1) generation

Due to the stochastic and probabilistic nature of generation of LLMs, to validate the stabil-

ity of the pre-trained model’s generation capability, we examined the model’s performance

in top-k generation. Specifically, we generated three (top-3), five (top-5), and ten (top-

10) samples for the same input, evaluating the Validity, Uniqueness, and Novelty of the

generated polymers. Additionally, we assessed the Tanimoto similarity coefficient between

the generated polymers and input samples, as well as the synthesizability (SAscore) of the
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generated polymers. The results are reflected as Table 2. In the top-k generation mode,

the model tends to be "adventurous" in its generation, resulting in polymers that maintain

a high level of uniqueness and novelty. Compared to top-1 generation (Figure 4a), top-k

generation expands the chemical space of generated polymers, even extending beyond the

chemical space corresponding to the training set (Figure 4b). Regardless of the value of

k, the chemical similarity between the generated polymer and the polymer corresponding

to the input prompt is consistently low. In contrast, generating new molecules based on

artificially modified latent representations of molecules tend to produce molecules with very

high similarity.27 However, this "adventurous" generation can also lead to the generation

of chemically invalid polymers, resulting in a slight decrease in the chemical validity of the

generated polymers (above 97%), but still higher than previous polymer generative models.

Impressively, for all valid, unique and novel molecules generated under the top-10 mode (to-

taling 1,828,027), their synthesizability did not become more challenging, demonstrating a

synthesizability similar to that of PI1M as illustrated in Figure 4c.

Table 2: Performance of the pre-trained model on the test test via top-k (k=3,5,10) genera-
tion.

Metric Top-3 Top-5 Top-10

Validity ↑ 97.75±0.0001 97.76±0.0002 97.75±0.0004

Uniqueness ↑ 99.07±0.0001 99.06±0.0002 99.08±0.0001

Novelty ↑ 93.56±0.0009 93.73±0.0005 94.01±0.0006

Similarity ↓ 0.302±0.0002 0.303±0.0002 0.306±0.0002

SAscore ↓ 3.84±0.77 3.83±0.77 3.85±0.77
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(a) (b)

(c)

Figure 4: The chemical space representation of polymers after t-SNE dimensionality reduc-
tion, with the background color indicating the randomly selected training set from PI1M
and (a) represents top-1 generation, with (b) representing top-10 generation. (c) illustrates
the SAscore of PI1M and the valid, unique, and novel molecules generated under the top-10
mode.

Applications of the pre-trained model in generating polymers with

specific properties

The above results demonstrates the impressive capability of the pre-trained model in gener-

ating polymers with specified foundational properties. Then we further assessed the model’s

ability to generate polymers with other specified properties.

In principle, polymer generation based on SMILES-to-SMILES translation or graph-to-

graph translation require a template polymer that meets the desired performance.11,21,22,27 By

editing the latent representation of the template polymer and decoding this representation,

new polymers can be generated. We refer to this paradigm as template-based polymer

generation. However, due to the randomness in editing the latent representation, achieving
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on-demand design through this method is limited. Additionally, finding template polymers

that meet the requirements is also a challenging task. Instinctively, By incorporating the

target properties directly into the input prompts in a similar manner to the pre-training

phase, there is potential to achieve on-demand generation of polymers without providing

template polymers. Though this approach represents an advancement compared to template-

based polymer generation, the input at this stage includes not only the target properties but

also the 15 fundamental polymer properties we defined. Therefore we define this paradigm

as semi-template generation.

Then, we tested the performance of the pre-trained model in the semi-template generation

scenario. We finetuned this pre-trained model on ten public polymers datasets of different

properties (S3) to obtain expert LLMs for each property. However, since experimentally

validating the properties of generated polymers on a large scale is resource-intensive, we

attempted to train proxy models for each dataset to efficiently validate the properties of the

generated polymers on large-scale. To be specific, we utilized graph neural networks, known

for their excellent performance in molecular property prediction, to train proxy models for

each property. Since the accuracy, i.e., coefficient of determination (R2), of the proxy models

is crucial in assessing the properties of the generated polymers and the performance of expert

LLMs, we selected the top three proxy models with the highest R2 (exceeding 0.9, detailed

in S3) and the corresponding dataset as subsequent case studies. These proxy models are

tailored for the following polymer properties: band gap, atomization energy, and electron

affinity. We then finetuned the pre-trained model using these datasets individually, with

the same data partitioning as when training the respective proxy models. Each polymer

property served as an additional vector added to the input prompt (see Figure 1 (b)-(d)).

After fine-tuning, the loss of the expert LLMs exhibited convergence (Figure 5a, 6a and 7a).

In the generation of expert LLMs, we conducted top-5 generation (i.e., generating five

samples for each input) and repeated the process for three rounds, to mitigate the randomness

of LLM and assess the model’s ability to generate multiple polymers satisfying the target
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properties. Here, our main focus is to investigate the feasibility and reliability of LLM-

based polymer generative model in practical usage. Therefore, we do not delve into detailed

discussions regarding the uniqueness of generated polymers in the following sections.

We selected samples from the test sets for each property, following the criterion that the

proxy model’s prediction for the sample closely matches the ground truth, aiming to enhance

the rationality of utilizing the proxy model to assess the properties of generated polymers

(i.e., at least, the proxy model should be sufficiently accurate in predicting the properties

of input samples). Moreover, we also aimed to ensure that the selected samples exhibit

outstanding properties whenever possible.

Band gap The band gap of polymer holds significant importance in the advancement

of polymer-based electronic and photonic devices, as it profoundly impacts their function-

ality across domains such as organic photovoltaics and light-emitting diodes. We take the

example of generating polymers with wide band gaps (greater than 6 eV).22 Following the

aforementioned selection criteria, we opted for the structure depicted in Figure 5a as the

input sample, with its 15 fundamental properties plus its band gap serves as the input

prompt. Across 3 rounds of top-5 generation, the expert LLM on band gap yielded 14 out

of 15 chemically valid polymers, with 13 out of 14 showcasing novel structures from the in-

put sample. Impressively, the predictions of the proxy model showcased that these 13 novel

samples demonstrate properties that align with the target band gap (with a margin of error

of 5%).
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Figure 5: Loss of the expert LLM on band gap and the input sample (a) and on-demand
inverse generation on band gap task (b)-(d). The blue numbers in subfigures (b)-(d) represent
the band gaps predicted by the proxy model (relative to the similarity with the input sample),
i.e., predicted band gap(similarity). During the fine-tuning of this task, the training set
consisted of 3042 samples, while the test set comprised 338 samples.

Atomization Energy The atomization energy of polymers reflects the strength and sta-

bility of the bonds within polymer molecules. Similarly, from the test set of the atomization

energy database, we selected a polymer with high atomization energy as the input sample

(Figure 6a). The 15 fundamental properties plus the atomization energy of this polymer

is used as the input prompt. After three rounds of top-5 generation, the expert LLM on

atomization energy generated 100% chemically valid and novel polymers. It is noteworthy

that the data size of this dataset is too small for a LLM, resulting in a slight decrease in the

accuracy of generated polymers. According to the predictions of the proxy model, 11 out of

15 polymers exhibit properties that align with the target atomization energy (with a margin

of error of 5%).
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Figure 6: Loss of the expert LLM on atomization energy and the input sample (a) and
on-demand inverse generation on atomization energy task (b)-(d). The blue numbers in
subfigures (b)-(d) represent the band gaps predicted by the proxy model (relative to the
similarity with the input sample), i.e., predicted atomization energy(similarity). During the
fine-tuning of this task, the training set consisted of 351 samples, while the test set comprised
39 samples.

Electron Affinity The electron affinity of polymers reflects the polymer molecule’s

ability to accept electrons, a property crucial in photovoltaic applications and other electronic

applications of polymers. Unfortunately, datasets for this property are also relatively small.

We chose the 15 fundamental properties plus the electron affinity of the structure depicted

in Figure 7a as the input prompt. From the results of three rounds of top-5 generation, 100%

of the generated polymers were chemically valid, with 14 out of 15 being novel. According to

predictions from the proxy model, 10 out of 14 polymers exhibit properties that align with

the target electron affinity (with a margin of error of 5%).
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Figure 7: Loss of the expert LLM on electron affinity and the input sample (a) and on-
demand inverse generation on electron affinity task (b)-(d). The blue numbers in subfigures
(b)-(d) represent the band gaps predicted by the proxy model (relative to the similarity with
the input sample), i.e., predicted electron affinity(similarity). During the fine-tuning of this
task, the training set consisted of 331 samples, while the test set comprised 37 samples.

Template-free generation: an ambitious task towards polymer on-

demand design

Compared to previous template-based approaches,11,21,22,27 the semi-template method intro-

duced above takes target properties as part of input, enabling the generation of polymers with

specified properties. This represents an advancement over entirely template-based polymer

generation. One more challenging goal is to achieve template-free polymer generation. The

potential scenario for this paradigm is to provide the generative model with only a desired

property value, allowing the model to freely generate structures that meet the requirements.

Clearly, this design paradigm is ambitious yet more challenging due to the contradiction

between the infinite chemical space of polymers and the limited training data available. To
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assess the feasibility of our pre-trained model in this challenging task, we conducted fine-

tuning tests using the band gap dataset due to its larger number of data entries. During the

implement, we utilized only the value of band gap as input, with the corresponding polymer

repeat unit SMILES as output (Figure 8a).

Meanwhile, in order to simultaneously achieve a meaningful objective, our aim is to

have the fine-tuned expert LLM generate polymers with higher band gaps. We used 6.5

eV (higher than previous semi-template generation task) as target, then the model was

expected to generate polymer structures with band gaps around 6.5 eV. Throughout the

generation process, we continued to utilize the top-5 generation mode and repeated the

process for three rounds to assess the stability of the LLM-based polymer generative model.

The generation results in Figure 8b indicate that the proportion of chemically valid molecules

generated is 100%, which is a significant prerequisite for the success of this task. Furthermore,

in this novel task previously unexplored by polymer scientists, as verified by the proxy

model, the expert LLM can produce no fewer than 2 samples with target band gap (with a

margin of error of 5%) in each round of generation (marked in red font in Figure 8b). In

total, 9 polymers exhibit properties that align with the target band gap (with a margin of

error of 5%). Interestingly, compared to template-based and semi-template-based polymer

generation methods mentioned earlier, the template-free approach generates a more diverse

range of polymer structures, showcasing the model’s freedom to explore the polymer space.

These results demonstrate the feasibility of on-demand reverse polymer generation without

template.
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Figure 8: (a) Finetuing the pre-trained model for the temple-free generation. (b) The
generation results via temple-free generation. The model will target the given value and
generate polymer structures with values around the specified threshold.

Discussion

In this work, we proposed a generative pre-trained model based on LLMs for on-demand

reverse polymer design. The pre-trained model was trained on a meticulously curated dataset

containing nearly one million polymer structures and fundamental properties, crafted based

on expert knowledge. Evaluation on a test set of nearly 200,000 samples revealed that

the model generated chemically valid molecules with a proportion of 99.27%. Through

further top-10 generation, the pre-trained model designed over 1.8 million valid and novel

polymer structures, effectively doubling the entries of the off-the-shelf polymer datasets.

These data, along with widely known datasets like PI1M, can offer a richer candidate pool

for paradigms based on forward screening. To achieve the generation of polymers with other

specific properties, we fine-tuned the pre-trained model on three publicly available polymer
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property datasets, resulting in expert LLMs tailored to each property. The generation results

of these expert LLMs demonstrate the powerful capability of the model in on-demand reverse

generation. However, for more precise on-demand design, we advocate for greater efforts from

the polymer community to expand polymer property datasets. Additionally, we attempted

an ambitious task using the dataset with a relatively large amount of data on band gap,

aiming for completely template-free polymer generation. The results indicate that the fine-

tuned expert LLM can achieve on-demand reverse polymer generation based solely on the

provided values of the desired polymer properties.

In summary, we have demonstrated a pre-trained model for on-demand reverse genera-

tion of polymers, and its performance on multiple downstream datasets indicates its broad

applicability and transferability. Meanwhile, by employing more advanced polymer rep-

resentations, such as BigSMILES,32 coupled with a larger amount of polymer data, there

is potential to further enhance the model’s performance in on-demand polymer generation.

However, this requires ongoing efforts, including but not limited to advancing the acquisition

of large-scale BigSMILES strings and collecting polymer multimodal, multiscale data.
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