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ABSTRACT: Herein we report a platinum-catalyzed isomerization of cyclopropenes to 1,3-dienes. Diverse dienylated alcohols were 

obtained in 42-98% yield. The synthetic potential of the products was demonstrated by their use in Diels-Alder cycloadditions with 

various dienophiles. Isotope labelling studies provide strong support for a mechanism involving pericyclic [1,5]-σ-bond rearrange-

ment of a vinyl platinum carbene intermediate.

1,3 – Dienes are important compounds, present in a variety of 

natural products and bioactive molecules.1 Moreover, they pos-

sess a unique reactivity, which is exploited in a variety of useful 

transformations such as the Diels-Alder cycloaddition.2 A vari-

ety of methods exist for the construction of 1,3-dienes.3 How-

ever, the synthesis of highly functionalized 1,3-dienes is still 

challenging. In particular, there are only few general methods 

for the synthesis of dienes bearing a carbinol function at the  

position of the conjugated system, despite the fact that these 

compounds are versatile building blocks in organic synthesis.4 

One of the main strategies is the addition of organometallic al-

lenyl reagents (M = Si, Sn, B, Cr) to carbonyl compounds 

(Scheme 1A, Eq. 1).4c-d, 5 This approach can also be performed 

enantioselectively. Other reported methods are the enyne me-

tathesis of propargylic alcohols (Scheme 1A, Eq. 2),6 and the 

homologation of epoxybromides with sulfur ylides (Scheme 

1A, Eq. 3).7 However, all these methods are mostly used for the 

synthesis of simple 1,3-butadien-2-yl carbinols, while more 

substituted dienes are rarely accessible. Therefore, the develop-

ment of new methods for the synthesis of more substituted 

dienyl carbinols would be highly desirable. 

Cyclopropenes are the smallest cyclic alkenes. Due to the sub-

stantial ring strain, they display unique reactivity compared to 

other strained alkenes. In particular, the ring-opening of cyclo-

propenes with the formation of vinylmetal carbene intermedi-

ates represents an important platform for the development of 

synthetic methods.8 These versatile intermediates were shown 

to undergo a variety of transformations including cyclopropa-

nation of alkenes (Scheme 1B, Eq, 1),9 carbene-carbene cou-

pling (Scheme 1B, Eq. 2),10 and C-H and X-H insertions 

(Scheme 1B, Eq. 3).11  

 

 

 

Scheme 1. a) Synthetic approaches towards 1,3-dien-2-yl 

carbinols. b) Generation and reactivity of vinyl metal car-

benes from cyclopropenes. c) Pt-catalyzed isomerization of 

cyclopropenes to 1,3 – dienes. 
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1,3-Dienes can be considered as the isomers of cyclopropenes, 

and are more stable due to the absence of strain. Surprisingly, 

only few substrate-specific examples for the energetically-fa-

vored catalytic isomerization of cyclopropenes to dienes have 

been reported: Zhi-Bin Zhu and Min Shi reported a cascade 

isomerization/Diels-Alder cycloaddition of 1-aryl,2-alkenylcy-

clopropenes.12 During completion of our work, the group of Ru-

ben observed the isomerization of cyclopropenyl silane to the 

corresponding diene product under Pt catalysis as an undesired 

side reaction.11d Such isomerization, if performed in a control-

lable manner, would be highly useful for the synthesis of 1,3-

dienes, in particular valuable 1,3-dien-2-yl carbinols. Herein, 

we report our studies on the platinum-catalyzed isomerization 

of 3,3-disubstituted cyclopropenylcarbinols, easily accessible 

from addition of cyclopropenyllithiums to carbonyl com-

pounds,13 to highly substituted conjugated dienes (Scheme 1C). 

Our group recently became interested in the development of 

new synthetic methods involving cyclopropenes. While explor-

ing reactions of platinum complexes with cyclopropenyl-

carbinol 1a we observed the formation of the unexpected diene 

product 2a (Table 1, entry 1). Inspired by this result, we decided 

to optimize this transformation. First, different platinum cata-

lysts were examined, and only PtBr2 gave comparable results 

(Table 1, Entries 2-5). Then, different solvents were examined 

for both PtCl2 (for the results see the SI) and PtBr2 (Table 1, En-

tries 6-8). The reaction using PtBr2 in DCE gave the best yield 

of 60% (Entry 8). Fine-tuning of the reaction temperature and 

the concentration resulted in a slight improvement of the yield 

up to 69% (Table 1, Entry 9). When the reaction was performed 

with 5 mol% of the catalyst, it was difficult to obtain reproduc-

ible results. More reliable yields were obtained using 10 mol% 

of the catalyst. 

Table 1. Optimization of the Pt-catalyzed isomerization of 

1a. 

 

Entry Catalyst Solvent yieldb 

1 PtCl2 Toluene (0.1 M) 55% 

2 PtBr2 Toluene (0.1 M) 51% 

3 PtI2 Toluene (0.1 M) 14% 

4 PtCl4 Toluene (0.1 M) 6% 

5 PtCl2(PPh3)2 Toluene (0.1 M) 0% 

6 PtBr2 Acetone (0.1 M) 37% 

7 PtBr2 MeCN (0.1 M) 44% 

8 PtBr2 DCE (0.1 M) 60% 

9c PtBr2 DCE (0.05 M) 67% 

a The reactions were performed on a 0.1 mmol scale. bThe yield 

was determined by 1H NMR of the concentrated reaction mixture 

using CH2Br2 as an internal standard.c The reaction was performed 

at 70 °C. 

With the optimized conditions in hand, we moved to the explo-

ration of the scope of the transformation (Scheme 3). First, the 

reaction of the model substrate 1a was scale up to a 0.4 mmol 

scope scale with subsequent isolation of product 2a by column 

chromatography. A 17% decrease in yield was observed, spec-

ulatively due to instability of the product during purification. 

We then decided to vary substitution on the aromatic ring. Prod-

uct 2b bearing a methoxy-substituted arene was obtained in 

50% yield. Product 2c arose in 62% yield from bromobenzene 

substituted cyclopropene 1c. Remarkably, the reaction  starting 

from 1 gram of  1c resulted in 61% yield of 2c. To our delight, 

aliphatic alcohols also performed well in the reaction. Moreo-

ver, the products demonstrated better stability with no losses 

observed during purification. Products 2d and 2e were obtained 

in 74% and 79% yield respectively. An acetal group was toler-

ated as shown in the formation of diene 2f. A Boc-protected 

amine did not interfere with the reaction, and product 2g was 

obtained in 42% yield. Moreover, cyclopropenes 1h and 1i, de-

rived from the addition of dimethylcyclopropenyllithium to nat-

urally occurring citronellal and menthone can also be trans-

formed to the corresponding 1,3-dienes 2h and 2i. Substitution 

at the aliphatic carbon of the cyclopropene can also be varied. 

Starting from various spirocyclic cyclopropenes, more complex 

dienes 2j-m were obtained in 46-98% yield. Finally, we could 

demonstrate that a free alcohol is not necessary for the reaction: 

TBS-protected dienol 2n was obtained in 77% yield. It is inter-

esting to note, that the yield of the protected alcohol product is 

even higher, presumably due to a slower decomosition of the 

product during the reaction and purification.  

Scheme 3. Substrate scopea 

 

To demonstrate the utility of the products we performed first a 

Diels-Alder cycloaddition of diene 2n with maleic anhydride, 

resulting in the formation of cyclohexene 3 in 69% yield 

(Scheme 4, Eq. 1). Furthermore, hetero-Diels-Alder cycloaddi-

tion reaction of 2n with nitrosobenzene gave heterocycle 4 in 

61% yield as a single regioisomer (Scheme 4, Eq. 2).  
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Scheme 4. Product modifications 

 

 

 

After careful examination of the literature14 we propose the fol-

lowing mechanism (Scheme 5a): after coordination of the plat-

inum to the cyclopropene double bond (complex I), ring-open-

ing occurs with the formation of vinyl platinum carbene species 

II (Path A).15 Such sequence appears to be highly probable due 

to the π-philicity of platinum complexes.16 However, an oxida-

tive addition of the platinum complex onto the C-C bond, fol-

lowed by cycloreversion of metallacyclobutane intermediate III 

(Path B), resulting in the same metal carbene intermediate II 

cannot be excluded at this stage.17 Carbene II then undergoes 

pericyclic [1,5] - σ-bond rearrangement, resulting in platinum 

hydride intermediate IV.18 Intermediate IV finally leads to the 

product and regenerates the catalyst through reductive elimina-

tion. To further support the proposed catalytic cycle, we per-

formed isotope labeling studies. Deuterated cyclopropene 5 was 

prepared in 6 steps from d6-acetone (see SI for the preparation) 

and subjected to the reaction conditions. To our delight, the deu-

terated product 6 was formed selectively, providing strong sup-

port for the proposed mechanism. To the best of our knowledge 

such pericyclic [1,5]- σ-bond rearrangement is a unique feature 

of vinyl platinum carbenes, which has not yet been reported 

with other transition metal complexes.  

In summary, a protocol for the Pt-catalyzed isomerization of cy-

clopropenes to 1,3-dienes is reported. The transformation re-

sulted in the formation of highly substituted 1,3-dienyl car-

binols. The utility of the products was demonstrated by two dis-

tinct Diels-Alder cycloadditions. Isotope labeling studies sup-

ported the formation of a Pt-carbene intermediate, which under-

went [1,5]-hydride shift. So far this rearrangement was only re-

ported as a minor and undesired pathway in Pt-catalyzed trans-

formations. We hope, that our work will attract more attention 

to this unique elementary step, which can be used in the devel-

opment of diverse synthetic transformations. 

 

Scheme 5. Proposed mechanism and isotope labeling studies 
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