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Abstract

Current de novo drug design models face one crucial challenge: a disparity between the user’s expectations and the actual
output of the model in practical applications. Tailoring models to better align with chemists’ preferences is key to overcoming
this obstacle effectively.
While interest in preference-based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool
currently exists that enables the collection of standardized and chemistry-specific feedback. Metis is a Python-based open-
source graphical user interface (GUI), designed to solve this and enable the collection of chemists’ detailed feedback on
molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly interface for
annotating preferences and specifying desired or undesired structural features. By providing chemists the opportunity to
give detailed feedback, allows researchers to capture more efficiently the chemist’s implicit knowledge and preferences. This
knowledge is crucial to align the chemist’s idea with the de novo design agents. The GUI aims to enhance this collaboration
between the human and the "machine" by providing an intuitive platform where chemists can interactively provide feedback
on molecular structures, aiding in preference learning and refining de novo design strategies. Metis integrates with the
existing de novo framework REINVENT, creating a closed-loop system where human expertise can continuously inform and
refine the generative models.
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1 Introduction

De novo drug design, a process of creating novel molecular struc-
tures with desired biological properties, stands as a cornerstone in
the automation of the drug discovery process.[1] It often makes
use of reinforcement learning to iteratively optimize molecules
to achieve predefined objectives, such as efficacy and safety
profiles.[2, 3] Reinforcement learning (RL) is a paradigm in ma-
chine learning that involves training agents to make sequences of
decisions in an environment to maximize a cumulative reward. RL
has demonstrated remarkable success across a wide range of appli-
cations outside of chemistry, enabling agents to learn highly com-
plex behaviors.[4–6] A key to the successful training of an RL agent
lies in the design of a well-defined reward function, which serves
as a guide for the agent to achieve desirable behaviors. Without a
carefully crafted reward function, the agents might not converge to
desired behaviors. Additionally, there is a risk of reward exploita-
tion and hacking, where the agent may find unintended shortcuts
to maximize its rewards, leading to an agent maximizing the re-
ward in an undesirable fashion.[7, 8]

Creating a well-specified reward function is not only difficult as
it requires a deep understanding of the task at hand, but the trans-
lation of that domain expertise into a parametric function used to
compute the reward can pose a challenge. In many cases, domain
experts struggle with the translation part, as they have a good idea
of what an acceptable solution looks like, but they are not able
to translate this into an explicit function.[9] This leads to the re-
searcher having to spend extensive time on reward engineering, to
create a reward function that enables the agent to learn the desired
behavior.

One solution to the problem can be found in Human-in-the-
loop (HITL) Reinforcement Learning.[10] Here somewhere in the
training loop, human behavior or feedback is used to better align
the agent’s behavior with the human’s expectations. An effec-
tive solution to that problem involves learning the policy implicitly
through methodologies such as imitation learning and behavioral
cloning.[11, 12] In these approaches, the agent learns by imitat-
ing the actions of an expert, allowing it to grasp the nuances of the
task without explicitly defining a reward function. An alternative
strategy is inverse reinforcement learning, by inferring the under-
lying reward structure from observed expert behavior, the system
learns a reward model that should match more closely with the
expectation.[13] Lastly, preference learning can be used to actively
incorporate human feedback into the RL training loop.[9] This in-
tegration can occur directly, as demonstrated by methods like Deep
Preference Optimization (DPO)[14], or indirectly through the cre-
ation of a reward model based on human feedback.[15] In most
applications, the user ranks two or more outputs by their prefer-
ences and iteratively the model aligns with the expectations of the
user

In many popular de novo drug design frameworks, the chemist
must also express his preferences in the form of a parametric re-
ward function, that describes the properties that chemists expect
the generated molecules to have.[16] Chemists can struggle in
defining well-specified reward functions. Organic and medicinal
chemists are often not overly familiar with potential molecular de-
scriptors that can be used to create a reward function. Additionally,
they are not trained to think about molecules as a sum of individ-
ual properties. Rather they evaluate the quality of molecules more
holistically by looking at the structural formula. This leads to a sit-
uation in which the reward functions produce molecules that are
not aligned with the ideas of the chemists, and as a result, exten-
sive manual cleaning and filtering of the generated molecules is

necessary.
In generative chemistry, preference learning has been applied to

mitigate the underspecification of reward functions. For instance,
projects like MolSkill leverage human preferences to guide the gen-
eration of molecules.[17] A different study uses the liking or dislik-
ing of molecules to extract which property ranges are acceptable
to chemists.[18] However, chemists often possess nuanced opin-
ions about molecules, extending beyond the binary decisions of
liking or disliking. They can provide valuable and specific feed-
back on properties and substructures, enabling a more nuanced
understanding of the desired molecular characteristics. Collecting
such specific feedback cannot only align the de novo design agent
with human preferences, but in the long-term one can elucidate
the implicit knowledge and experience of the chemist.

To capture this nuanced feedback from chemists, we have de-
veloped Metis, a user interface that facilitates the integration of
specific and detailed human feedback into the RL process. Metis
enables chemists to communicate their preferences, concerns, and
insights, thereby enhancing the RL agent’s ability to generate
molecules that align more closely with the desired properties and
characteristics. Through Metis, we aim to provide an interface
that enables practical Human-in-the-loop de novo drug Design, en-
suring a more effective and collaborative approach to molecular
generation.

With Metis, our objective is to provide a first-of-its-kind inter-
face that enables practical Human-in-the-loop (HITL) de novo drug
design. Additionally, it should serve as an initial step for research
surrounding the methodology of HITL drug design, ultimately en-
suring a more effective and interactive approach to molecular gen-
eration and closing the gap between the chemist’s expectation and
the generative model.

2 Application Overview
Metis is designed to allow (medicinal) chemists to provide feed-
back on small molecular structures. In particular, it is focused
on collecting feedback on De novo-generated molecules. While
chemists have general pre-disposition towards specific substruc-
tures, in practice the molecules are not evaluated in a vacuum.
Rather, the chemists work in the context of a specific project. Typ-
ically, these projects involve targeting a specific protein for which
an active molecule needs to be developed. Additional constraints
such as solubility, selectivity, and toxicity may be specified. Given
the dynamic nature of projects, a chemist’s preferences may vary
significantly from one project to another. Hence, it is essential to
collect and interpret feedback within the context of the project. To
account for this Metis, does not only allow the Chemist to give
feedback but can also provide project-relevant information to the
chemists. However, Metis can not only be used to collect feedback
but can also directly integrate this feedback into a de novo drug
design run, which, if done in an iterative manner should align the
generated molecules with the preferences of the user.

In the following the different components of Metis will be intro-
duced in more detail.

2.1 Feedback to de novo design

Metis can seamlessly re-integrate feedback back into a de novo
design loop. The newly generated molecules using the feedback
will then automatically be loaded into Metis and further feedback
can be given. This loop allows the chemist to iterativly fine-tune
their feedback as well as the molecular generator. Over multiple
feedback rounds, the de novo design model should more closely
align with the preferences of the chemist. Currently, Metis offers
two methods for integrating user feedback into the de novo design
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Figure 1 View of the Metis GUI.

model. One approach involves utilizing a Reward Model, a ma-
chine learning algorithm trained on the chemist’s feedback. This
model predicts whether a given molecule will be favored or disfa-
vored by the chemist, thus contributing to the refinement of the de
novo model. Presently, Metis supports all scikit-learn models
utilizing an RDKit Morgan fingerprint. In the future, we aim to
support scikit-mol[19] models, providing more customizability
in the input features.

Figure 2 Overview of iteratively aligning the de novo model with the vision
of the chemist using Metis

An alternative method is to directly build a reward function from
the feedback of the user. This reward function constitutes a sum of
multiple equally weighted properties. At its core, it tries to mini-
mize the presence of substructures flagged by the chemist as liabil-
ities and tries to maximize the presence of favorable substructures.
Additionally, it seeks to enhance similarity to liked molecules up to
a specified threshold while minimizing similarity to disliked ones.

In comparison to the reward model, the use of a reward function
enables the integration of more fine-grained feedback that goes
beyond liking versus disliking a molecule

For now, only REINVENT[20] is supported. In order to make
use of that feature, a working REINVENT Installation needs to
be present on a remote machine, to which the users have access
through an SSH key.

2.2 Molecular Display

The molecular display provides an image of the generated
molecule, for which feedback should be collected. Users can
click on atoms to highlight substructures within the molecule.
Additional tabs offer users more detailed information about the
molecule. The "Most Similar Active" tab allows users to see
known active molecules most similar to the generated one, allow-
ing chemists to judge whether the generated molecule is a sensible
extension based on already known information. Additionally, the
"Explainability" tab provides insights into why a scikit-learn[21]
QSAR model suggests a generated molecule as potentially active,
empowering chemists to make informed decisions based on the
model’s reasoning. Currently, only the RDKits[22] native explaini-
bility function developed by Riniker and Landrum[23] is available.
But an extension to other methods should be easy to implement.
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(a) (b) (c)

Figure 3 Showcase of the three windows the user can cycle through.
(a) is the default window in which the user can select atoms to highlight.
(b) the explanation window shows the per atom contribution to the pre-
diction of an ML model and (c) is the window that shows the most similar
active compounds from the training set

2.3 Target Product Profile

The Target Product Profile window can be used to present infor-
mation on the project at hand. Here are relevant properties and
their relevancy can be explained. Descriptors that relate to these
properties can also be shown for each molecule displayed.

2.4 Global Liabilities

The Global Liability window collects feedback on the overarching
properties of a molecule. These global liabilities encompass char-
acteristics not tied to specific substructures but rather arise from
the molecule’s overall structure. For instance, the molecule’s size
falls under this category. Additionally, it accommodates liabilities
challenging to assign to specific atoms, such as synthetic acces-
sibility, which can be easier to evaluate globally. Chemists can as-
sess each property showcased and determine if the molecule aligns
with their conceptualization of it or not. Crucially, within this win-
dow, chemists can provide feedback on their overall preference,
whether they like or how much they like this molecule.

2.5 Local Liabilities

Local Liabilities refer to liabilities of molecules that can be directly
mapped to specific local substructures. Users have the flexibility
to toggle between different liabilities they wish to highlight within
the molecule. By selecting atoms in the molecular display, these
substructures can be associated with the corresponding liability,
each distinguished by a unique color. Additionally, users can cre-
ate new labels, not predefined, by specifying their concerns for a
particular substructure in a text field. Not technically a liability,
but by default Metis also provides the chemist the option to high-
light substructures that they like. The chemist can also make a
distinction of whether the feedback he provides is feedback that
is relevant only to the current project, or whether the feedback
is generally valid across many projects. The highlighted substruc-
tures are stored and saved by recording the atom indices of high-
lighted atoms, additionally, the substructures are directly mapped
to a SMARTS pattern that is also saved. Next to the atom and
bond type, the SMARTS pattern also recorded ring membership
and the number of attached hydrogens for each atom. To ensure
that adequate information is recorded, the SMARTS pattern is ex-
panded to also include all atoms that are directly connected to the
highlighted substructure. This way the feedback of the chemist
can more adequately be saved. The significance of this approach
becomes evident when considering examples such as distinguish-
ing between amides and ketones. If a chemist is dissatisfied with a
ketone, they are likely to flag the atom and the double-bonded car-
bon but may overlook the two additional carbons. Further down
the line, this can lead to desirable amides being flagged as lia-

bilities. By recording the expanded environment of a highlighted
substructure, such oversight is mitigated, ensuring that chemists’
feedback is accurately represented.

2.6 Additional Features

In the navigation bar at the bottom of the GUI, multiple additional
helpful buttons are provided. Most importantly, the "Next" and
"Back" button allow the users to switch between molecules that are
supposed to be evaluated. The "Edit" button will open a molecular
editor in a separate window. The editor can be used by the user to
suggest an alternative molecule to the one that is currently to be
evaluated. The editor will open with the current molecule already
loaded. The molecular editor that is used is the rdEditor[24]
Changes made to the molecule in the editor will then be stored
separately in the backend. The "History" button will also open a
separate window, in which the chemist can scroll through the al-
ready evaluated molecules. Lastly, the "Send" button, will start a
new de novo run on a remote machine using the feedback provided
by the Chemist. A more detailed description is found in the follow-
ing section.

3 Customizability
Metis is designed to be customizable through a yaml file, in which
the users can specify which information to show to the chemist,
and what kind of feedback can be given by the chemist. The exact
liabilities can be changed, but also complete GUI elements can be
removed if needed. A complete list of all settings and their use,
together with some examples are provided with the GitHub Repos-
itory. The examples are designed around a fictitious drug design
project around designing a MAPK10 (JNK3) kinase inhibitor. For
this, initial molecules were generated with REINVENT. The gener-
ated molecules as well as the models are provided with examples.
The examples provided three different setup files to cover different
use cases and complexities in setting up the GUI.

1. UI Only Example In this example, Metis is only used to col-
lect feedback for generated structures. No models are re-
trained and no de novo run can be started.

2. Reward Model Example In addition to setting up the GUI,
here the feedback is used to directly train the reward model.
However, still, no de novo run can automatically be started.
This setup can be useful, in scenarios where one is only inter-
ested in building a reward model or the reward model shall
be used in a different de novo environment.

3. De Novo Loop Example This example showcases all the func-
tionalities of Metis. The user feedback is collected, a reward
model is trained and subsequently used to start a de novo run
using REINVENT on a remote machine. The newly generated
structures are then copied and loaded into Metis. While the
other to examples can be started immediately. This exam-
ple requires REINVENT installation on a remote machine and
some files need to be transferred.

As Metis is written in Python changes to modules not "exposed"
through the yaml settings file, can also be changed by adding
additional classes that follow the design of already implemented
classes. Examples of such are classes that take care of the sam-
pling of molecules, or how the reward models are trained.

For the iterative re-training of the de novo models, one could in
theory use any de novo model. However, Metis does soft-lock users
to use REINVENT. The limiting factor is that no unified standard
for de novo design tools has been proposed or adopted. Thus, most
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models require different setups with different configuration files,
which then return their results in different file formats. This makes
it difficult to ensure operability between different models. While
it is possible to use an alternative to REINVENT, it would require
significant modifications by the user to the existing code of Metis.

4 Implementation
Metis is written in Python and relies at its core on three libraries.
PySide2[25] is a Python implementation of the Qt Framework and
is used to create the Graphical User Interface (GUI) a user can
interact with. The molecular drawing, highlighting and editing
capabilities are provided by rdEditor[24]. Additionally, RDKit is
used to manipulate, and save molecular structures and informa-
tion. Further core libraries in use are pandas, numpy, and scikit-
learn.

Figure 4 gives an overview of how the different parts of Metis
come together. The interface the user can interact with is created
using the aforementioned PySide2 and rdEditor. Molecules and
their associated feedback reside within a custom extension of a
pandas data frame. This specialized data frame efficiently stores
diverse forms of feedback and translates between atom indices
and their corresponding SMARTS structure representations. The
molecules presented to the user are sampled from an initial set of
molecules stored in a separate file.

The "Reward Model Trainer" class handles both the training of
the reward model and the creation of the reward function. If a
QSAR Model exists that needs fine-tuning with user feedback, the
trainer loads the QSAR model along with its original training data
and merges it with the obtained feedback. Subsequently, the model
undergoes re-training using the combined dataset. In the absence
of an initial model, training commences from scratch.

For a de novo run, the process involves initializing a "De Novo
Runner" class instance on a separate core. This runner then gener-
ates input files for REINVENT and transfers them, along with the
updated model in a "pickle" format, to the remote location via SSH.
A remote run is then initiated using SLURM. The "De Novo Run-
ner" remains in a waiting state until the REINVENT run concludes,
after which it retrieves the current state of the Agent and the newly
generated molecules back to the local machine. From here, new
molecules are selected to be evaluated by the user.

In each iteration, the molecules, their feedback, the reward mod-
els, and the de novo model are saved.

4.1 Installation

Metis is an open-source software that can be downloaded from
https://github.com/JanoschMenke/metis. After setting up the
environment either manually or through the use of setup.py the
software can be used. A more detailed description of the setup and
the settings is provided on the GitHub repository, together with
examples that should let the user get started directly.

4.2 License

Metis is published under the permissive MIT license.

4.3 Limitations

The sole reliance on Python, Pyside2, and RDKit makes Metis very
adaptable for all researchers in cheminformatics and its adjacent
fields. Most researchers code in Python and are able to make
their desired changes. However, this choice for PySide/Python,
also makes Metis not currently hostable on the web. This can
be attributed to the fact that PySide2 at its core uses C++ and
currently does not have WebAssembly support. The second limita-
tion, previously mentioned, is that by default only REINVENT as

a de novo model is supported. While it is not difficult for users to
adapt the code to their model of choice, many small changes need
to be made, as Metis is written with REINVENTs file formatting in
mind.

5 Conclusion
Here we introduce Metis, a Graphical User Interface, that enables
researchers to collect feedback on generated molecules that go
beyond simple like or dislike. Chemists can assign substructures
specific liabilities, flag concerning properties, and can suggest al-
ternative molecules to the generated ones. Metis also serves as
a platform to provide chemists with sufficient information on the
task to make informed decisions on the generated compounds. As
the feedback can be directly integrated within existing de novo De-
sign loops, the GUI has its practical application and can help end-
users to fine-tune and align the generative model with their ideas
and preferences. To our knowledge, no other application exists
that provides such functionality and Metis can serve as a starting
point for the community to develop and test ideas on how elab-
orate chemical knowledge and the feedback it gives rise to, can
adequately be modeled and integrated into existing deep learning
models.
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Figure 4 Schematic overview of Metis. Yellow squares indicate modules that are only optional and only needed if Reward Models should be trained
and/or de novo model run should be started.
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