Quantum Control of Nonlinear Dynamics in Confined Fluids
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Investigating nonlinear fluid dynamics remains a challenge across physics from nanofluidics and
biophysics to astrophysics. Here we introduce a quantum/classical theoretical approach that takes
into account both quantum correlations and classical behaviour within a 2D fluid that is confined
in a 3 wm side square. We employ a modified Gross-Pitaevskii equation, encompassing many-body
interactions and confinement. This system reveals complex fluid dynamics characterised by dissipa-
tive solitons; a significant outcome is an asymptotic function that describes the soliton behaviour.
The solitons exhibit intriguing geometrical and temporal transformations, guided by subtle phase
gradients. We trace the soliton evolution from 1 to 83 ns, revealing the emergence of geometric os-
cillations in amplitude and phase angles. Under these phase gradients, solitons transition to states
with reduced amplitude and expanded spatial profiles. These results show that geometric solitons
can emerge from a quantum noisy environment, and lead us to propose an interesting possibility:
it is feasible to control and manipulate nonlinear dynamics in systems with finite-range interac-
tions and confinement using quantum control. By bridging quantum and classical dynamics, this
study links various scientific disciplines, including non-equilibrium phases of condensed matter, un-
conventional/quantum computing and advanced control of nanofluidics. From a more fundamental
perspective, this possibility of quantum control of classical behaviour advances our understanding
of physics within multidimensional Hilbert spaces.

I. INTRODUCTION portunity to bridge seemingly disparate disciplines.
From a condensed matter physics perspective, our

The role of complexity of nonlinear dynamics within ~ Work studies unexplored aspects on behaviour in the

confined fluidic systems expands across disciplines, offer-
ing an intriguing intersection of physics, mathematics,
and real-world applications [1-5]. In such systems, the
behaviour of molecules and waves defies conventional ex-
pectations, often revealing hidden complexities that chal-
lenge our understanding [6-8]. Within these confined do-
mains, solitons, those elusive solitary waves characterised
by their ability to maintain their shape as they propagate,
have emerged as prominent actors [9-15]. Their extraor-
dinary stability and widespread occurrence, from the con-
trol of mode-locked lasers to the propagation of action
potentials in cell membranes and neurons [16], makes
them the subject of widespread investigation across dis-
ciplines. In nanofluidics, where the behaviour of fluids
at the nanoscale challenges classical analysis and inter-
pretation, solitons have been hypothesized to play a role
in fluid transport and actuation [17]. In this paper we
will explore the role of quantum domains within confined
fluids; for the development of the theory we find inspira-
tion not only in the rich history of nonlinear physics but
also in the groundbreaking work on the mathematical
modelling of astrophysical singularities [18]. The com-
plexities and paradoxes that nonlinear dynamics often
present are reminiscent of the challenges Chandrasekhar
grappled with in his work [19], offering us a unique op-
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quantum /classical transition in non-equilibrium systems.
In the quantum/classical regime characteristic length
scales are large enough for quantum states to lose their
phase memory and non-unitary processes to affect the
evolution of the quantum states, giving rise to unique
phenomena which are the focus of much current atten-
tion. These phenomena are forbidden in the quantum
world described by Schrédinger’s equation and are also
disallowed in the classical regime [20]. The extension of
many-body quantum dynamics to the non-unitary do-
main has led to a series of exciting developments, in-
cluding new out-of-equilibrium entanglement phases and
phase transitions and emergent patterns of quantum in-
formation in space-time [21]. It has been shown that
in these systems quantum noise can be used as an inde-
pendent probe of the phases at accessible system sizes
[22]. In photonic systems, Bose-Einstein condensation
has revealed a rich phenomenology related to sponta-
neous coherence generation in driven-dissipative spatially
extended systems and is providing a new platform for
the study of non-equilibrium phase transitions and crit-
ical behaviours which lead to rich mean-field dynamics,
such as condensation in excited states, topological las-
ing, outward flows in localised condensates, spiralling
condensate phases around quantised vortices, diffusive
Goldstone modes and generalised Landau criteria for su-
perfluidity [23].

The solution of nonlinear partial differential (NLPD)
equations within confined spaces, particularly in the con-
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text of fluid dynamics, poses substantial computational
challenges. These equations often feature hyperbolic and
exponential terms that introduce complexities, poten-
tially leading to inaccuracies and a weakening of the
nonlinear component. Consequently, it becomes neces-
sary to seek solution forms that offer enhanced stabil-
ity, mitigating dispersion effects within the system [24].
Although various methodologies have been employed to
tackle NLPD equations [25—27], there remains a notable
gap in understanding the dependence of solutions on clas-
sical parameters. Furthermore, the visualisation of these
solutions is frequently overlooked. One prominent do-
main where such nonlinear dynamics arise is the study
of confined quantum systems, exemplified by trapped
Bose-Einstein condensates. These systems, described us-
ing the Gross-Pitaevskii (GP) equation, exhibit many-
body interactions in nanometric spaces. However, achiev-
ing such conditions often necessitates external boundary
conditions, such as intense magnetic fields or extremely
low temperatures [28]. The presence of multiple species
with anisotropic properties in these short-range interac-
tive spaces further amplifies the complexity of their dy-
namics.

The GP equation, which can be viewed as a specialised
form of the nonlinear Schrédinger equation, accommo-
dates an additional nonlinearity term to account for inter-
species interactions:

2
m%f = (—thVQ + Vext + gN|w|2> ¢ (1)
Here, V. represents the potential of the confined system,
and g = 4mh?(a/m), where a is the scattering length.
Additionally, in this work, we incorporate an extra term
related to spins to address the behaviour of vortices and
predict the system’s nonequilibrium dynamics more pre-
cisely and accurately [29, 30]. Notably, in systems fea-
turing oscillator potentials, exact solutions for the Gross-
Pitaevskii equation remain elusive [31]. Instead, solu-
tions dynamically evolve with changes in time-dependent
parameters. In this paper, we embark on a comprehen-
sive exploration of these challenges and opportunities,
presenting three distinct solutions to the GP equation
within the confines of our research domain.

II. THEORETICAL FOUNDATION

The exact solution to a Nonlinear Partial Differen-
tial Equation (NLPDE) is often constrained by specific
operating conditions, which are intricately tied to the
theoretical models governing the system and dependent
on certain parameters [32]. Attempting to encapsulate
the entire dynamics of such systems under these con-
straints is inherently complex. Dissipative solitons, on
the other hand, emerge as a viable solution within non-
linear systems, owing to the interplay between dissipa-
tive and dispersive coefficients. These solitons exhibit

1e-6-2.4816

-4.0 log (Jyl %) -2.0

FIG. 1. (1) Evolution of the asymptotic curve in the nu-
merical analysis of the 2D anisotropic Gross-Pitaevskii (GP)
equation, independent of temperature, within a square do-
main of 3 pm in length. (2) Formation dynamics of observed
solitons in the numerical analysis of the 2D anisotropic GP
equation, accounting for temperature dependency, within a
square domain of 3 pm in length. (3) Dynamics of observed
condensates in the numerical analysis of the 2D anisotropic
GP equation, considering temperature as a function of critical
density, within a square domain of 3 pm in length.

remarkable stability and find utility in diverse applica-
tions, such as mode-locked lasers [33]. It is important
to note that alterations in the aforementioned variables
significantly influence the overall dynamics of a nonlinear
system. In this discussion, we present a selection of ex-
act solutions for nonlinear systems, drawing comparisons
with Kudryashov’s method for solving higher-order dif-
ferential equations [34]. The influence of dispersive effects
on the medium has been the subject of extensive research
over the years. Lan et al. [35] have delved into the vari-
ational formalism for dispersive equations within nonlin-
ear media, revealing solitonic behaviour. Additionally,
Karpman et al. [36], have examined the stability of soli-
ton waves using the Lyapunov approach, a methodology
that we also verify in our research, as illustrated in Fig-
ure 1.1. In the context of classical physics, solving equa-
tions of motion provides a comprehensive understanding
of a system’s dynamic variables at any given time, en-
abling the depiction of its complete behaviour. However,
in the context of quantum mechanics, the equation of
motion transforms into the variation of expectation val-
ues over time for the state vector within the abstract
Hilbert space. We introduce a linear operator, repre-
sented by the unitary operator U, specifically tailored to
this quantum system. This operator accommodates the
system’s anisotropy along the x and y axes while disre-
garding couplings along the z-axis. The wave function
can be expressed as follows:

(1) = Ut to)(to) (2)
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FIG. 2. Time evolution of soliton formation in a 2D anisotropic GP Equation (Hamiltonian in Equation 12) from 1 ns to 83
ns. Subfigures 1 to 42: Show the simultaneous plotting of the soliton’s wave function amplitude (J1|?) and phase angle (8(¢)))
with a 2 ns time step.

Here, U is unitary (UTU = 1, Ut = U~!), and it corre-
sponds to the system. Ensuring the normalization con-
dition of ¥ ((¢(t)|¢(t)) = 1) at the instants t and o
respectively, we have:

Here, a represents the parameter of change throughout
the simulation. In a prior study, the annihilation opera-
tor influenced the flow-switching mechanism of nanoflu-
idic pores, as eigenstates may not be analytical signals
within the interaction space [17]. To investigate the time
evolution of such a system, we assume that the state vec-

[(t)) = U(t, to)|[v(to)) (3)  tor ¢y remains time-independent, while the spin oper-
ator Sy becomes time-dependent. Within Heisenberg’s
picture of the state vector, we have:

(B(6)] = (¥(to)|UT (¢, to) (4)

We then define a Hermitian operator H corresponding to
the unitary operator U as:

U = exp(iaH) (5)

[V (£)) = U~ (¢, to) [ (1)) (6

~~

Su(t) = U (t,t0)SU(t, to) (7)

Now, assuming coherent states and a time-dependent
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spin operator governed by the dynamic variable 8, Equa-
tion 5 becomes:

Ut(0)S;U(0) = Six 9)
U'(0)S;,U(0) = S;cosd — S; sin 6 (10)

U (0)S:.U(0) = Sy, sin + S;. cos 0 (11)
Given that we do not consider z-axis coupling interac-
tions, the differential transformation along the x-axis is

zero. The transformation along the y-axis can be ex-

pressed as: dgéy = —S;,. Subsequently, the Hamilto-

6=0
nian of a system incorporating the spin operator is given

by:

—h2v? i P dsS;
H(t) = 4| — - !
()= | =5 +glyl +2<1+W 7>+ =
'* (12)
dSi _ o4 t t
L= U 0)S.U(6) + U (0)5,U(6) + U (0)S:.U(6)
(13)
As we do not consider z-axis coupling interactions, the
above expression simplifies to dS = d%(Si cos ) Thus,

Equation 12 becomes:

—h?V? ) P dS; cos 0
H(t) = 22— _ G0 T T
0= | g o+ 5 o ) S|
S (14)
III. DYNAMICS IN A CONFINED DOMAIN

The time evolution of nonlinear dynamical systems
often yields soliton solutions through numerical anal-
ysis. Some systems also exhibit vortices, spiral solu-
tions, and asymptotic solutions. Figure 1.1 illustrates
the temperature-independent solution of nonlinear dy-
namics within a confined space. In this simulation, we
solve the Gross-Pitaevskii (GP) equation while consid-
ering the XY model within the Heisenberg picture. The
solution assumes an asymptotic form at 1 ns, which even-
tually converges to a singular point by the end of 4 ns.
Figure 1.2 presents the soliton solution within the same
mathematical framework, albeit with potential expressed

in inverse Fourier transform space. Figure 1.3 showcases
the solution for the same Hamiltonian as before, but with
additional parameters and operating conditions, includ-
ing temperature and density of states, which are func-
tionally dependent on geometry. This includes consider-
ing the relativistic wavelength and critical temperature
as functions of the density of states.

A. NLGP Solution to Solitons in Confined 2D
Space

The stochastic nonlinear Schrédinger equation [37], in-
cludes both the deterministic and stochastic components
of the Hamiltonian. This Hamiltonian introduces quan-
tum fluctuations (noise) in dispersive nonlinear systems,
leading to the formation of quantum solitons. In such sys-
tems, nonlinearity effectively balances dispersion terms,
resulting in the formation of nondispersive soliton waves
[38]. We observe both bright and dark quantum solitons
as solutions to the GP equation within the XY model.
These observations occur over a confined square domain
with a length of 3 um. A bright soliton corresponds to a
peak in the amplitude of the wavefunction, while a dark
soliton exhibits a decrease in amplitude. The results are
presented in Figure 2, covering a total period of 83 ns
with a time step size of 2 ns.

In this simulation, the effective interaction between
particles in the short-range interaction regime at the low-
est energy range is denoted as U = 4 x h?g/m, where
U(r — 7o) involves the position vectors r and r¢ of two
interacting particles. Additionally, the constants m (rep-
resenting the unitary mass of the particle), P (saturation
pumping strength of the particles) = 2, and system loss
q = 0.3 are considered. The density is expressed as a
function of the effective interaction between particles in
a two-dimensional space:

o P
ng = —_—
0=Pp q—1

Here, p denotes the particle density, and n,. is the criti-
cal density of the system. For a constant two-dimensional
potential in Fourier-transformed space, the initial bound-
ary conditions are ¢p = 1, ¢(t) = 1, where ¢(¢) repre-
sents the wave function at time ¢. Several parameters
vary in the simulation. The critical temperature (T%)
of the system, also a function of density, is given by:
T. = 3.3h%p% /mkp The relativistic wavelength X is de-

fined as: A = \/ﬁ The relativistic energy E,, is

= 1. 23[)\ The chemical potential @ is

nokl, =T

(15)

expressed as: F,
defined by: Q =
In Figure 2, the observed result of bright and dark
quantum sohtons along with their phase angle in two-
dimensional space in the system under consideration is
shown. These solitons, being prominent features of non-
linear systems, play a crucial role in understanding the
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FIG. 3. 1 - 20: Growth dynamics and nucleation of BEC with time according to equation 14 — initial time frame = 1 ns with
time steps of 1 ns and final time frame = 20 ns with time step = 1 ns.
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system’s dynamics. Bright solitons, characterised by
peaks in the amplitude of the wavefunction, are observed
in the figures as regions where the wavefunction ampli-
tude remains relatively constant. Conversely, dark soli-
tons manifest as areas where the amplitude of the wave-
function drops significantly. The presence and evolution
of these solitons provide valuable insights into how the
system responds to the interplay between nonlinearity
and dispersion. As we progress through the figures, which
span different time intervals, we witness a dynamic trans-
formation in the solitons’ patterns and interactions. At
earlier time points, we observe isolated bright solitons
with well-defined positions and amplitudes. As time ad-
vances, these solitons can merge, split, or even disappear,
reflecting the intricate interplay between various factors
influencing their behaviour. Additionally, we analyse the
phase angles associated with these solitons. The phase
angle of a soliton essentially describes the relative phase
of its wavefunction - refers to how the solitons’ phases
change spatially. The phase angle provides critical in-
formation about the solitons’ stability and their interac-
tions with other solitons or perturbations in the system.
In Figure 2.1, the bright soliton (constant amplitude)
has the most stable modulation along 2 pm and rela-
tively lower stability in the same 1 pum. In the case of
its phase angle, these two amplitudes are anti-symmetric
that is m and —= respectively. At 3 ns in Figure 2.2,
brighter solitons have appeared with prominent stability
at 2 pm as in the previous case. At 5 ns in Figure 2.3,
now the brightest soliton with at most stable amplitude
has shifted to 0 = 1 um. At 7 ns in Figure 2.4, there are
three soliton waves with similar amplitudes distributed
randomly at o = 0.7, 1, 2.9 respectively. At 9 ns in Fig-
ure 2.5, there are no bright solitons as in earlier cases.
At 11 ns in Figure 2.6, the bright solitons are observed
again and get prominent towards the centre region at 13
ns in Figure 2.7. At 15 ns in Figure 2.8 there is only a
single prominent soliton wave at ¢ = 1 pm and direction
of propagation is not clear. This single soliton wave gets
split into 2 at 17 ns in Figure 2.9. They come further at
proximity within 0.5 pum at 19 ns in Figure 2.10. Now
the collision gets higher with time as there are no more
stable solitons in the system at 21 ns in Figure 2.11. At
23 ns in Figure 2.12, wave are self strengthened to form
2 bright solitons at ¢ = 1 um, 2 um. At 25 ns in Figure
2.13, the soliton waves have moved apart to positions o
= 0.9 um, 2.9 um respectively. At 27 ns in Figure 2.14,
the solitons are at proximity as in Figure 2.10. Here they
are brighter, hence highly stable than earlier. At 29 ns in
Figure 2.15, random distribution of solitons is observed
with varying brightness. In Figure 2.16 - 2.22, the soli-
tons do not follow a trend to consider their dynamics
predictable. After a periodic interval, at 23 ns in Figure
2.23, only a single soliton wave with the highest stabil-
ity is observed. In Figures 2.24 - 2.40, the positions of
varying bright and dark solitons are random. In Figures
2.41 the collisions increase to a greater extent with dark
soliton number exceeding the bright solitons. This trend

increases further at 83 ns, where the solitons disappear
and the amplitude of the wave function diminishes. After
83 ns, the amplitude of the wave functions goes to infin-
ity and hence no solitons are observed after Figures 2.42.
Now, the existence of these localised soliton waves alone
does not guarantee the possibility of no other interaction
in the system. Hence the coexistence of mixed interac-
tion solutions along with the localized soliton waves [39]
has to be explored further.

B. Evolution of NLGP Solution to Condensates in
Confined 2D Space

We explore the dynamic growth of Bose-Einstein con-
densates (BEC), a unique quantum phenomenon, within
a confined two-dimensional space. The mathematical
framework for this exploration involves solving the Gross-
Pitaevskii (GP) equation using the XY-model in the
Heisenberg picture, employing the numerical integration
technique known as the Runge-Kutta method. The vi-
sual representation of these dynamics is depicted in Fig-
ure 3. Figure 3 provides a chronological overview of
the nucleation and development of BEC within our con-
fined system, spanning a time range from 1 ns to 31
ns. At the outset, precisely at 1 ns, we witness the ini-
tial stages of BEC nucleation along the system’s surface.
This is characterised by the appearance of localised re-
gions of condensed particles. These initial condensates
are distributed randomly across the surface, reflecting the
stochastic nature of the nucleation process in quantum
systems. As we progress to 3 ns, a fascinating transfor-
mation occurs. The initially scattered condensates begin
to self-organise, forming pairs that arrange themselves
along a symmetric ring-shaped structure towards the cen-
ter of the confined domain. This intriguing behaviour
highlights the quantum nature of BEC and the subtle in-
terplay of forces governing its dynamics. One noteworthy
aspect of this simulation is the rate of change observed
in these condensates and the damping effect experienced
by the trapped BEC. This damping, which occurs over a
time step of 2 ns, is indicative of the complex interactions
within the system and the dissipation of energy over time.
By 9 ns, the condensates have taken on a distinct ring-
shaped pattern. This ring expands linearly with time,
showcasing the dynamic nature of BEC growth within
our confined system. This section provides a compre-
hensive examination of the evolution of BEC within a
confined two-dimensional space. Through the numeri-
cal solution of the GP equation and the visualisation in
Figure 3, we gain insights into the intricate processes of
BEC nucleation, organisation, and expansion over time.
This analysis contributes to a deeper understanding of
quantum phenomena within confined systems and their
implications for various scientific and technological ap-
plications.
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IV. DISCUSSION

The control and manipulation of nonlinear dynamics
within a system featuring finite-range interactions, es-
pecially within a confined space, are known to be chal-
lenging. The molecular dynamics within such systems
often exhibit unpredictability, making it a complex task
to understand and manage. However, the findings of
our study shed light on a promising avenue for defin-
ing and manipulating nonlinear dynamics within con-
fined domains. This novel finding is highly promising
for applications spanning from the realm of nanofluidics
to the far reaches of astrophysics. The ability to compre-
hend and control these dynamics within the constraints
of a multi-dimensional Hilbert space represents a signif-
icant advancement in our understanding of natural phe-
nomena. One notable aspect of our study is the con-
cept of restructuring classical systems to yield desired
observables by exerting control over their dynamics at
the quantum level. This concept has the potential to
serve as a powerful tool for scientists and researchers
seeking to achieve specific outcomes in their experiments
or simulations. The significance of the asymptotic func-
tion showcased in Figure 1.1 lies in its representation of
the same soliton function as depicted in Figure 1.2, albeit
with potential in the inverse Fourier-transformed space.
This insight provides a valuable perspective on the in-
terplay between different mathematical representations
and their impact on the behaviour of soliton functions.
A crucial observation is the disappearance of solitons at
the 83 ns mark, which can be justified by mathemati-
cal limits. As the function approaches infinity, it does
so with the condition |¢|? approaching zero, resulting in
the solitons vanishing from the system. The evolution of
soliton waves, as evident in Figure 2, offers further in-
sights. These soliton waves transition from their initial
compact and pronounced forms to shallower and wider
configurations as their dynamics evolve over time. This
transformation is attributed to the influence of phase gra-
dients on soliton wave dynamics. While some studies

have demonstrated the generation of solitons by opti-
cally imprinting phase steps on condensate wave func-
tions [38], this phenomenon is not replicated in the con-
densates observed in Figure 3. Consequently, the growth
dynamics of these condensates were analysed, providing
a time-dependent perspective on their development. By
analysing and establishing specific operating conditions
for these observed dynamics, we open up exciting pos-
sibilities, particularly in the realm of quantum comput-
ing. Our results may pave the way for quantum com-
puters to efficiently solve nonlinear differential equations
with unprecedented precision. Such advancements hold
the potential to revolutionise fields reliant on complex
mathematical modelling and simulations, ushering in a
new era of computational capabilities. In conclusion, our
study contributes to a deeper understanding of nonlinear
dynamics within (nano)confined fluids and the potential
for control and manipulation of the fluid dynamics at the
quantum level.
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