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Modularized synthesis of small organic molecules is transforming our capacity to create medicines 
and materials. Disruptive acceleration of this molecule building strategy will broadly unlock its 
functional potential and requires integration of many new assembly chemistries. Recent advances in 
high-throughput chemistry stand to enable selection of appropriate chemical reaction conditions from 
the vast range of potential options. However, a disconnect between the rates of exploration and 
evaluation has limited progress. Here we report how intrinsic fragmentation features of chemical 
building blocks generalizes their analysis to yield sub-second readouts of reaction outcomes. Central 
to this advance was identifying that groups typically attached to boron, nitrogen, and oxygen atoms 
fragment in a specific and selective manner by mass spectrometry, enabling target agnostic analysis. 
Combining these features with acoustic droplet ejection mass spectrometry we could eliminate slow 
chromatographic steps and continuously evaluate chemical reaction outcomes in multiplexed formats. 
This allowed rapid assignment of reaction conditions to molecules derived from ultra-high throughput 
chemical synthesis experiments.  
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Increasingly optimized methods for automated iterative chemical synthesis continue to advance the 
important goal of finding new molecular functions (Fig. 1a)1,2,3. Automated synthesis of small organic 
molecules has recently reached a level of sophistication which provides on-demand access to natural 
products, pharmaceuticals, and functional materials4,5. However, whilst the cycle time of these 
processes is shrinking6, it fails to meet the requirements for efficient exploration of chemical space. 
Radical advancements in many other fields7,8,9 have arisen from combining modular platforms with high-
throughput analytics – therein contracting the time to data output and process optimization. Yet for 
small molecules asynchronous analytical processes limit progress toward this goal (Fig. 1b), so a 
significant increase in pace must be realized. 

Generalized access to chemical space will stem from incorporation of a wide range of chemical 
processes into modularized automated formats. But the inherent complexity of forming chemical unions 
suggests that the concept of “generalized” conditions for many reactions is a foregone impossibility 
because of the vast range potential coupling partners10. Accordingly, automated high-throughput 
reaction scouting11 has become the method of choice for obtaining a molecule of interest, as this allows 
multiple reaction conditions to be actioned in parallel. Despite these benefits, high-content chemical 
synthesis is analytically cumbersome on even modest scales (i.e. 2–3mins/sample by liquid 
chromatography = 2 days for ~1000 reactions)11,12,13 and whilst leading solutions for high-throughput 
analysis have broken the 1s/sample barrier, they offer limited resolution providing global rather than 
local trends14. With predictive models becoming progressively more effective for structurally aware 
condition prioritization there is a present and growing need for accurate high-content chemical reaction 
data10,15,16.  

 

Fig. 1 Loss of common chemical pieces drives rapid analysis. a, Modular chemical synthesis utilizes common 
orthogonalizing groups to reversibly attenuate reactivity during iterative assembly sequences. b, Standard methods 
for analyzing chemical reactions typically follow one-at-a-time asynchronous workflows to chromatographically 
separate desired analytes from other components. c, Orthogonalizing groups used in modular synthesis possess 
diagnostic fragmentation patterns allowing direct, simple, and sensitive extraction of analyte signals by tandem 
mass spectrometry. Diagnostic fragmentation behavior eliminates the need for chromatography allowing analysis to 
operate in a continuous and multiplexed manner. MS = mass spectrometry. 
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A common strategy for fast target independent analysis can be found in proteomics17, where the loss 
of common chemical pieces permits rapid readouts by tandem mass spectrometry. These methods 
forgo a priori information about analytes except that they contain fragmentation-compatible analytics-
enabling chemical pieces. A powerful aspect of these techniques are that common lost chemical pieces 
provide a direct means to select the desired analyte from amongst complex mixtures. Other advances 
in tandem mass spectrometry have increased the pace of reaction mixture analysis11,18,19 however 
progress in this space has not yielded generalizable solutions because of the requirement of prior 
knowledge about analytes or the need for analytical standards. 

We envisioned that the strategy of common lost chemical pieces could be readily applied to high-
throughput chemical synthesis should it be combined with modular chemical synthetic routes, because 
modular iterative chemistry universally features orthogonalizing groups attached to boron4, nitrogen20, 
or oxygen21,22 atoms (Fig. 1a). In this way, orthogonalizing groups could serve as uniform handles for 
determining reaction outcomes via tandem mass spectrometry. Enablement of precise fragment 
directed target identification would unlock simple sample multiplexing (Fig. 1c) and obviate the need 
for slow chromatographic steps, overcoming the limitations of conventional asynchronous analysis (Fig. 
1b). With this in mind, we set out to identify fragmentation behavior which would broadly underlie high-
throughput analysis of modular chemical reaction sequences. 
 
Neutral loss method development 
To identify common lost chemical pieces associated with orthogonalizing groups used in modular 
chemical synthesis (Fig. 2a), we began by generating a series of 60 (tetramethyl)methylamino diacetic 
acid (TIDA) boronates derived from Buchwald-Hartwig reactions (Extended Data Fig. 1a). 
Fragmentation analysis revealed that for 58 of the TIDA boronates the loss of 86 Daltons (Da) was the 
dominant process (Fig. 2b, Extended Data Fig. 1b). We ascribed this neutral loss to scission along the 
N-B frustrated Lewis pair4 axis releasing methyl acrylic acid. Analysis of collision energies for these 60 
boronates indicated that this 86 Da loss was a mild process (Extended Data Fig. 1c). 

Eager to explore the 
potential of TIDA boronates 
diagnostic fragmentation 
behavior to enable rapid 
analysis of reaction products 
we turned to neutral loss 
mass spectrometry23 
(Extended Data Fig. 2a). In 
neutral loss mass 
spectrometry, the first (Q1) 
and third (Q3) quadrupoles of 
a tandem mass spectrometer 
scan at a predetermined fixed 
offset, and data are collected 
when signals separated by 
this offset is detected. Using 
this method, common lost 
chemical fragments enable 
samples of different 
molecular weights to be 
analyzed without creating 
individualized analysis 
profiles (i.e. we can operate in 

Fig. 2 Fragmentation of modular building blocks enables single second 
analysis a, Orthogonalizing groups commonly employed in iterative chemical 
synthesis sequences can serve as functional handles for rapid identification via 
tandem mass spectrometry through the loss of neutral fragments. When 
combined with acoustic ejection mass spectrometry this allows 1.2 s per sample 
readout speeds. Groups commonly attached to boron (b), nitrogen (c) and 
oxygen (d) atoms exhibit fragmentation patterns enabling neutral loss acoustic 
ejection mass spectrometry (NL-ADE-MS). MS = mass spectrometry. 
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a target agnostic manner). In this way no prior information is required about the analyte of interest 
except that it contains a common fragmentable component - offering a sample density limited only by 
the resolution of the mass spectrometer. 

To efficiently execute neutral loss analysis, we coupled it with rapid sampling via acoustic droplet 
ejection mass spectrometry (ADE-MS)18,19 which allows direct introduction of nanoliter volumes into a 
mass spectrometer, eliminating any slow chromatographic steps (Extended Data Fig. 2b). Initial 
experiments using neutral loss acoustic droplet ejection mass spectrometry (NL-ADE-MS) revealed 
that the neutral loss of methyl acrylic acid from TIDA boronates was highly sensitive and linear at 
analytical concentrations (R2(avg) = 0.99) (Extended Data Fig. 2c, d). The relative signal for each 
analyte using NL-ADE-MS is a product of relative ionizability and fragmentability, so mass spectrometry 
responses could vary dramatically, nevertheless for equimolar concentrations of our 60 TIDA boronates 
their mass spectrometry responses were within a single order of magnitude (Extended Data Fig. 2d). 

Off-target loss of neutral fragments could limit the utility of NL-ADE-MS. To test this, we selected a 
group of 100 compounds from the St Jude compound collection24 spanning mW, LogP, and polar 
surface area (Extended Data Fig. 3a, b, c). Analysis of these compounds by NL-ADE-MS yielded very 
few false positives (2%, Extended Data Fig. 3d). Reported small molecule neutral loss data25,26 were 
similarly supportive that loss of 86 Da was distinctly diagnostic of TIDA boronates. 

Conventional liquid chromatography mass spectrometry (LC-MS) workflows involve creation of 
customized profiles to accurately identify the signals of interests. On an individualized basis this is 
practical and achievable, but in the context of high-throughput synthesis this customized approach 
transitions from enabling to limiting. Contrastingly, the direct identification of small molecules by neutral 
loss sets the stage for a generalized analytical method should a single set of parameters be applicable. 
To validate the generality of our approach, we established that NL-ADE-MS data were largely 
independent of fragmentation parameters27,28 (Extended Data Fig. 4a, b), free from sample-to-sample 
cross-talk (Extended Data Fig 4d), and were uninfluenced by the contents of the sample mixture 
(Extended Data Fig. 4e). Additionally, we could accommodate samples spanning a wide range of 
molecular weights (200 Da) and increase the pace of sample-to-sample analysis from 3 to 1.2 seconds 
without loss of performance (Extended Data Fig 4c, f). Collectively these data validated that NL-ADE-
MS has capacity to allow large groups of small molecules, related only by their propensity to lose 
chemical fragments, to be analyzed in a single pass. 
 
Simplified parameterization 
Considering that our intention in developing high-throughput analysis was to simplify the interrogation 
of reaction conditions, we recognized that tandem mass spectrometry analysis of starting materials 
could inform NL-ADE-MS method development (Fig. 2a). Accordingly, we found that tandem-mass 
spectrometry data for halo-TIDA boronate building block 1 was sufficient to generate the parameters 
for developing a NL-ADE-MS method (Fig. 2b). In addition to boron atoms, nitrogen and oxygen atoms 
serve as common connecting points for modular small molecule synthesis (Fig. 1a). Tandem mass 
spectrometry analysis of a building blocks 2 and 3 containing the nitrogen orthogonalizing group tert-
butyloxycarbonyl (Boc, Fig. 2c)29, and the oxygen orthogonalizing group tetrahydropyran (THP, Fig. 
2d)30 showed that each readily lost diagnostic chemical fragments (56 and 84 Da respectively) and 
were thus NL-ADE-MS compatible. Subsequent NL-ADE-MS analysis revealed that these common 
functional handles enabled single sample per second analysis by loss of chemical fragments (Fig. 2c, 
d). These types of fragmentation signatures are certainly intrinsic features of many other chemical 
functional groups and building blocks, however, to keep this study bounded we chose to demonstrate 
the utility of this strategy by focusing on functional groups pertinent to iterative assembly sequences. 
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Reaction mixture assessment 
To test the performance of NL-ADE-MS at scrutinizing the outcomes of chemical reactions derived from 
orthogonalized boron, nitrogen, and oxygen atoms we performed a series of miniaturized Buchwald-
Hartwig reactions11. Using a range of halogenated building blocks [BTIDA (1), Boc (2), and THP (3)], 6 
aryl amines (4-9), and 64 reaction conditions (4 palladium catalysts, 4 bases, 4 solvents) we generated 
384 chemical reactions for each functional handle (Fig. 3a). We were able to leverage the fragmentation 
signatures associated with TIDA boronates (10-15), Boc amines (16-21), and THP alcohols (22-27) to 
ascertain the relative product output of 384 chemical reactions in only 7.68 minutes each by NL-ADE-
MS. This took an equivalent amount of time as collecting two LC-MS samples. NL-ADE-MS data 
displayed excellent point-to-point correlation against LC-MS (R2 = 0.89-0.95) (Fig. 3b, c, d, Extended 
Data Fig. 5). Given the high accuracy of our method fine-grained features were readily distinguished 

Fig. 3 Generalized determination of chemical reaction outcomes. a, Loss of common chemical pieces enables 
the rapid analysis of chemical reaction products featuring orthogonalizing groups for boron (b), nitrogen (c), and 
oxygen (d) by using NL-ADE-MS. Optimal reaction conditions and solvents could be assigned using NL-ADE-MS 
across 384 chemical reactions spanning 64 separate reaction conditions by comparison of relative reaction 
outcomes, requiring only 7.68 minutes of data collection. LC-MS, liquid chromatography mass spectrometry; 
DMSO, dimethylsulfoxide; DMF, dimethylformamide; DMAc, Dimethylacetamide; NMP, N-Methyl-2-pyrrolidone; Ph, 
Phenyl; Ms, Methane sulfonyl; MTBD, 7-methyl-1,5,7-triazabicyclo(4.4.0)dec-5-ane; tBu, tertiary butyl; Cy, 
cyclohexyl. 
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across all 64 possible reaction conditions. Using these data, we were able to accurately derive the 
optimal solvent for a specific substrate class by examining the average relative product intensity (Fig. 
3 b, c, d). From here we could then select the best performing catalyst and base combination in all 
cases. Additional trends could be extracted from these data, for example, NL-ADE-MS analysis of THP 
containing products (22-27) selected the same best palladium catalyst (tBuXPhos Pd G4) but was 
insensitive to the choice of base with all 4 bases clustering within 4% relative output (Fig. 3d).  
 
Multiplexed rank ordering of reaction conditions 
Mixing of multiple analytes within a single sample (multiplexing) is an efficient strategy to increase 
throughput. As NL-ADE-MS directly extracts peaks of interest based on common lost fragments, 
sample multiplexing is simple provided analytes are distributed in the mass domain (Fig. 1c). By pooling 
prior test compounds, we found we could mix 8 analytes together to achieve a rate of 7 
samples/second. 

Armed with a rapid multiplexed analytical pipeline we sought to pressure test NL-ADE-MS across 
structure property space. We recognized that direct synthesis of a diverse suite of 100s of products in 
a highly pure form would be impractical. Instead, we leveraged high throughput miniaturized chemical 
synthesis to efficiently access a large array of chemical reactions. We defined a bounded but large 
region of chemical space using ~600 aryl amine building blocks from our in-house reagent collection 
and 8 halo-TIDA boronate building blocks (1, 28-34). This would cover ~5000 prospective products 
arising from Buchwald-Hartwig couplings. From these 600 amines we selected 96 distinct structures 
(35-130, Extended Data Fig. 6a). Using automated liquid handling we prepared the 768 target products 
in a high-throughput manner (Fig.  4a). To assess the reaction condition ranking potential of NL-ADE-
MS we actioned 16 different conditions (4 palladium catalysts and 4 organic bases, Extended Data Fig. 
6b, c) for each target, for a total of 12288 reactions across thirty-two 384-well microtiter plates. 

   Multiplexing was achieved by using acoustic liquid handling, allowing all 12,288 reaction mixtures 
to occupy a single 1536-well microtiter analysis plate in an 8-plex format. At a pace of 1.2 
seconds/sample, reaction outcome data were collected in just 32 minutes by NL-ADE-MS. Collecting 
this same data set using conventional LC-MS methods would require 25.6 days of continuous operation 
at 3 min/sample. To rapidly process NL-ADE-MS data we developed a software package which allows 
data extraction and analysis in the time domain rather than generating extracted ion chromatograms. 
In this way data were directly and accurately assigned to their parent wells. Comparison of individual 
and multiplexed NL-ADE-MS data provided near identical results (R2 =0.98), allaying concerns arising 
from analyte crosstalk within these multiplexed samples (Extended Data Fig. 7). 

The motivation for generating high-throughput reaction data is extraction of key features to guide 
decision making when navigating chemical space. As a case study to evaluate the performance of our 
high-throughput data we envisaged three plausible objectives of these types of high-content 
experimental campaigns which could be applied to many different reaction types: a discovery chemistry 
approach for diversifying a single chemical scaffold (Scenarios 1 and 2), and a search for the highest 
output conditions for a particular reaction across large areas of chemical space i.e. generalized 
conditions (Scenario 3). 
Scenario 1: Conditions for a specific halide. Examination of halo-TIDA boronate 1 across all 96 amines 
(35-130) accurately prioritized XantPhos Pd G4 and DBU as the optimal reaction conditions when 
compared against LC-MS data which showed excellent rank ordering efficiency (R2= 0.98) (Fig. 4b). 
Feature extraction for TIDA boronates 28, 29 and 30 was similarly effective (Extended Data Fig. 8). 
Scenario 2: Conditions for a specific amine.  Analysis of amine 82 against all 8 TIDA boronates (1, 28-
34) revealed excellent performance (R2 = 0.98) and selected the best reaction condition as tBuXPhos 
Pd G4 and DBU (Fig. 4c). Data across 24 amines (59-82) showed excellent correlation (R2(avg) = 0.91) 
and from these data we were able to directly identify the best conditions in one third of cases. 
Recognizing that an important outcome of such studies is to rapidly identify high-output reaction 
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conditions we found that for 92% of NL-ADE-MS experiments the best condition was within 5% of the 
top 3 conditions (Extended Data Fig. 9). 
Scenario 3. Interrogating generality. Evaluation of large volumes of reaction conditions can maximize 
the aggregated product output of a synthetic method by identifying general conditions31. Direct 
comparison of our NL-ADE-MS data against a practically accessible subset of LC-MS data (50%) 
revealed uniformly consistent behavior, prioritizing conditions across 384 potential reaction products 
(Fig. 4d). Here, our NL-ADE-MS data rank ordered catalysts and bases in a near identical manner to 
LC-MS (R2 = 0.99) correctly identifying tBuXPhos Pd G4 and MTBD as optimal.  

Encouraged by the performance of TIDA boronates in multiplexed analyses we re-visited our data 
for products derived from Boc amine 2 (16-21) and THP alcohol 3 (22-27) in a 6-plex format. In this 
multiplexed format we obtained reaction outcome data for 384 reactions in only 1.28 minutes. 
Multiplexed data matched individual data (Extended Data Fig. 10), selecting the same best catalysts 
and bases, affirming the generality of lost common chemical pieces for enabling rapid readouts of 
chemical reactions.  

Data availability 
All data are available in the main text of the supplementary materials. 

Fig. 4 Ultra-high throughput multiplexed analysis of chemical reaction mixtures. a, Automated liquid handling 
enabled creation of 12,288 reaction mixtures spanning 738 potential chemical products. Acoustic liquid handling 
allowed analytical samples to be reformatted into a single 1536-well plate for analysis. Multiplexed NL-ADE-MS 
determined the relative outcomes of these 12,288 reactions in 32 minutes. Comparative LC-MS data revealed that 
multiplexed NL-ADE-MS selects the best reaction conditions with comparable efficiency for specific halides (b), 
amines (c), or across substrates (d). Data point color scheme represents each of 16 separate reaction conditions, 
see supporting information for additional details. LC-MS = liquid chromatography mass spectrometry. 
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Code availability 
Scripts associated with data extraction from NL-ADE-MS experiments are available on request. 
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Extended Data Fig. 1 Synthesis and fragmentation analysis of TIDA boronates. a, A set of 60 TIDA boronates 
(10-15, S31-S84) were prepared from halo-TIDA boronates (1, S1-S6) and amines (4-9, S7-S30) via Buchwald-
Hartwig coupling reactions and purified by preparative reverse phase liquid-chromatography mass spectrometry. b, 
Product ion scanning tandem mass spectrometry analysis of these 60 TIDA boronates (10-15, S31-S84) revealed 
consistent loss of 86 Da. c, Collision induced dissociation of these 60 TIDA boronates (10-15, S31-S84) follows a 
mild and consistent collision energy. 
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Extended Data Fig. 2 Neutral loss analysis of TIDA boronates. a, Schematic representation of neutral loss 
mass spectrometry, analyte MS data are collected only when parent Q1 ions and daughter Q3 ions are 
separated by the mass of the desired neutral lost fragment.  b, Schematic representation of acoustic droplet 
ejection mass spectrometry. Nanoliter droplets are directly introduced into a mass spectrometry via acoustic 
ejection into an open port interface. c, Neutral loss acoustic droplet ejection mass spectrometry (NL-ADE-MS) 
data for 60 TIDA boronates (10-15, S31-S84) using loss of 86 Da fragments shows a linear response R2(avg) = 
0.99. d, Relative signal intensity for NL-ADE-MS data collected for 60 TIDA boronates (10-15, S31-S84) at 
equimolar concentrations (10 uM) revealed all signals to be within approximately 1 order of magnitude. 
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Extended Data Fig. 3 Evaluation of false positive signals arising from NL-ADE-MS. 100 diverse compounds 
spanning a, mW, b, LogP, and c, polar surface area were selected to validate the specificity of TIDA boronate 
fragmentation. d, NL-ADE-MS analysis of these 100 compounds revealed only two weak hits for the neutral loss of 
86 Da demonstrative of high specificity of TIDA boronate fragmentation. 
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Extended Data Fig. 4 Neutral loss acoustic droplet ejection mass spectrometry method optimization. a, 
Collision energy scales with molecular weight across our 60 TIDA boronate test set, heavier molecules will require 
more kinetic energy to effect a similar fragmentation efficiency. b, To test the influence of non-idealized collision 
energies we grouped TIDA boronates in narrow and wide molecular weight ranges. NL-ADE-MS data were 
collected for scan ranges covering each grouping using the averaged collision energy for each group. Peak 
product signal intensities were tested at the wide range for 36 V and 42 V collision energy. Comparison against 
narrower scan range data with range optimized collision energies showed that non-idealized collision energies 
minimally impacted the average signal intensity across our TIDA boronate test set. c, Influence of mass scan 
range on sample to sample NL-ADE-MS data collection. d, Alternating injections of either TIDA boronate 1, Boc 2, 
or THP 3, and blank wells allowed assessment of carry-over. Peaks separated by 1.2s demonstrated no 
significant residual signal. e, Authentic samples of TIDA boronate S6 were mixed with reaction mixture 
components derived from Buchwald-Hartwig coupling reactions and analyzed by NL-ADE-MS. Signal intensities 
were essentially identical in the presence or absence of these reaction components, demonstrating that matrix 
effect have limited influence on NL-ADE-MS. f, Assessment of the optimal injection volume for NL-ADE-MS 
analysis. Using boronate S2 ejection of a single 2.5 nL droplet was the most reproducible, whereas ejection of 10 
nL (4 droplets) was more variable. 
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Extended Data Fig. 5 Head-to-head comparison of NL-ADE-MS and LC-MS. Relative product outputs were 
determined for products derived from building blocks a, 1, b, 2, and c, 3 by both NL-ADE-MS and LC-MS. These 
data show excellent agreement between NL-ADE-MS and LC-MS affirming the ability of NL-ADE-MS to rapidly 
acquire accurate reaction outcome data. Each individual 384-well plate required only 7.68 minutes of data 
collection by NL-ADE-MS, whereas the equivalent LC-MS data set needed 19.2 h. 
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Extended Data Fig. 6 Amine selection for high-throughput experimentation. a, Representative t-SNE plot 
showing distribution of amines across structure property space, see supporting information for selection 
parameters. Selected amines shown in blue, non-selected cluster members in grey. b, Structures of palladium 
catalysts utilized in high-throughput experiment. c, Structures of organic bases utilized in high-throughput 
experiment. Ad, adamantyl; t-Bu, tertiary-butyl; iPr, isopropyl; Ms, Methane sulfonyl; Ph, phenyl. 

https://doi.org/10.26434/chemrxiv-2024-dkvgt ORCID: https://orcid.org/0000-0002-2279-7538 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-dkvgt
https://orcid.org/0000-0002-2279-7538
https://creativecommons.org/licenses/by-nc-nd/4.0/


   

Extended Data Fig. 7 Comparison of multiplexed and individual NL-ADE-MS data. a, Boronate 1. 
b, Boronate 28. c, Boronate 29. d, Boronate 30.  e, Boronate 31. f, Boronate 32. g, Boronate 33. h, Boronate 34. 
Colors reflect individual specific reaction conditions. 

R² = 0.99

0

20

40

60

80

100

0 20 40 60 80 100

N
L-

AD
E

-M
S 

m
ix

tu
re

 (%
)

NL-ADE-MS individual (%)

R² = 0.98

0

20

40

60

80

100

0 20 40 60 80 100

N
L-

AD
E

-M
S 

m
ix

tu
re

 (%
)

NL-ADE-MS individual (%)

R² = 0.98

0

20

40

60

80

100

0 20 40 60 80 100

N
L-

AD
E

-M
S 

m
ix

tu
re

 (%
)

NL-ADE-MS individual (%)

R² = 0.99

0

20

40

60

80

100

0 20 40 60 80 100

N
L-

AD
E

-M
S 

m
ix

tu
re

 (%
)

NL-ADE-MS individual (%)

R² = 0.97

0

20

40

60

80

100

0 20 40 60 80 100

N
L-

AD
E

-M
S 

m
ix

tu
re

 (%
)

NL-ADE-MS individual (%)

R² = 0.96

0

20

40

60

80

100

0 20 40 60 80 100

N
L-

AD
E

-M
S 

m
ix

tu
re

 (%
)

NL-ADE-MS individual (%)

R² = 0.99

0

20

40

60

80

100

0 20 40 60 80 100

N
L-

AD
E-

M
S 

m
ix

tu
re

 (%
)

NL-ADE-MS individual (%)

R² = 0.94

0

20

40

60

80

100

0 20 40 60 80 100

N
L-

AD
E-

M
S 

m
ix

tu
re

 (%
)

NL-ADE-MS individual (%)

a b c

d e f

g h

https://doi.org/10.26434/chemrxiv-2024-dkvgt ORCID: https://orcid.org/0000-0002-2279-7538 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-dkvgt
https://orcid.org/0000-0002-2279-7538
https://creativecommons.org/licenses/by-nc-nd/4.0/


   

Extended Data Fig. 8 Rank ordering of reaction conditions for individual boronates. Using 4 TIDA boronates 
a, 1, b, 28, c, 29, d, 30, and all 96 amines (35-130) as representative examples, NL-ADE-MS allows reaction 
conditions to be prioritized for specific boronates directly from ultra-high throughput experimentation. These data 
show excellent correlation against LC-MS data (R2 (avg) = 0.98). In all cases the best condition was selected or 
was within 5% where selection of either condition would provide a similar outcome. This subset of the NL-ADE-MS 
data required only 7.68 minutes whereas the equivalent LC-MS dataset required 6.4 days of continuous data 
collection a 1,200-fold increase in pace. 
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Extended Data Fig. 9 Rank ordering of reaction conditions for individual amines. Using all 8 TIDA 
boronates (1, 28-34) and amines (59-82) as a representative example, NL-ADE-MS allowed reaction conditions to 
be prioritized for specific amines directly from ultra-high throughput experimentation (structures of amines shown 
in panel a). These data show excellent correlation against LC-MS data (R2(avg)= 0.91, see supplementary tabular 
data sheet 22). In 8 of 24 cases the best condition was directly selected, however in many cases condition data 
were close to one another (i.e. panel b). With the goal of assessing the utility of these data for selecting the 
highest output chemical reaction conditions we applied a nearest neighbor constraint of “within 5%” (panel c). 
This allowed much more effective determination of reaction data, and by using these constrains we found that in 
22 of 24 cases (92%) the best conditions selected by NL-ADE-MS were within 5% of the top 3 conditions 
identified by LC-MS.  
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Extended Data Fig. 10 Comparison of multiplexed and individual NL-ADE-MS data. In a 6-plex format 
products derived from a, Boc 2 (16-21), and b, THP 3 (22-27), were compared across all 64 conditions. These 
data were in excellent agreement. Multiplexing reduced the data acquisition time from 7.68 mins to 1.28 mins per 
set of 384 reactions. Shown inset are heatmaps generated from experiments on these two timescales. 
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