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Abstract. 

Visualization and analysis of large chemical reaction networks become rather challenging when 

conventional graph-based approaches are used. As an alternative, we propose to use the 

chemical cartography (“chemography”) approach, describing the data distribution on a 2-

dimensional map. Here, the Generative Topographic Mapping (GTM) algorithm – an advanced 

chemography approach – has been applied to visualize the reaction path network of a simplified 

Wilkinson’s catalyst-catalyzed hydrogenation containing some 105 structures generated with 

the help of the Artificial Force Induced Reaction (AFIR) method using either Density 

Functional Theory or Neural Network Potential (NNP) for potential energy surface calculations. 

Using new atoms permutation invariant 3D descriptors for structure encoding, we’ve 

demonstrated that GTM possesses the abilities to cluster structures that share the same 2D 

representation, to visualize potential energy surface, to provide an insight on the reaction path 

exploration as a function of time and to compare reaction path networks obtained with different 

methods of energy assessment.  

Keywords: Generative Topographic Mapping, Artificial Force Induced Reaction, Neural 

Network Potential 

 

Introduction 

Ab initio kinetics studies play a crucial role in deepening our understanding of reaction 

mechanisms.[1–4] The most reliable but still computationally costly approach considers a 

systematical exploration of reaction pathways between equilibrium states, resulting in the 

creation of a reaction path network. Within this network, individual nodes correspond to 

equilibrium states (EQ), while their connecting edges represent elementary chemical 
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transformations.[5–7] Each EQ represents a local minimum on the Potential Energy Surface 

(PES) whereas each Transition State (TS) represents a saddle point along a reaction path 

between two EQs. As such, each edge of the reaction path network is associated with a TS 

(Figure 1). 

The Artificial Force Induced Reaction (AFIR) algorithm applies artificial molecular forces to 

overcome energy barriers, providing a powerful tool to systematically explore reaction 

pathways.[8–10] Usually, the compilation of all reaction paths generated by AFIR leads to 

particularly large reaction path networks. For example, a recent AFIR-based reaction path 

search on a 20-atoms system led to the generation of 1.2x104 equilibrium states (EQ) and 

4.5x105 distinct geometries.[11] As more complex reactions are being considered, the size of 

networks is anticipated to grow even larger. Usually, to obtain accurate results, such a PES 

exploration is ideally performed using Density Functional Theory (DFT) to assess the 

structures’ energy and forces. This represents the main bottleneck of the approach, as nearly all 

the computation time is dedicated to DFT calculations. In order to accelerate these calculations 

and to treat large-size systems, Neural Network Potentials (NNPs) has recently been employed 

as a rapid and cost-effective alternative to the traditionally expensive DFT calculations, see 

Figure 1. Recently, we reported an AFIR-based path search for the hydrogenation of ethylene 

catalyzed by a model Wilkinson’s catalyst, using DFT, xTB and NNP methods, and discussed 

various aspects of PES machine-learning.[12] In particular, we have demonstrated that a pure 

NNP architecture should be coupled to a physics-based potential, such as a semi-empirical xTB 

method, in order to greatly reduce the generation of broken 3D structures.  
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Figure 1. Reaction path network generation workflow: path geometries discovered in the 

AFIR-based reaction path search at a DFT level are used to train a Neural Network Potential 

(NNP). An AFIR-based search performed with the trained NNP, leads to an alternative reaction 

path network. Comparison of the DFT and NNP-based results allows to elucidate the impact 

of the underlying potential energy surfaces on the reaction path exploration.  

 

AFIR-based kinetics studies automatically explore many reaction paths, and therefore, 

typically yield large reaction path networks. Traditionally, a reaction path network is visualized 

by a connected graph in which each node represents a 2D or 3D molecular structure and each 

edge connecting the nodes corresponds to a chemical transformation. Each 3D structure can be 

characterized by its atomic coordinates, chemical bonding topology and some properties 

(potential energy, charge on selected atom, etc.). However, a graph-based network containing 

several hundred or thousand nodes hardly allows to analyze such Structure-Property 

Relationships (SPR). Moreover, direct comparisons of reaction path networks calculated with 

the help of different theoretical methods are challenging. 

The disconnectivity graph is one of conventional approach to visualize a complex energy 

landscape represented by many elementary steps, and has been utilized in cluster and 

biomolecular systems.[13–15] As an alternative method of reaction data visualization and 

analysis, we have suggested to use the Generative Topographic Mapping (GTM), describing 

the data distribution on a 2-dimensional map.[12] For the reaction path network of 

hydrogenation using Wilkinson’s catalyst, it has been shown that GTM possesses the abilities 

to cluster structures that share the same 2D representation, to visualize potential energy surface 
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and to provide an insight on the reaction path exploration as a function of time. However, many 

aspects of GTM application were out of the scope of that previous study. 

In this paper, we demonstrate how GTM can be used for detailed SPR analysis and 

investigate its capability to compare reaction path networks obtained from different potentials. 

We also introduce new Distance Distribution Descriptors which have some advantage over 

previously used Pairwise Sorted Distances-Based descriptors to encode 3D structures. 

 

METHOD.  

Data 

We used four datasets generated in our previous study using DFT and NNP(+xTB) for potential 

energy assessment.[12] The DFT dataset contains 118240 geometries, including 6298 

approximate TSs and 2049 EQs, and their associated potential energy and gradients, computed 

at the RωB97X-D/Def2-SVP level of theory, see Table 1. These geometries correspond to the 

reaction paths for the 6298 elementary processes explored with the AFIR method. These AFIR 

explorations were performed using the kinetics-based navigation,[16] which controls the 

automated pathway search based on an index called traffic volume. The traffic volume 

represents the amount of reaction flux through each EQ, and thus preferentially finds 

kinetically important EQs and elementary steps. 

The conventional alkenes hydrogenation by H2, catalyzed by the original Wilkinson’s catalyst 

(i.e., RhCl(PPh3)3), involves several steps subsequent to the initial PPh3 elimination: oxidative 

addition of H2 to the metal complex; alkene coordination; alkene insertion; and reductive 

elimination of alkane.[17] Earlier[12], we have examined the reaction using the simplified catalyst 

RhCl(PH3)3. We found that at the first step, the ethylene coordinates to the catalyst producing 

RhCl(PH3)3(C2H4); followed by the elimination of a PH3 ligand. Then the oxidative addition 

of H2, ethylene insertion and reductive elimination of ethane proceed with two PH3 ligands. 

Finally, the initial RhCl(PH3)3 catalyst is regenerated, completing the catalytic cycle. Figure 2 

(bottom) shows the kinetically important 2D structures of the reaction path network at a DFT 

level. In this Figure, the leftmost 2D motif represents the reactants (R), whereas the product 

(P) - the 2D motif with the highest yield at 300 K - is represented in the bottom right-hand 

corner. Only the lowest reaction barriers between 2D motifs are shown, assuming that the 

reaction barriers between conformers are sufficiently low. 
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Figure 2. (top) Reaction scheme of hydrogenation using a simplified Wilkinson’s catalyst 

RhCl(PH3)3. (middle) Reaction path networks represented by connected graphs; each node 

corresponds to either a 3D equilibrium structure (3D network) or to its related 2D structural 

motif (2D network). The sequence of reaction path from reactants (R) to product (P) is shown 

in red. The green lines in the 3D network correspond to conformational transitions. (bottom) 

A part of the 2D network showing a sequence of reaction paths from R to P. The numbers 

above the boxes correspond to the reaction steps 1-6, whereas those below the boxes and 

edges correspond, respectively, to the relative free energies of equilibrium structures and 

transition states in kJ/mol, compared to the reactant structure, at 300K.  

 

In order to accelerate the network expansion, a Neural Network Potential (NNP) associated 

with the semi-empirical xTB method was suggested to approximate the DFT potential energy 

surface at a much lower cost.[12] Three NNP(+xTB) models (simply called NNP-xx in the 

following) were trained on the first 20%, 50% and 80% of the DFT generated dataset, 

respectively (Table 1).  

 

Table 1: The number of 3D structures including equilibrium (EQ) and transition (TS) structures, 

and of related 2D structures, obtained during an AFIR-based reaction path search, depending 

on the level of theory used. NNP(+xTB) models were trained on the first 20%, 50% and 80% 

data of the DFT network. 

 

Level of theory used for search # structures # EQ  # 2D motifs # TS 

DFT 118 240 2 049 122 6 298 
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NNP-20 103 679 1 557 190 4 837 

NNP-50 106 714 1 691 184 5 135 

NNP-80 107 651 1 745 165 5 268 

 

 

Generative Topographic Mapping. 

GTM is a method of non-linear mapping of data points from a multi-dimensional chemical 

space to two-dimensional space.[18] The probabilistic topology-preserving characteristic of 

GTM has made it a popular tool for data analysis and chemical visualization. The algorithm 

inserts a two-dimensional “rubber sheet”-like manifold into the initial descriptor space in order 

to reproduce the best data by a simulated probability distribution function. The latter is 

represented by an ensemble of Gaussian functions located at the nodes of two-dimensional grid 

related to the manifold. Distortion of the manifold is controlled within the limits of a predefined 

set of parameters. Finally, the molecules are projected with a given probability onto each node 

of the manifold, which then is then projected onto a two-dimensional latent space in which a 

molecular structure is associated with one or more nodes. 

For each molecular structure 𝑀  mapped onto GTM, a probability matrix 𝑅(𝑀, 𝐾)  is 

calculated which gives the probability of 𝑀 residing in node 𝐾, i.e., the responsibility of node 

𝐾 related to structure 𝑀. Generally, the responsibilities related to a molecular structure may be 

distributed across several nodes. The overall probability to see a structure anywhere on the 

map, i.e., ∑ 𝑅(𝑀, 𝐾)𝐾  is always equal to 1.0. The set of structures 𝑆 residing in a node 𝐾 are 

represented by cumulated responsibilities of 𝐾  towards all of its members, 𝜌(𝑆, 𝐾) =

 ∑ 𝑅(𝑀, 𝐾)𝑀∈𝑆 . It represents the density distribution or fuzzy membership of structures in a set 

in a particular node of GTM. 𝜌(𝑆, 𝐾)  defines the node-bound density distribution of the 

compound set 𝑆. 

In order to visualize a given property distribution on GTM, the weighted average of 

properties of all structures associated with any particular node is used to “color” the manifold, 

resulting into a fuzzy property landscape, where the projected property can be energy, error of 

energy prediction or relative population of the structures of the given type. The responsibilities 

related to molecular structures are used as weights. A property landscape can be used to build 

classification and regression models.[19] 
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Figure 3: GTM preparation workflow. Some studied molecular systems are encoded by 3D 

descriptors and represented as objects in N-dimensional space. A flexible manifold fits the data 

following by fuzzy projection of the datapoints onto the manifold. For each datapoint, the 

mapping algorithm calculates the probabilities (responsibilities) to its projection into the nodes 

of rectangular grid superposed with the manifold. Unbending the manifold results in a 2D map. 

Location of a datapoint on the map is calculated as a gravity center of the responsibilities’ 

distribution.  

 

In this work, the manifold was developed on the frame set of 104 randomly selected 

structures. Either Pairwise Sorted Distances-Based (PSDB) descriptors or Distance 

Distribution descriptors (D3) were used to encode the 3D structures. An evolutionary 

algorithm-based approach was implemented in order to optimize the parameters required for 

GTM setup: number of nodes, number of radial basis functions (RBF) defining the manifold 

and their width, the regularization coefficient. The optimal set of GTM parameters defined a 

Pareto front of locally best solutions corresponding to (i) minimal energy prediction error and 

(ii) maximal informational entropy.  

To compute energy prediction errors, a 3-folds cross validation procedure was employed. 

Sequentially, two-third of all the structures was used to build the energy landscape whereas the 

remaining one-third was then used as test set for which the predicted energy values were 

compared to related DFT values. The process was repeated three times, so that each molecular 

structure gets a predicted energy value. 

 

Descriptors  

Two types of descriptors were tested to encode 3D molecular structures - Pairwise Sorted 

Distances-Based descriptors and Distance Distribution Descriptors. Both types of descriptors 

are alignment-free and invariant by rotation, translation, and permutation of atoms with the 

same atomic number.  
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Pairwise sorted distances-based descriptors 

In the Pairwise-Sorted Distance-Based Descriptors (PSDB), the retrieved interatomic distances 

are first grouped according to their corresponding atomic element pair and then sorted within 

each group in ascending order.[20,21] The sorted distances of each group are then concatenated 

to form the descriptor vector of each 3D structure (Figure 4A). The molecular system 

RhClP3C2H15 considered in the simplified Wilkinson’s catalyst-catalyzed hydrogenation 

reaction contains 22 atoms. Thus, the number of interatomic distances and, hence, the length 

of the PSDB descriptor vector is 231. 

 

Distance distribution descriptors 

Distance Distribution Descriptors (D3) are derived from atoms encoding used by SchNet.[22] 

Like most end-to-end neural networks, SchNet uses a highly sophisticated representation of 

atoms, accounting their local environment through pairwise distances. 

For each possible atom pair (𝑎𝑖, 𝑎𝑗), the distance 𝑑𝑖𝑗 is embedded in a M-dimensional space 

using Gaussian smearing. The k-th component of the resulting vector 𝑉𝑖𝑗 is then: 

𝑉𝑖𝑗[𝑘] = exp (−
(𝑑𝑖𝑗−μ𝑘)2

𝜎2 ) ,  (1) 

Where σ =
𝑐𝑢𝑡𝑜𝑓𝑓

M
 is the bin interval and μ𝑘 is the k-th Gaussian center, with the μ centers being 

equidistributed along the [0 Å, cutoff] segment. Embeddings of individual distances belonging 

to the same atomic pair type (𝑧, 𝑧′ ) are then aggregated according to eq. 2 (see Figure 4B). The 

resulting vector is invariant by permutation of equivalent atoms. 

𝑉𝑧𝑧′ = ∑ 𝑉𝑖𝑗 2⁄𝑖,𝑗|{𝑍𝑖,𝑍𝑗}={𝑧,𝑧′}   (2) 

 

This aggregation allows to reduce the dimensionality of the input in a chemically meaningful 

manner compared to the concatenation of vectors 𝑉𝑖𝑗. Compared to the PSDB descriptors, the 

D3 descriptors are (i) tunable because of the customizability of both the number of Gaussian 

functions (bins) and the cutoff distance in eq. 1 and (ii) have the same size regardless of the 

number of atoms for each atom type. In the case of the simplified Wilkinson’s catalyst-

catalyzed hydrogenation reaction, the descriptor vector consists of 25 blocks, each 

corresponding to a pair of elements (H-H, H-C, H-Cl, H-P, H-Rh, C-C, C-P, …). Thus, as an 

example, for 30 bins per interatomic distance, the resulting D3 descriptor is of 750 (= 25 ∗

30) components length. 
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Figure 4: Construction of a descriptor vector for the studied molecular system RhClP3C2H15. 

(A) Pairwise Sorted Distances-Based descriptor resulted from concatenation of groups 

containing sorted interatomic distances of given pairs of atoms. (B) Distance Distribution 

Descriptor results in concatenation of blocks, each corresponding to the summed embeddings 

of distances for particular atom types.  
 

 

Projection of representative 2D structures 

If several 3D structures (e.g., conformers of a given complex) share the same 2D motif, the 

latter can be associated with a single “representative” 3D structure, for which descriptors {𝑋𝑝} 

are calculated as the Boltzmann-weighted sum of descriptors for real 3D structures in the pool 

𝑋𝑝 =  ∑𝑤𝑖𝑋𝑖,𝑝,       𝑤𝑖 =  𝑒(𝐸𝑖 (𝑘𝐵∗𝑇)⁄ )  ∑𝑒(𝐸𝑗 (𝑘𝐵∗𝑇)⁄ )⁄     (3) 

where Xp and 𝑋𝑖,𝑝 are the p-th term of the descriptor characterizing, respectively, the entire 

subset and the i-th structure in the pool, 𝐸𝑖 is the relative potential energy of the i-th structure 

with respect to the lowest energy observed within the reaction path network. The projection of 

such representative structure on the map can be associated with the “representative position” 

of the related 2D motif. 

 

RESULTS AND DISCUSSION 

DFT-based reaction path network 
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During the GTM manifold training, the D3 parameters were systematically varied (cutoff from 

2 to 10 Å and number of bins k from 5 to 30). The parameters values cutoff=3 Å and k=30 

found in the grid search were retained for further calculations. For each set of D3 parameters, 

GTM parameters were optimized by a dedicated Genetic Algorithm[23] and the one 

corresponding to minimal energy prediction error and maximum entropy at the Pareto front 

were selected. 

The resulting density and energy landscapes obtained with both PSDB and D3 descriptors look 

similar (Figure 5). The PSDB-based energy landscape provides with the slightly better 

accuracy in cross-validation in energy predictions compared to the D3-based landscape: RMSE 

= 44.2 kJ/mol (PSDB) and 48.9 kJ/mol (D3). On the other hand, the density landscapes show 

that the data are distributed more homogeneously on the D3-based map, therefore, only 

landscapes built on D3 descriptors-based manifold will be further analyzed. 

 

 

Figure 5: Relative energy (right) and density (left) landscapes for the DFT-based network, 

using the PSDB and D3 descriptors.  

 

 

Positions of the observed 2D motifs on the energy landscape are shown in Figure 6. Some of 

them overlap, which explains why the number of dots (85) in Figure 6 is smaller than the 
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number of 2D structural motifs (122) observed in the DFT simulations (Table 1). Examples of 

overlapping structural motifs are given in Table S1 in Supporting Information.  

 

Figure 6. DFT energy landscape obtained with the D3 descriptors. Each dot corresponds to a 

3D structure representing a particular 2D motif (see eq. 3). The sequence of reaction paths (in 

red) connect the 2D motifs corresponding to reactant (R), product (P) and reaction steps 1-6. 

2D motifs and related 3D structures populating reaction steps areas and high energy zones A-

D are shown in Figures 7 and 8, respectively. 
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Figure 7. Landscapes of the 2D motifs and examples of representative 3D structures 

corresponding to different steps of reaction path (see Figure 6). On the maps, the color code 

shows highly (in blue) and low (dark red) populated areas by the given structures. 

 

Figure 7 demonstrates a set of class landscapes describing relative population of EQ structures 

corresponding to different steps of the reaction path. In most of cases, these structures form a 

relatively tight cluster on the map. However, in the landscapes for steps 2, 3, 5, 6 and product 

several clusters were observed. This can be interpreted by formation of both low and high 

energy structures with different coordination patterns of PH3 group or Cl and H atoms with 

respect to Rh or different position of uncoordinated H2 or PH3 species. The 3D structure 
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representative for a given 2D motif is always located in the low energy area (Figure 6). This is 

not surprising because the Boltzmann-like weighting of descriptors favors contribution of low-

energy species. 

The high-energy areas contain chemically unreasonable structures, for instance, those 

with a deeply unfavorable isolated Cl- in vacuum (zone A) or H2 and HCl formation from the 

catalyst decomposition (zone C), or an hypervalent P with trigonal bipyramidal shape (zone B), 

or even displaying a C-C dissociation (zone D), see Figure 8.  

 

 
 

 
 

 

Figure 8. Examples of structural motifs and related 3D structures contained in high energy 

zones A-D (see Figure 6). 

 

The class landscapes for alkanes/alkenes presence and their coordination states shown on 

Figure 9 exhibit remarkable discriminatory power, partitioning the GTM into three distinct 

region featuring uncoordinated ethylene or ethane (the upper left and upper right areas, 

respectively) and species with coordination of at least one carbon atom to the metal (bottom 

area). This suggest that GTM inherently produced a chemically meaningful mapping, that can 

be used for a chemical feature-based characterizations. As an example, here, by projecting and 

following each reaction step on the class landscapes of Figure 9, it appears clearly that the 

reaction starts with a free ethylene, then proceeds to its coordination and hydrogenation (while 

still being coordinated), followed finally by the release of a free ethane. With the appropriate 

class landscapes, a similar analysis could be performed based on any chemically relevant 

feature/property (e.g., the oxidation state of Rh or partial atomic charges on selected atoms). 
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Figures 9. Landscapes of the species including free ethylene (left), coordinated to Rh ethylene 

or ethane (center) and free ethane (right). 

 

 

Monitoring the DFT network expansion.  

In addition to “static” data distribution, we investigated the chronological expansion of the 

reaction path network driven by the AFIR algorithm. For this purpose, the manifold constructed 

for the entire DFT reaction path network was used to project the first n% (n=1, 5, 20, 35, 50 

and 100) portions of path structures discovered in the DFT/AFIR run initiated from the 

reactants structure. Each portion corresponds to a “chronological milestone” of the reaction 

path network expansion. In such a way, 6 class landscapes showing data projected at the current 

chronological milestone compared to the previous ones (e.g., 5% compared to 1%) have been 

built, see Figure 10, left. On the “1%” landscape, the structures predominantly occupy the 

reactant area, whereas at 10%, the network explores the steps 1-5 zones. The “20%” landscape 

shows that the network not only encompasses the area related to the structures of step 6 but 

also reaches the product area. At 35% of the network expansion, the product area becomes 

dense. The 50% and 100% landscapes show that the search is shifting from exploration to 

refinement, mainly associated with the discovery of new reaction pathways in the products area. 
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Figure 10: Classes landscapes of the networks explored by DFT and three NNP models at 

different AFIR exploration stages. The locations of the representative 3D structures 

corresponding to the 2D structural motifs of reactant (R) product (P) and reaction steps 1-6 are 

shown for the DFT network. 
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NNP-based reaction path network 

Similar “chronological” analysis has been performed for three reaction path networks 

NNP-20, NNP-50 and NNP-80 obtained in NNP/AFIR runs using the model trained, 

respectively, on the first 20%, 50% and 80% of the DFT network (Figure 10). The 

“current/previous” class landscapes show that the NNP-20 network exploration significantly 

differs from the DFT, NNP-50 and NNP-80 ones. Thus, even in the first 50% of the network 

expansion, the NNP-20 model was not able to reach the zone of products, which can be 

explained by the fact that the training set contained just a few structures from the step 6 and 

product areas. 

For more detailed analyses of the NNP networks, a series of regression landscapes were 

prepared, showing the distribution of predicted energies and the absolute error of energy 

predictions; as well as classification landscapes for overlapped DFT and NNP networks. They 

show that the NNP-20 trained on 20% DFT set generates many high energy structures mostly 

populating the areas poorly covered by its training dataset (see Figure 11, top left). This 

observation is consistent with the generation of unreasonable geometries outside of the training 

domain (Figure 12). Finally, Figure 11 (bottom left) shows a large discrepancy in the chemical 

spaces populated by the DFT/AFIR search and the NNP-20/AFIR search. When combining 

this landscape with the time evolution in Figure 10, we observe that some of the regions, which 

are very predominantly populated by NNP-20 geometries, correspond to areas that seems to 

“capture” the exploration at the expense of other regions of interest during the search. We 

believe these observations to characterize the presence of areas with deep (or even apparently 

unbounded) energy underestimations in the trained potential. Indeed, due to both the gradient-

following nature of AFIR and the exploration focus around apparently kinetically accessible 

regions, the AFIR method is prone to preferentially sample these unphysical regions. 

Unsurprisingly, the DFT manifold is poorly adapted to describe NNP-20 data distribution, 

which is proved by loglikelyhood distribution analysis shown in Figure 13. 
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Figure 11. Analysis of three NNP runs trained on the first 20, 50 and 80% portions of the DFT 

network (top) Energy landscapes, (middle) landscape of mean absolute error of energy 

prediction, and (bottom) DFT vs NNP class landscapes. 

 

 

Compared to the NNP-20 landscapes, both NNP-50 and NNP-80 landscapes show 

reasonable robustness during the search. Still, one observes some discrepancies between the 

NNP-50 energy landscape (Figure 11, top center) and the DFT energy landscape (Figure 7), 

especially apparent in high-energy regions, which is corroborated by the NNP-50 energy 

prediction error landscape (Figure 11, center). Notice that the NNP-80 and DFT energy 

landscapes (Figure 11, top right and Figure 7, respectively) are rather similar which is reflected 

by relatively small regions of high energy prediction errors observed in the NNP-80 landscape 

(Figure 11, middle right). Finally, one can see that the areas with domination of NNP generated 

structures on the landscapes for NNP-50 (Figure 10, bottom center) and NNP-80 (Figure 11, 

bottom right) runs roughly correspond to the zones with large prediction error shown in Figure 

11, middle. The oversampled regions (i.e., with large relative population) characterizing high 

energy prediction error contain geometries for which NNP underestimates energy. These 
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structures are likely to appear more kinetically accessible, therefore misguidedly steering the 

reaction path search algorithm toward these regions.  

The above results show that the NNP models have a limited extrapolation power. Only 

large enough training sets NNP-50 and NNP-80 containing sufficient number of main reactive 

species lead to the models with reasonable predictive performance.  

 

NNP-20 NNP-50 

 

 

 
 

Figure 12. Examples of chemically unreasonable structures generated with the NNP-20 and NNP-

50 models. 

 

 

 

Figure 13. Loglikelihood (L) distribution for the DFT, NNP-20, NNP-50 and NNP-80 data 

projected on the DFT manifold. One can see that the NNP-20 curve is shifted to the area of 

negative L values which means that the related data are badly described by the DFT manifold. 
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Graph-based vs Chemography representation of reactions path networks 

The graph-based representation is widely used in chemoinformatics in order to build 

chemical space networks (CSN)[24] allowing to analyze structure-activity relations in 

heterogeneous compound data sets. In CSN, each node represents a compound, whereas each 

edge characterizes a pairwise relation between the compounds (e.g., common scaffold, 

molecular match pair, Tanimoto or Tversky similarity higher than a certain threshold). Size and 

color of nodes can be used to encode, respectively, the number of node connections and the 

compounds activity.  

While CSNs provide both global and local views of activity landscapes they are—like 

other network representations— not applicable for visualization of very large datasets. With 

increasing numbers of data points, networks generally become difficult to navigate. Thus, to 

provide SPR views of increasingly large data sets, other methodologies should be considered. 

GTM is particularly suitable for this purpose, because, in parallel to considering individual 

objects, it allows to consider data distribution functions which significantly extends this 

approach to the analysis of ultra-large chemical libraries. On the other hand, GTM does not 

establish pairwise relationships between objects directly pointed in graph-based approaches. 

With respect to the reaction path networks, conventional graph-based representation 

allows to visualize reaction pathways, but is limited to accommodate information about 

geometry, topology and electronic parameters of chemical structures. Increasing of the number 

of nodes (EQs) leads to serious problem of the network visualization, as it is demonstrated in 

Figure 2. Comparison of two different generated reaction path networks is hardly possible 

within the above approach.  

GTM method – an advanced chemography approach – allows to overcome these 

limitations. It allows to group together on a 2D maps chemical structures possessing similar 

geometry and to establish structure-property relationships with the help of property landscapes. 

It identifies a common frame able to accommodate different reaction path networks, which 

make possible their comparison. On the other hand, the reaction pathways information is 

missed and, therefore, the graph-based and chemography approaches complement each other. 

Kayastha et al.[24] suggested to combine these two approaches: GTM can be used for “satellite” 

view of the ensemble of data whereas graph-based representation is particularly important to 

describe objects relations (a part of network) in selected zone of the chemical space.  

 

 

Conclusion 
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This study demonstrates that Generative Topographic Mapping approach is an efficient 

and useful tool for reaction path network visualization and analysis. GTM represents both 

individual molecular structures and their statistical distribution on a 2-dimensional map. 

Because of its probabilistic nature, GTM is able to handle (ultra)large chemical libraries, 

and in particular, reaction path networks including >105 structures. By combining different 

GTM-based property landscapes, one can identify regions of chemical interest, perform 

fast and intuitive comparison of different reaction path networks and monitor the reaction 

path exploration.  

GTM is a dimensionality reduction method and, therefore, its efficiency strongly 

depends on the choice of descriptors encoding 3D molecular structures. Proposed in this 

work, the Distance Distribution descriptors (D3) are alignment-free and invariant by 

rotation, translation, and permutation of atoms with the same atomic number. The 

descriptor vector size depends on the number of atom types in the considered molecular 

structure, but, unlike the previously reported PSBD descriptors, not on the total number of 

atoms. The D3 descriptors, on one hand, allow to distinguish different molecular structures, 

and, on the other hand, to group on GTM structures possessing similar geometries.  

Since GTM manifold delineates a frame of the explored reaction space, a retrospective 

analysis allows to monitor reaction path network expansion. This analysis shows how 

quickly the path search reaches the kinetically relevant reaction species and provides an 

information about data density in different areas of reaction space. The latter is important 

to draw conclusion concerning the suitability of generated DFT data at the given step for 

the training of NNP model. 

This study demonstrates that GTM is a unique tool for comparing different reaction 

path networks. The map accommodating two networks (e.g, DFT and NNP) clearly shows 

both overlapping areas and zones occupied exclusively by one particular network. If the 

manifold is built on DFT data, the loglikelihood parameter helps to identify the NNP 

“novelties”, i.e., structures which significantly differ from the DFT generated ones.  

Last but not least, compared to the conventional graph-based representation, GTM 

doesn’t explicitly show the reaction pathways. That’s why the combination of the two 

above approaches for the visualization and analysis of large reaction path networks looks 

very promising. 

 

Software tools used 
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Generative Topographic Maps were built using the ISIDA/GTM program).[29]  The Marvin tool 

was used for depicting chemical 2D structures [Marvin version 23.2, ChemAxon 

(https://www.chemaxon.com)].[25] The 3Dmol tool was used to display 3D chemical 

structures.[26] Plots were generated using matplotlib and seaborn.[27,28] 

 

Data and software availability  

The Python code for generation of D3 descriptors is available at https://github.com/icredd-

cheminfo/DistanceDistributionDescriptors 
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Table S1.  2D structural motifs of structures populating zones corresponding to reaction steps 

2-5 and high energy zones A-D. The most kinetically relevant 2D motifs are given in dashed 

frames.  
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