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ABSTRACT: We introduce TRAM, a triple acquisition strategy on high-speed, time-of-flight mass spectrometry for merging non-

targeted and targeted metabolomics into one run. TRAM stands for “quasi-simultaneous” acquisition of (1) a full scan MS1, (2) top 

30 data-dependent MS2 (DDA), and (3) targeted scheduled MS2 for multiple reaction monitoring (MRM) within measurement cycles 

of ~ 1 second. TRAM combines the selectivity and sensitivity of state-of-the-art targeted MRM-based methods with the full scope of 

non-targeted analysis enabled by high-resolution mass spectrometry. In this work, we deploy a workflow based on hydrophilic inter-

action chromatography (HILIC). For a broad panel of metabolites, we provide chromatographic retention times, and optimized con-

ditions as a basis for targeted MRM experiments, listing accurate masses and sum formulas for fragment ions (including fully 13C 

labelled analogs). Validation experiments showed that TRAM offered (1) linear working ranges and limits of quantification compa-

rable to MRM-only methods, (2) enabled accurate quantification in SRM 1950 human plasma reference material, and (3) was equiv-

alent to DDA-only approaches in non-targeted metabolomics. Metabolomics in human cerebrospinal fluid showcased the power of 

the strategy, emphasizing the need for high coverage/high throughput metabolomics in clinical studies. Acquiring up to 30 data-

dependent spectra per MS cycle while still offering gold-standard absolute quantification, TRAM allows in-depth profiling and re-

duces required sample volume, time, cost, and environmental impact. 

INTRODUCTION 

The different facets of mass spectrometry-based metabolom-

ics navigate the conflicting goals of analytical throughput and 

metabolome coverage. A comprehensive metabolomics experi-

ment intrinsically requires multi-platform measurements.1 As a 

result, different methods are combined into customized work-

flows, thereby reducing the number of analytical runs.2 

High-resolution mass spectrometry allows for simultaneous 

non-targeted and targeted metabolomics. Nearly a decade ago, 

paradigms shifted, recognizing the power of high-resolution 

mass spectrometry for quantitative analysis. This paved the way 

for merging the two essential scopes of metabolomics, i.e., me-

tabolite identification and quantification, into unified work-

flows.2 Elaborate versions of merging targeted and non-targeted 

workflows integrate wide panels of external and internal stand-

ards and streamline MS1 and  MS2 data acquisition (often re-

sorting to separate injections). Non-targeted metabolomics re-

quires high-resolution MS1 data for accurate mass determina-

tion and feature-based statistical analysis, together with high-

resolution MS2 data for metabolite annotation (beyond sum for-

mula annotation). Due to the low scan speed of state-of-the-art 

instruments (<50 Hz), data-dependent fragmentations are often 

performed on sample pools by replicate injections. Iterative ex-

clusion lists - (automatically) generated between the injections 

- increase the depth of analysis.3,4 The drawback of limiting me-

tabolite annotations to pooled samples, where dilution effects 

hamper the discovery of rare and low abundant metabolites, has 

been extensively discussed.5  

Most merged workflows use high-resolution MS1 data for 

targeted data analysis, which proved to be suitable for accurate 

absolute quantification in human plasma and other biological 

matrices.6–8 However, there are examples establishing simulta-

neous non-targeted and targeted metabolomics. These work-

flows either utilize a combination of selected ion monitoring 

and MS1 scans on orbitrap systems9, tribrid orbitrap systems 

(denoted as SQUAD)10 or install dual MS platforms combined 

on-line to chromatography.11  

Latest generation tandem high-resolution mass spectrometry 

unlocks the potential for unprecedented high throughput/high 

metabolome coverage strategies, offering MS2 acquisition rates 

> 100 Hz.12 Multiple MS experiments can be merged within a 

single analytical run. In this work, we utilize this technological 

advancement and introduce a triple acquisition strategy 

(TRAM), increasing the sampling depth for both essential 

scopes of metabolomics, i.e., the identification and quantifica-

tion of small molecules within one run. More specifically, we 

combine MS1, data-dependent acquisition (DDA), and sched-

uled targeted MS2, the latter enhancing sensitivity by allowing 

multiple reaction monitoring (MRM)-like evaluation on a re-

cently introduced quadrupole-time-of-flight system. Compared 

to classical QTOF instruments, Zeno trapping13 increases the 

ion efficiency to more than 90% by trapping ions after 
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fragmentation in a linear ion trap. By ramping AC voltages, ions 

are scanned out of the Zeno trap in a mass-dependent manner in 

order to tackle common mass intensity biases12, which results 

in a four to 20-fold increase in sensitivity.14 The utility of the 

Zeno function for biological applications has recently been 

demonstrated by Huang et al. in a mass isotopologue distribu-

tion study on stem cell-derived neurons.15 

Exploiting the scan speed of up to 133 Hz12, data-dependent 

MS2 acquisition can be tailored to ensure high numbers of MS2 

spectra upon each sample injection. Additionally, scheduled 

MS2 was designed and optimized for MRM-like data evalua-

tion. The hereby generated information-rich high-resolution 

MS2 spectra can be evaluated for targeted quantification and 

library matching.  

Overall, the TRAM methodology was optimized to ensure a 

minimum of 8 data points per chromatographic peak in both the 

MS1 and MRM modality and to maximize the number of MS2 

spectra per sample. Generating non-targeted and targeted infor-

mation within a single injection reduces required sample vol-

umes, which is especially important for clinical settings with 

low amounts of precious patient samples. By avoiding the need 

for (iterative) injections of sample pools or additional instru-

mentation, higher sample throughput can be achieved, thus low-

ering batch analysis times, solvent consumption, costs, and en-

vironmental impact. The novel workflow is compared to stand-

alone MRM and DDA methods for quantification and non-tar-

geted screening, respectively. Along with the novel analytical 

workflow, we provide a comprehensive list of transitions, de-

clustering potentials (DPs), and collision energies (CEs) for 91 

metabolites in positive ion mode on the ZenoTOF 7600. As a 

proof of concept, we analyzed the human plasma certified ref-

erence material SRM 1950 and cerebrospinal fluid (CSF) sam-

ples from meningioma patients with the optimized TRAM 

workflow. Due to the limited availability of CSF samples from 

patients, it is the ideal matrix to test the potential of merged tar-

geted and non-targeted metabolomics in a single analytical run. 

EXPERIMENTAL SECTION 

Sample preparation. Cerebrospinal fluid (CSF) of meningi-

oma patients was centrifuged and stored at - 80 °C after collec-

tion during surgery.  Metabolites were extracted from CSF sam-

ples and human plasma standard reference material (SRM 1950, 

NIST, USA) by protein precipitation using 80% cold methanol 

after the addition of a fully 13C labelled yeast extract as internal 

standard.6 Derivatization of primary thiols was achieved with 

the help of N-ethylmaleimide.16 Solvents were evaporated to 

dryness by vacuum centrifugation, and dried samples were 

stored at - 80 °C and reconstituted in 3:7 H2O:IPA17 prior to 

analysis. Based on a 50 µM equimolar mixture of ~ 160 metab-

olite standards (Supporting Information (Table SA1)), a cal-

ibration curve with a ratio of 1:8 ISTD to total volume was pre-

pared in 3:7 H2O:IPA. The calibration curve covered 16 con-

centration levels from 0.01 nM to 25 µM. A detailed description 

can be found in the Supporting Information. 

LC-MS methods. A HILICON iHILIC-(P) Classic (100 x 

2.1 mm, 5 μm, 200 Å) column coupled to a HILICON iHILIC-

(P) Classic (20 x 2.1 mm, 5 μm, 200 Å) pre-column (both Di-

chrom, Haltern am See, Germany) and a Viper Inline Filter 

(Thermo Fisher Scientific) was used for metabolite separation 

on an Infinity 1290 LC System (Agilent). The column was 

mounted directly onto the source of the ZenoTOF 7600 mass 

spectrometer using a Micro Column Heater (AB SCIEX) and 

heated to 40 °C. The temperature of the autosampler was set to 

10 °C, and an injection volume of 5 µl was selected. A descrip-

tion of the HILIC gradient adapted from Kim et al.18 and El Ab-

iead et al.19 is provided in the Supplementary Information. 

The OptiFlow Turbo V source of the ZenoTOF 7600 

equipped with the 50-200 µl needle insert was used (OptiFlow 

50-200µL Micro/MicroCal). Ion source gas 1 was set to 50 psi, 

and Ion source gas 2 to 60 psi. A Curtain gas flow of 35 and a 

CAD gas flow of 7 were used. The source temperature was 

600 °C. Data was acquired in positive ion mode with a spray 

voltage of 4000 V. For TOFMS scans, a DP of 40 and CE of 10 

were applied without spread. Samples were measured using 

MRM, DDA, and the novel combined TRAM MS method. Au-

tocalibration was performed after two injections, and quick 

checks of the system were passed before and after the sequence 

was acquired. Zeno pulsing was activated for all precursor ions 

with an intensity lower than 20,000 cps. Q1 was operated at unit 

resolution. The mass range for TOFMS measurements was 65 

Da to 900 Da for TRAM and DDA and 65 Da to 950 Da for 

MRM. 

For DDA measurements, the maximum number of candidate 

ions was set to 40 with an intensity threshold of 100. The small 

molecule workflow was selected. Dynamic background sub-

traction was performed, and former candidate ions were ex-

cluded for 8 seconds after two occurrences. Since samples con-

tained 13C labelled yeast as internal standard, an exclusion list 

was generated using an ISTD solvent blank. The accumulation 

time for TOFMS scans was set to 0.4 s. For TOF MS2 scans, a 

start mass of 20 Da and a stop mass of 950 Da were selected, 

and the accumulation time was 0.005 s. The DP was set to 40 V 

and the CE to 25 V (both without spread). For the TRAM 

method, the maximum number of candidate ions was set to 30 

and the TOFMS accumulation time to 0.1 s while preserving all 

other DDA parameters. To avoid redundant MS1 scans, the ad-

ditional TOFMS scan of the MRM branch was deleted. 

For MRM and TRAM methods, a mass table containing precur-

sor masses of interest, TOF start and stop masses, as well as 

corresponding retention times (RTs), RT tolerances, accumula-

tion times, and optimized DPs and CEs (without spread) was 

sorted by precursor ion to improve sensitivity. Supporting In-

formation (Table SA2) provides an overview of MRM transi-

tions. A description of MRM parameter optimization is pro-

vided in the Experimental section of the Supporting Infor-

mation. Accumulation times were adapted individually for 

TRAM and MRM methods to guarantee at least 8 points per 

peak, and scan scheduling was applied. 13C labelled compounds 

had the same accumulation times, DPs, CEs, and RT settings as 

their non-labelled equivalents. TOFMS accumulation times 

were set to 0.1 s. 

Data analysis. For quantitative sample analysis, peaks were 

integrated in SCIEX OS Version 3.3.1.43 using MQ4 for inte-

gration and the relative noise algorithm. The minimum peak 

width was set to 8 points, an XIC width of 0.02 Da was chosen, 

and the minimum height was 100. A S/N integration threshold 

of 3 was selected, and the Gaussian smooth width was set to 3.0 

points. All other parameters were adapted individually for the 

respective compounds. MS1 signals were analyzed by pro-

cessing files generated with all three methods within a single 

result file. MS2 data analysis was performed separately for 

MRM and TRAM files using the same integration parameters. 

A representative component list, providing MS1 as well as frag-

ment masses of interest and corresponding processing 
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parameters, can be found in the Supporting Information (Ta-

ble SA3). To allow absolute quantification of metabolites, ex-

ternal calibration combined with internal standardization was 

applied by calculating the ratios between the 12C peak areas and 

corresponding 13C peaks. For comparison of working ranges 

across the three MS methods (MRM, DDA, TRAM), only com-

pounds for which a corresponding 13C signal was detected were 

used. To assess lower- and upper limits of quantification 

(LLOQs and ULOQs) of the individual MS methods, the re-

spective calibration samples were set as standards, and metab-

olite concentrations were assigned before performing automatic 

outlier removal in SCIEX OS Analytics. Criteria for automatic 

outlier removal and working range assessment are described in 

more detail in the Supporting Information. Surrogate ISTD 

selection was based on similarities in 12C peak areas in a 1 µM 

standard. Micromolar metabolite concentrations in SRM and 

CSF were calculated by selecting the six closest calibration 

points with regard to peak area ratios. 

The number of triggered MS2 spectra was determined with 

the IDA Explorer function of the SCIEX OS Explorer by count-

ing the number of MS2 spectra without applying the merging 

function. Non-targeted screening was also performed in SCIEX 

OS Version 3.3.1.43, applying the MQ4 and relative noise al-

gorithms. All parameters relevant to non-targeted data pro-

cessing are listed in the Supporting Information. For feature-

based molecular networking, .wiff2 files from DDA and TRAM 

measurements of technical (n=3) replicates of CSF samples 

were imported to MS-DIAL (5.3.240328.alpha)20, and the re-

spective acquisition method was set as Class ID and DDA was 

chosen as Acquisition parameter. After adaption, alignment re-

sults, and .mgf files were used for feature-based molecular net-

working in GNPS2.21,22 An extensive description of all MS-

DIAL and GNPS data processing steps can be found in the Sup-

porting Information. Statistical analysis of CSF samples was 

performed in MetaboAnalyst 6.0.23,24  TRAM MS2 area ratios 

of 27 metabolites to (surrogate) ISTDs, exported from SCIEX 

OS, were used as input. Samples were divided into two groups 

according to their grade of malignancy: The first group included 

samples classified as WHO grade 1, and the second group fea-

tured samples ranked as WHO grade 1-2 and 2.25 More detailed 

information can be found in the Supporting Information. 

RESULTS & DISCUSSION 

A HILIC-based metabolomics assay. Hydrophilic interac-

tion chromatography is essential to customized workflows in 

non-targeted metabolomics, being the method of choice for the 

separation of the polar central metabolome. The combination 

with high-resolution mass spectrometry is straightforward. Me-

tabolite isomers can be separated without derivatization or ion 

pairing reagents. However, there is not a single method for sep-

arating all isomers (as the case in ion pairing chromatography). 

Figure 1A illustrates the HILIC separation established in this 

study in a violin plot.18,19 At pH > 9, most central metabolites 

are anionic, a key factor determining the HILIC retention mech-

anism and the ionization efficiency. The relatively short sepa-

ration time of 12 min (and extensive re-equilibration of 15 min) 

allows for the separation of the critical isomers Uridine-Pseu-

douridine and Betaine-Valine (Figure 1B). Other isomers such 

as Leucine-Isoleucine, Alanine-Sarcosine, Guanosine-Isogua-

nosine, and 3’-AMP-5’-AMP show only poor chromatographic 

separation, while hexoses and pentoses are not separated at all.  

As a starting point and future research resource, ZenoTOF-

MS specific declustering potentials and collision energies were 

optimized for 91 metabolites at alkaline pH. Currently, the wide 

target panel covers the metabolite classes of 1) (5'->5')-dinucle-

otides, 2) 5'-deoxyribonucleosides, 3) Biotin and derivatives, 4) 

Carboxylic acids and derivatives, 5) Diazines, 6) Fatty Acyls, 

7) Glycerophospholipids, 8) Imidazolpyrimidines, 9) Indoles 

and derivatives, 10) Nucleoside and nucleotide analogues, 11) 

Organic sulfonic acids and derivatives, 12) Organonitrogen 

compounds, 13) Organooxygen compounds, 14) Phenols, 15) 

Purine nucleosides, 16) Purine nucleotides, 17) Pyridines and 

derivatives, 18) Pyrimidine nucleosides, 19) Pyrimidine nucle-

otides, and 20) Ribonucleoside 3'-phosphates as shown in Fig-

ure 1C.26 For all compounds, a list of potential quantifier frag-

ments (including the fully labelled 13C pendant ), optimized col-

lision energies, and ranges of declustering potentials for the Ze-

noTOF 7600 is reported (Supporting Information Tables SA4 

& SA5). 

High-resolution triple acquisition mode (TRAM) for com-

bined targeted and non-targeted metabolomics. High-reso-

lution TRAM combines simultaneous full scan mode (i.e., 

MS1), data-dependent MS2 acquisition (top 30 DDA), and 

scheduled targeted MS2 acquisition. The latter modality allows 

optimum ion transfer- and fragmentation conditions for each 

target, unifying the selectivity and sensitivity of MRM with the 

full scope of high-resolution MS2 spectra. For simplicity, we 

will use the term MRM from now on. Zeno trapping was acti-

vated on the MS2 level for both DDA and MRM acquisition 

modes to boost sensitivities. 

TRAM merges multiple MS experiments and data evaluation 

strategies into one analytical run. Targeted metabolomics data 

can be obtained either at the MS2 level (MRM) or the MS1 

level. Non-targeted metabolomics screening relies on high-res-

olution MS1 for (1) feature-based statistical analysis (relative 

quantification task) and (2) deriving sum formulas from accu-

rate mass. Data-dependent MS2 scans are the gold standard for 

high-confidence structure annotation. State-of-the-art methods 

achieve in-depth DDA-based fragmentation by iterative sam-

pling, requiring multiple injections. This type of analysis resorts 

to pooled samples to reduce the number of analytical runs. Data-

independent acquisition strategies increase the throughput for 

high coverage analysis, accepting a de-facto higher false dis-

covery rate.27 The high speed of the ZenoTOF technology, ena-

bling up to 133 Hz, allows for the adoption of DDA for in-depth 

metabolic profiling, reducing the risk of chimeric spectra com-

pared to data-independent acquisition. Figure 2 depicts the duty 

cycle of the proposed TRAM approach. Allowing cycle times 

of ~ 1 second, TRAM boosts the number of triggered tandem 

MS measurements per sample. The exact timing of each cycle 

depends on the number of scheduled MRM spectra at a given 

retention time and varies over the chromatographic run. To 

maximize the signal-to-noise ratio, the optimized accumulation 

times of MRM spectra exceed those of DDA spectra. This study 

limited the cycle time to a 1-second range, as otherwise, the 

number of data points per chromatographic peak is reduced, 

limiting the accuracy of peak integration. The chromatographic 

region with the highest number of scheduled MRM scans is the 

basis for calculating the maximal number of DDA scans possi-

ble and accumulation times. Given this condition, each MS cy-

cle contains one MS1 spectrum, up to 30 DDA tandem MS 

spectra (accumulation time of 5 ms), and up to 24 MRM transi-

tions (minimum accumulation times of 10 ms). 
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Figure 1: When alkaline HILIC separation is applied, most metabolites under investigation elute between 2.5 and 10 minutes (A). Isomer 

pairs like Uridine-Pseudouridine and Betaine-Valine (R>1.5) can be separated, while baseline separation cannot be achieved for other isomer 

pairs like Leucine-Isoleucine, Alanine-Sarcosine, Uridine-Pseudouridine, Guanosine-Isoguanosine, and 3’AMP-5’AMP (B). The proposed 

HILIC-MS workflow allows the analysis of 20 metabolite classes (C). 

Working range and limit of quantification for targeted 

analysis – TRAM versus MRM- and DDA-only. Targeted 

analysis by TRAM was benchmarked versus DDA-only and 

MRM-only, the latter being the gold standard for quantitative 

analysis. We established key analytical figures of merit for tar-

geted analysis using a dilution series of metabolite standards 

spiked with uniformly 13C labelled yeast-derived internal stand-

ards. A concentration range over more than 6 orders of magni-

tude (10 pM to 25 µM) was used to determine the linear dy-

namic working range. Stringent criteria for outlier removal 

were applied to assess LLOQs and ULOQs (see Experimental 

Section & Supporting Information). For TRAM and MRM-

only, MS1 and MRM MS2 levels could be combined to deter-

mine LLOQs and ULOQs. For DDA-only calibration functions 

were based solely on the MS1 level.  

Figure 3A plots the obtained working ranges comparing spe-

cies-specific isotope dilution for 19 metabolites by TRAM ver-

sus MRM-only and DDA-only. The target metabolites were se-

lected based on the fact that these compounds were abundant in 

the 13C labelled yeast and thus amenable to internal standardi-

zation for all investigated MS strategies. Both MRM and 

TRAM were equivalently fit for the quantification purpose, 

showing working ranges of 3-4 orders of magnitude and com-

parable average LLOQ values in the low nM range. Both strat-

egies clearly outperformed the DDA approach in all investi-

gated figures of merit. Supporting Information Table SB1 

summarizes the obtained calibration slopes, intercepts, 

correlation coefficients, LLOQs, and ULOQs. A mass accuracy 

filter of 5 ppm was applied for MS1-level data. It has to be 

stated that the determined LLOQ values are procedural LLOQ 

values, determined by procedural blanks, and intrinsically 

higher than sole instrumental LLOQs (especially considering 

the yeast-derived internal standard). To compare the sensitivity 

of the acquisition methods, we determined the fraction of 12C 

target panel metabolites for which the signal-to-noise ratio ex-

ceeded a value of 3. As shown in Figure 3B, TRAM shows ex-

cellent sensitivity in MRM-MS2 acquisition mode, boosting 

signal-to-noise ratios even at very low concentrations of 10 pM. 

A comparison of fragment mass errors, which are equally low 

for MRM-only and TRAM acquisition, is presented in Sup-

porting Information Figure S1. 

Finally, targeted TRAM was benchmarked for surrogate in-

ternal standardization. The selected 13C surrogate internal 

standards fulfilled the criteria of (1) comparable ionization effi-

ciency as approximated by peak areas of unlabelled metabolites 

in a 1 µM standard and (2) being abundantly present in the uni-

formly 13C labelled yeast extract. Working ranges were assessed 

as described previously using the SCIEX OS automatic outlier 

removal algorithm. Based on this approach, LLOQs as low as 

0.1 nM were found, and ULOQs ranged up to 25 µM. An ex-

tensive overview of calibration ranges for TRAM-based quan-

tification using surrogate ISTDs is provided in Supporting In-

formation Table SB2.  
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Figure 2: A theoretical MS cycle of the novel TRAM method is 

represented when one MS1 scan is followed by 30 DDA triggers 

and 24 scheduled MRM transitions. Please note that actual cycle 

times might vary due to instrument switching times and need to be 

determined during method optimization. 

Summarizing, the combined TRAM approach allows the 

quantification of many metabolites across a wider working 

range than the stand-alone DDA method, with the additional 

benefit of generating up to 30 DDA MS2 spectra per MS-cycle 

compared to stand-alone MRM. 

Accuracy of quantification. The accuracy of quantification 

was assessed for 14 metabolites with certified concentrations 

using the reference material for human plasma SRM 1950, is-

sued by NIST.28 Additionally, six compounds with available in-

dicative concentration values published by Thompson et al.7 

(Propionyl-L-Carnitine, Aspartic Acid, Glutamine, Glutamate, 

Kynurenine, and Taurine) were included. For all compounds, 

species-specific isotope dilution by 13C labelled yeast was ena-

bled, with the exception of Glycine, nemylated Cysteine, Pro-

pionyl-L-Carnitine, Kynurenine, and Taurine, resorting to sur-

rogate internal standards on both MS1 and MS2 level, and Iso-

leucine and Methionine on MS1 level. As reported elsewhere29, 

the quantitative exercise was based on calibrations fitted by se-

lecting, out of the extensive calibration data set, 6 calibration 

points closest in area ratio to the mean SRM area ratio of tripli-

cate measurements. As a result, the calibration covered tailored 

concentration ranges for the respective targeted metabolite 

(maximum 2.5 orders of magnitude). This strategy and the fact 

that certified and indicative concentration values were in the 

µM range enabled cross-validation of MS1- and MS2-level 

quantification in TRAM. Only calibrations with R values ex-

ceeding 0.9 were accepted. A comprehensive overview of the 

calibration curves for SRM quantification is provided in Sup-

porting Information Table SB3.  

85% of the investigated metabolites were in good agreement 

with target values (agreement within 20%; see Supporting In-

formation Figure S2). 70% of the metabolites showed even 

higher agreement < 10%. The indicative value of Taurine could 

not be recapitulated regardless of whether TRAM was evalu-

ated based on MS1 or MS2 level. Establishing calibrations with 

tailored concentration ranges, most compounds could be quan-

tified with a recovery of <20% on both MS1 and MS2 level. 

Glycine, Isoleucine, Serine, Valine, and Kynurenine required 

the selectivity of MS2 level measurement for accurate quantifi-

cation.  

Evaluating non-targeted metabolomics enabled by 

TRAM. Data-dependent MS2 spectra are the gold standard for 

high-confidence compound annotation, library matching, and 

feature-based molecular networking in non-targeted applica-

tions. While common metabolomics workflows require itera-

tive exclusion list generation based on sample pools, the com-

bined TRAM workflow allows the generation of sample-spe-

cific data-dependent spectra along with sensitive absolute quan-

tification. Non-targeted screening can thus be performed on an 

individual basis, generating data-dependent scans of features 

 

 

Figure 3: A) Working ranges of stand-alone DDA (green) and 

MRM (violet) methods compared to the combined TRAM (blue) 

workflow. Colored method blocks highlight the acquisition strate-

gies used for the working range assessment. TRAM and MRM-

based quantification yield similar working ranges, outperforming 

DDA. B) Percentage of metabolites listed in Supporting Infor-

mation Table SB1 exceeding the signal-to-noise threshold of 3 

with respect to the MS-acquisition mode. For MS2-based acquisi-

tion strategies, more than 70% of the compounds exceed the de-

fined threshold already at the lowest concentration of 0.01 nM. The 

slight differences between MRM MS2 and TRAM MS2 for low 

concentrations originate from Glutamine, which was found to have 

a S/N bigger than 3 for TRAM but not for MRM for low concen-

trations.  
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 that would usually be diluted in sample pools or require itera-

tive sample injections - which are often not possible for low 

sample volumes. Limiting the cycle time to a 1-second range, 

TRAM enables up to 30 DDA scans for each cycle.  TRAM was 

scrutinized and compared to DDA-only (top 40) upon analysis 

of SRM 1950 (n=3 injections). Average numbers of data-de-

pendent MS2 triggers were calculated per sample and acquisi-

tion method and varied between 5004 (SRM – DDA) and 5555 

(SRM – TRAM) with RSDs below 2.4%. The number of MS2 

spectra triggered with TRAM was within 10% of the DDA-only 

triggers. When assessing the number of MS2 triggers, one has 

to bear in mind that it depends on the sample, triggering thresh-

olds, and the maximum number of data-dependent scans al-

lowed.  

Preprocessing steps determine the feature matrix30 and need 

to be optimized for each method. We performed non-targeted 

data processing for DDA-only and TRAM to compare the num-

ber of features, MS2 spectra, potential library matches, and fea-

tures for which sum formulas could be predicted. The same set-

tings were used for both methods within a retention time win-

dow of 0.9 to 14.1 minutes (see Experimental Section and 

Supporting Information). Non-targeted analysis of SRM 1950 

yielded more than 6750 features for DDA runs and about 4460 

for TRAM. This resulted in a similar decrease in formula finder 

results (DDA: 4890, TRAM: 3338). In spite of this reduction in 

features (-33%), the number of MS2 spectra was only reduced 

by 17%, and the number of library hits with scores bigger than 

70% was reduced by 11%. For both MS methods, 5 to 6% of 

MS2 spectra had a library hit with a score bigger than 70%, 

which is similar to the ratio of library hits to MS2 spectra re-

ported by Proos and Baker in their application note12 on non-

targeted metabolomics on the ZenoTOF 7600.  

Showcasing the power of TRAM in clinical studies. The 

power of TRAM was assessed in clinical cerebrospinal fluid 

samples for the two essential analytical tasks of metabolomics, 

i.e., targeted absolute quantification and non-targeted analysis. 

The cerebrospinal fluid was obtained in the frame of an ongoing 

clinical study on meningioma tumors, exploring, besides other 

aspects, the potential of metabolomics to predict meningioma 

grading. While several promising metabolomics/lipidomics re-

ports on tumor tissue biopsies exist, proof of principle studies 

in cerebrospinal fluid are lacking. Amino acids and small or-

ganic acids were discovered to be among the potential signature 

metabolites31–33 in tumor tissue. The meningioma grade could 

be distinguished based on metabolic pathways such as gly-

cine/serine metabolism, choline/tryptophan, purine and pyrimi-

dine metabolism.31 The same study revealed an additional set of 

changing metabolites by unsupervised statistical analysis. Tau-

rine, creatine, serine, choline, thiamine, phenylalanine, biotin, 

glutamine, and arginine were proposed as signature metabolites 

by hierarchical clustering.31 

The MRM targets were selected accordingly, focusing on 

amino acids and organic acids found relevant in meningioma 

research. Finally, the target list also included Phosphocholine, 

Glycerophosphocholine, and N-Acetyl-aspartate, with the aim 

of distinguishing meningioma from glial and oligodendroglial-

like brain tumors, as IDH mutations are currently debated in 

meningioma samples.34  

Absolute quantification of metabolites in CSF. Due to the 

lack of certified reference materials, in clinical metabolomics, 

quality controls are produced in-house from pooled samples as 

established by community guidelines.35 In this study, a pooled 

quality control sample of 16 cerebrospinal fluid samples (5 con-

trol, 11 meningioma patients) served to assess benchmark abso-

lute quantitative values. Metabolite concentrations in the qual-

ity control pool varied from low nanomolar (30 nM) to high mi-

cromolar (>ULOQ) concentrations. A comprehensive overview 

of the included target panel and corresponding concentrations 

obtained in the CSF-QC sample is given in Supporting Infor-

mation Table SB4. Figure 4 illustrates that quantified 

concentrations in the CSF-QC sample pool represented by 

violet dots are within the same orders of magnitude as those 

listed in the HMDB26 for adults (green boxplots). The high 

agreement between experimental and literature values for CSF 

metabolites demonstrates that TRAM is fit for metabolite 

quantification in clinical matrices.  

 

Figure 4: Concentrations of metabolites in pooled CSF-QC 

samples (cancerous and control) -violet – compared to concen-

trations extracted from HMDB26 for adults. The plot was lim-

ited to concentration values below 45 µM. Data for Glutamine 

is not shown but was similar to reported concentrations (CSF-

QC: 455 µM, Reference: 152-1157 µM). 

Non-targeted analysis in clinical CSF samples. Feature-

based molecular networking (FBMN) visualizes and analyzes 

these highly complex data sets, incorporating MS1 and MS2 in-

formation. To showcase the versatility of the novel TRAM ac-

quisition strategy for clinical metabolomics, we performed 

FBMN in GNPS 2 after preprocessing DDA and TRAM data of 

CSF replicates in MS-DIAL. A representative subnetwork is 

depicted in Figure 5A, with feature intensities for DDA repre-

sented in orange and violet for TRAM. Details on processing 

parameters can be found in the Supporting Information. As 

can be seen, most nodes have a 50:50 distribution of DDA- and 

TRAM, indicating equal intensities for the features irrespective 

of the acquisition strategy. The network consisted of 2372 

nodes and 3065 edges. 9% of the nodes showed a variation of 

more than 50% in intensities across MS methods, and below 1% 

of the clusters were only present when measured with either 

DDA or TRAM, demonstrating the versatility of TRAM for 

complex non-targeted workflows. Replicate injections of 

pooled CSF samples, containing no ISTD, were measured by 

DDA-only and TRAM. TOFMS accumulation times were set to 

0.1 seconds for stand-alone DDA measurements. None of the 

methods contained an exclusion list. Most of the time, the 30 

triggers set for TRAM are only fully exploited in very dense 

chromatogram regions. Comparing the top 40 DDA method to 

TRAM,
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Figure 5: A) By combining MS1 and data-dependent MS2 information, feature-based molecular networks can be created from CSF metab-

olomics data. Most features can be found with DDA (orange) and TRAM (violet). Features found with DDA (B) and TRAM (C) measure-

ments of a pooled CSF sample without (green) and with (violet) MS2 spectra. The total number of features, MS2 spectra, MS2 spectra with 

library hits (>scores 70%), and formula finder results was reduced by less than 10% in TRAM compared to DDA. 

 changes in numbers of detected features, MS2 spectra, library 

hits, and found formulas were below 10%, as shown previously 

for SRM 1950. An overview of the number of features with (vi-

olet) and without (green) MS2 spectra is presented in Figure 5 

for DDA (B) and TRAM (C) data of a representative injection 

of a CSF-Pool. While accumulation time can be increased for 

stand-alone DDA while still offering low cycle times and high 

numbers of DDA triggers, accumulation times need to be set as 

low as possible for TRAM methods. Despite the decrease in 

features, TRAM offers the possibility to generate a high number 

of data-dependent MS2 scans with sufficiently high spectral 

quality to be matched against library spectra (Supporting In-

formation Figure S3-S8). 

Metabolomics of cerebrospinal fluid in meningioma pa-

tients. As previously mentioned, the cerebrospinal fluid sam-

ples were collected in the frame of an ongoing clinical study 

aiming to distinguish between different WHO grades of menin-

gioma. While the small number of samples (n=15) does not al-

low comprehensive statistical analysis, we still wanted to inves-

tigate whether metabolic patterns can be seen. Promising pre-

liminary data suggests that meningioma grades can be partially 

differentiated based on MRM-MS2 12C/13C area ratios acquired 

with TRAM (Supporting Information Figure S9). These pre-

liminary findings indicate that LC-MS-based metabolomics can 

not only be applied to tumor tissue samples, as already de-

scribed in literature31–33, but also to CSF collected from patients. 

Future studies with larger cohorts and different brain tumor sub-

types will further explore this potential and could find metabo-

lite patterns for which intraoperative diagnostics by sensors can 

be envisaged combined with methylation profiles.36 For sam-

ples like CSF, where sample volumes are limited, workflows 

like TRAM are required to offer the possibility of acquiring tar-

geted and non-targeted data from a single injection. 

CONCLUSION 

Our study introduces TRAM as a triple acquisition strategy 

utilizing high-speed time-of-flight mass spectrometry, 

effectively combining non-targeted and targeted metabolomics 

in a single analytical run. The integration of HILIC with TRAM 

for polar metabolite analysis demonstrates comparable linear 

working ranges and limits of quantification to the gold standard 

of MRM only while enabling comprehensive metabolite profil-

ing. We validated the TRAM approach using the human plasma 

certified reference material SRM 1950 and analyzed clinical 

CSF samples. TRAM proves highly suitable for analyzing sam-

ples with limited amounts, offering quasi-simultaneous quanti-

tative and qualitative metabolite information while reducing 

cost, analysis times, and solvent consumption. For a wide target 

panel of polar metabolites separated by HILIC, retention times 

and optimized conditions for MRM experiments are reported. 

We also recognize significant potential in triple acquisition 

methods with other instrumental setups, including different 

high-resolution mass analyzers such as TOFs or Orbitraps, es-

pecially in cases of limited sample materials. In general, CSF is 

a promising, minimally invasive sample matrix offering infor-

mation on relevant metabolites in meningioma and other dis-

eases. 
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