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Despite its current popularity, machine learning (ML) applied to asymmetric catalysis remains 

underexplored. Present strategies include direct use of existing descriptors (e.g. those originally 

formulated for medicinal chemistry), the development of new bespoke steric and electronic 

descriptors, or the use of molecular graphs. This method diversity, in the absence of user 

guidelines, makes selecting an optimal ML algorithm unclear.   The fact that asymmetric catalysis 

data sets are frequently small also make interpretable ML of chiral ligand understanding difficult 

to realize. Herein, we present an exhaustive evaluation of reaction representations in combination 

with different machine learning algorithms (including linear regression, random forests, gradient 

boosting, and graph neural networks) using a realistic-size database compromising 103 palladium-

catalyzed decarboxylative asymmetric allylic alkylation (DAAA). This database consists of the 

combination of three different Trost-type ligands with 54 different substrates. It is concluded that 

our new bespoke steric and electronic descriptors offer the best performance, while overcoming 

the problem of interpretability of using existing topo-electronic descriptors, and the problem of 

data requirements of Graph Neural Networks. 
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Introduction 

Palladium-catalyzed decarboxylative asymmetric allylic alkylation (DAAA, Scheme 1)  is a mild, 

but powerful tool for the synthesis of compounds possessing α-quaternary stereocentres.1,2 The 

DAAA reaction has been developed to give high levels of both yields and enantioselectivities using 

allyl enol carbonate and β-keto allyl ester substrates (Scheme 1A).3–5 While the substrate class and 

allyl substitution pattern has been extensively varied, the identity of the α-substituent (R in Scheme 

1A) has been much less studied. Traditionally, this is a small alkyl group such as a methyl or ethyl, 

or a substituted methyl such as a benzyl group. In 2016 Guiry and co-workers expanded the scope 

of DAAA reactions to include bulky α-aryl cyclopentanones (Scheme 1B) with high yields and 

excellent enantioselectivities (>99% ee).6 These studies could be generalized to other α-aryl 

containing related substrates (Scheme 1C). 7–10 

 

Scheme 1. (A) Traditional α-alkyl DAAA reactions (2004-05). (B) Initial α-aryl DAAA reaction 

reported by Guiry.6 (C) Recent motifs accessible by α-aryl DAAA reactions.7-10  

The catalyst for the DAAA comprises two parts: a Pd(0) source, commonly Pd2(dba)3, and a 

suitable chiral ligand. In the case of α-aryl containing substrates the optimized choice of ligand is 

typically a Trost-type ligand (e.g. Figure 1). The high levels of enantioselectivity seen when using 

Trost-type ligands is attributed to the H-bonding capabilities of the amide proton.11 As the enolate 

approaches the Pd-π-allyl complex, the steric clash between the bulky aryl group and the backbone 
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of the ligand causes the enolate to orient itself with the aryl group pointing away from the steric 

clash (Figure 1, pathway A). It has been observed that di-ortho aryl substitution and electron-

donating groups on the aryl group leads to the highest levels of enantioselectivity. It is proposed 

that this di-ortho substitution pattern breaks the co-planarity of the enolate-aryl group, leading to 

an unstabilized enolate that reacts more selectively. It should be noted from that the outset that 

results in the literature result from the use of a range of (R, R)- and (S,S)-Trost ligands and this 

needs to be accounted for when applying any stereochemistry defining (ML) mechanistic model. 

 

Figure 1. Origin of stereochemical selectivity using a (R,R)-ANDEN-phenyl Trost ligand and 

cyclopentanone substrates shown in Scheme 1C. 

Ligand controlled asymmetric methodologies, such as the DAAA reaction, can be treated as 

pattern recognition problems. Machine learning (ML) is a useful tool for interpreting and solving 

such problems. ML has found applications in predicting the bioactivities of new drugs,12,13 

optimizing reaction conditions,14 predicting chemical yields,15,16 and in the development of new 

synthetic routes to desired molecules.17 ML has also found notable success in the area of 

asymmetric catalysis.18–20 Furthermore, the first Graph Neural Network (GNN) capable of 

understanding relations between a reaction graph representation and stereoselectivity outcome has 

been recently reported by Aguilar et al.21 

Despite the insights that ML can provide to the area of catalytic chemistry, its uptake by synthetic 

chemists has been low due, in part, to limited awareness/examples of ML in the field. Herein we 

compare simple, but effective, methodologies for supervised ML modelling of the DAAA reaction. 

Our aim was to determine systems where easily understood chemical features show which 

substituents within the ligand(s) used are likely to lead to selectivity improvement. We chose to 

https://doi.org/10.26434/chemrxiv-2024-gxvd9 ORCID: https://orcid.org/0009-0007-6251-2350 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-gxvd9
https://orcid.org/0009-0007-6251-2350
https://creativecommons.org/licenses/by/4.0/


 4 

compare, a bespoke steric/electronic feature set against one developed for medicinal chemistry and 

against our recently developed Graph Neural Network approach (HCat-GNet).21 All these ML 

models were asked to predict the product enantioselectivities of the same data set of Pd-catalyzed 

α-aryl DAAA reactions and asked to highlight the areas of the substrate/ligand that are key to the 

success of the reaction.  

Results and Discussion 

A total of 103 DAAA reactions of α-aryl containing substrates were gathered from published work 

from within the Guiry group.6–10 Initially, we sought a very straightforward approach to 

featurization of both the substrate and the catalyst to maximize the subsequent human 

interpretability resulting from the ML outcomes based on our previous work.22 Each substrate was 

described using a common core structure broken down into the structural elements A-D (Scheme 

2). To minimize the descriptors needed for featurization, the structural units B-D were 

approximated just by the van der Waals volume of each unit (as calculated by the method of 

Zhao23) and electronically by the Hammett parameter of the nearest published analogue. The latter 

being obtained from a wide-ranging review (e.g., methyl used for CH2, ethyl for CH2CH2, phenyl 

for the o-phenylenes).24 Our aim was to compare the utility of this bespoke explainable feature 

approach to both traditional molecular featurization methods (i.e. via RDKit),25 and GNN 

approaches (e.g. HCat-GNet).21 

 

Scheme 2. A-D fragment approach. For example, the left most structure in Scheme 1C is defined 

as containing the fragments: A = Ar, B = O, C = ortho-C6H4, D = CH2. 

The structural unit A denotes the α-aryl substituent, where the electronic and steric of this ring are 

known to have a significant impact on the enantioselectivity of the DAAA reaction. We chose to 

represent the bias in the steric demand of this type of fragment by its ‘stoutness’ (van der Waals 
volume over longest perpendicular chain length, as proposed by Owen et al.)22 and to represent 

their electronics by their Hammett parameter. The 14 aryl fragments (a-m) used in our study are 

shown in Figure 2. While the Hammett parameter24 of ‘a’ is +0.00 by definition (that derived from 

benzoic acid), only two other substitution patterns have experimentally derived Hammett 

parameters (fragments ‘b + c’). Therefore, the 10 remaining examples were calculated or 

approximated by other methods. 
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Figure 2. Structures of subunits ‘A’ present in our dataset. The calculated9 fragment volume 

used is given in Å3 first, then the ‘stoutness’ (in Å), and finally the actual, or calculated using the 

method V2 (see text for details) Hammett parameter used. 

Which enantiomer of the DAAA product is formed is controlled by the absolute chirality (R,R) vs. 

(S,S) of the Trost ligand used. For the compiled curated dataset of DAAA transformations, three 

different catalysts are pertinent, namely complexes of Pd with the three Trost-type ligands (cat I-

III), Figure 3. When this work was being undertaken, crystallographic data for these palladium 

complexes was sparse and their solution behavior is complicated by association phenomena.26 Due 

the absence of usable mononuclear crystallographic data at the time, catalyst fragments  I-III were 

subjected to repeated MM2 force field dynamics in Chem3D until they converged to their lowest 

global strain energy. The obtained structures were checked against proposed and generally 

accepted transition-state models and each catalyst structure agreed with what would be predicted. 

In 2023, Arseniyadis and Leitch reported an excellent paper on the preparation of chiral, air stable, 

and reliable Pd(0) precatalysts for use in asymmetric allylic alkylation chemistry, such as DAAA.27 

As part of their work, they reported Pd(0) complexes with Trost-type ligands. Significantly for our 

work, their paper contained X-ray crystallographic data that was previously not available. We were 

pleased to find that the structures we obtained after MM2 force field dynamics showed significant 
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similarities to the crystallographic data in their report, suggesting that we had a good starting point 

for breaking down our three catalysts for featurization. 

 

Figure 3. Structure of the three Trost ligands present in our dataset. 

The three minimized conformations, Figure 4, show the structures divided into a quadrant model, 

giving the four sub-units UL, LL, UR and LR (where L = Left, R = Right, U = Upper, L = Lower), 

that are all forward of an arbitrary P-P baseline. Inspecting the MM2 minimized structures reveals 

the Fragments shown in Figure 4 to be projecting into the four regions for each of catalysts I-III.  

For example, catalyst I shows a ‘HC=CH-CH=CH’ fragment is in the LR quadrant. By using 

Zhao’s23 approach these can approximated into an equivalent total steric burden without the need 

for complex molecular dynamics to be employed. This is shown in Figure 4 for all catalyst 

families. Due to low exemplar numbers we only featurized the steric profile of the chiral space 

around catalysts I-III and did not include any electronic description, as these Trost-type ligands 

all likely to have similar electronic properties. 

The standard Cahn-Ingold-Prelog (CIP) method for stereoisomer assignment of R or S is not self-

consistent for the library of resultant products from the DAAA reaction, as this assignment is 

dependent on the identity of the structural units A-D and the added allyl fragment. Therefore, the 

facial selectivity driven by the Trost ligands would not be accounted for. The enantioselectivity 

target of this ML analysis was therefore defined as ‘%topA’ or the percentage of the ‘top’ isomer, 

as proposed and used elsewhere.21,22 This is defined as placing the α-carbonyl to the left of the site 

of C-allylation and with the aryl unit A pointing up or ‘on top’.  Therefore a 50 % ee would have 

a 75% or 25% ‘%topA’, depending on which face the aryl unit is situated on. 

The %topA in the dataset we are working with is somewhat imbalanced as we mostly see very 

high levels of enantioselectivity in the DAAA products. This leads to a bimodal distribution in the 

dataset. Generally, this would lead to a categorisation approach being favoured over regression. 

However, a longer-term aim of this ML workflow is de novo ligand design. Therefore, the 

regression approach was maintained here. However, we also present the results of the models on 

predicting the face of the addition for a more insightful study on the capability of these approaches 

to understand the reaction representation and predict stereoselectivity outcomes. This way, we also 

target the variable ‘face of addition’, which determines whether the addition is done on the ‘top’ 

side (%top > 50%), or not (%top < 50%). 
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Figure 4. Quadrant model applied to Chem3D optimized ligand structures to generate steric 

features for the ML model input. 

To analyse the selected descriptors, a correlation matrix was generated from the above bespoke 

features is generated (Figure 5). This heatmap allows for visualisation of the relationship between 

features. Isolation of the %topA row (boxed in Figure 5) highlights which descriptors are likely 

to be impactful in the ML process. For example, the correlation for %topA is strongly positive for 

UL and LR volumes of the catalyst and strongly negative for LL and UR volumes. These 

correlations are expected, as the volumes of these quadrants align with either the (S,S)- or (R,R)-

hand of the Trost ligands, which ultimately control whether the products of the DAAA are high or 

low %topA. However, other descriptors such as electronics and sterics of certain fragments and 

solvent effects did show strong correlation with the %topA outcome. 
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Figure 5. Heatmap feature correlation to induced stereoselectivity (%top). Lighter colors 

indicate strong positive effects to %top, darker colors the reverse. 

The reactions were represented into four different versions (V1-V4), Table 1. Each version 

contained identical entries, except for the values of the electronics of the aryl unit ‘A’, which was 

defined by different methods. V1 contains values obtained from the DFT method developed by 

Ziegler, V2 contains values defined by the summed Hammett value method, V3 contains results 

by the averaged Hammett value method, and V4 contains values defined from the 13C NMR 

spectroscopic method. As the number of exemplars in the collated dataset was relatively small, it 

was decided to look at the dataset as a whole and not break it down into smaller subsets for analysis. 

The four representations V1-V4 were tested under a variety of ML algorithms. Simple Linear 

Regression (LR), which attempts to model the relationship between two variables by fitting a 

linear equation to the data, was initially employed. Ensemble methods such as Gradient Boosted 

Regression (GBR) and Random Forrest Regression (RFR) were also examined. These methods 

combine the outputs of several decision trees looking at subsets of the data into a single result. 

This reduces variance in the results. 

The performance of the ML algorithms outlined above were assessed using a nested-cross 

validation approach. This means that we created ten-folds, which led to a total of ten test sets, each 

being evaluated by nine different training and validation sets. This generated a total of 90 

training-testing processes. This allows assessment of robustness and stability of the different 

methods evaluated. For evaluation of the prediction of the ‘%topA’ variable, we report the RMSE 

(%), while for the face of addition, accuracy is used. The finalized performance of each of the ML 

models (LR, RFR and GBR) using each of the different electronic descriptors evaluated herein 

are given in Table 1 for all the testing points gathered from the 90 training-testing processes, 

leading to a total of 927 testing reactions. 
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Table 1.  Overall ML algorithm predictive performance of the enantioselectivity variable ‘%topA’ 

and ‘face of addition’ compiling all the testing data-points from the 90 train-testing trials. 

Data Set 

GBR 

RMSE (%) 

Accuracy 

LR 

RMSE (%) 

Accuracy 

RFR 

RMSE (%) 

Accuracy 

V1 
10.17 

0.997 

14.18 

0.940 

13.33 

0.961 

V2 
10.06 

0.986 

14.14 

0.940 

9.87 

0.967 

V3 
11.58 

0.996 

14.24 

0.940 

12.50 

0.961 

V4 
11.66 

0.989 

13.89 

0.940 

12.05 

0.961 

 

The best prediction of ‘%topA’ was obtained using the RFR algorithm using the V2 electronic 

descriptor, with a RMSE value of 9.87%. This low RMSE value shows that the ML algorithm was 

able to successfully predict selectivity for unseen substrates using easily interpretable chemical 

features. Results using the GBR algorithm obtained similarly low RMSE values, while the LR 

algorithm performs the weakest of the three tested algorithms. The representation V2 attained the 

lowest RMSE values, although the other descriptors performed quite similarly. The small 

difference between the results from the electronic descriptors V1-V4 suggests that the methods 

used to estimate the electronics of the aryl unit were consistent to each other. 

The best prediction of the enantioface of the substrate attacked by the allyl is from the GB 

algorithm, with a precision of 0.997. We have noticed the classification algorithms make no major 

distinction between electronic descriptors. The reason of this is that all the electronic descriptors 

have very high correlation between them, which in a classification algorithm, makes little impact 

on the final training and testing of the model.  

To confirm our new proposed methodology is effective compared to classical RDKit featurization 

processes, we have evaluated the performance of such ML models trained to predict on the same 

variable but using descriptors calculated from the SMILES string of substrate, ligand, and solvent 

using RDKit. In the case of the ligands, since the whole dataset only has 3 different ligands, we 

have decided to calculate descriptors related to lipophilicity, polarity, topology, electronics, and 

electro-topology, which are calculated from the chemical structure (operations on the molecular 

graph). In the case of the substrates, we have decided to use fragment-count based descriptors since 
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the chemical diversity of these molecules will allow the ML algorithms to learn the contribution 

of the fragments in terms of electronics and topology separately, rather than calculating a 

descriptor based on the whole molecule, that might or not capture the effect of specific functional 

groups. Lastly, for the solvent the Hall-Kier Alpha descriptor was calculated. A hyperparameter 

optimization process for Random Forest and Gradient Boosting was performed and then a Feature 

Selection Process was applied. The results obtained are shown in Table 4. 

Table 2.  Overall ML algorithm predictive performance of the enantioselectivity variable ‘%topA’ 

and ‘face of addition’ compiling all the testing data-points from the 90 train-testing trials. 

Metric GBR LR RFR 

RMSE / % 11.967 13.981 13.472 

Accuracy 0.990 0.947 0.961 

 

In the case of the results obtained using the RDKit descriptors, GBR is the best performing 

algorithm for both the regression and classification tasks. The RFR and LR, although perform 

worse than the GBR, both attain satisfactory results. This means that the RDKit descriptors used 

do correlate to the selectivity outcome of the reaction to the ligand.  

Finally and GNN (HCat-GNet) approach has also been evaluated. To do this, we took the 

architecture proposed by Aguilar et al., while the graph representation has been slightly changed.21 

The reason for this is that our dataset is significantly smaller than that used in the original study 

(about 85% smaller), which makes the learning of the Graph Neural Network significantly more 

challenging and more likely to overfit on the training samples. To avoid this, we have used the 

most minimal graph representation that allows correlation between the reaction representation and 

the selectivity outcome. This way, our graph representation consists of the concatenation of the 

graph representation of the three participant molecules (substrate, ligand, and solvent). The graph 

representation of the molecules consisted of a graph where the nodes represent the atoms, while 

edges represent covalent bonds. We further used node features of atom identity and chirality of the 

atom, while no edge features were used.  By using this simple representation and the original 

architecture, HCat-GNet attained an RMSE of 20.046% and 0.941 accuracy.  

As our objective is to compare these three approaches (manual chemical-informed features, RDKit 

features and HCat-GNet) in performance and interpretability for ligand optimization, we compared 

the best performing models using the different descriptors, which are RFR using handcrafted 

features with the V2 electronic descriptor, and the GBR using RDKit features. The three methods 

have been trained and evaluated using the exact same sets of reactions, which means that the results 

obtained per test fold can be compared directly. We present the results of the regression task using 

the RMSE (%) and of the classification task using the accuracy per test fold in a bar plot, where 

the value of the bar represents the mean and the error bars the standard deviation of the population 

of metrics obtained in each of the 9 times that each test set was used. We also show a strip plot to 

visualize the distribution of errors generated by each method. These results are shown in Figure 

6. 
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Figure 6. Summary of results obtained by the novel descriptors, HCat-GNet, and the RDKit 

descriptors on prediction of selectivity of the DAAA reaction. A) Shows the comparison of 

results between the novel approach and HCat-GNet. B) Shows the comparison of results between 

the novel approach and the RDKit descriptors.  

Figure 6a shows the comparison between the handcrafted features proposed herein and HCat-

GNet. In general, the performance of HCat-GNet was the poorest of all the methods evaluated. 

However, the results per test fold show that HCat-GNet can attain similar results than those 

obtained by the other methods. In the case of Accuracy, HCat-GNet is less accurate in folds  2, 5, 

9, while in the other folds the performance is undistinguishable or better than the novel approach. 

On the other hand, the RMSE values show that HCat-GNet delivers less accurate predictions for 

most folds, where only folds 6, and 8 show similar errors between methods. From the strip plot, it 

can be noticed that HCat-GNet generated higher errors, particularly on folds 2, 5, 6, and 9 where 

the error was more than 50% (meaning that the prediction of facial selectivity was incorrect). We 

hypothesize that the poor performance HCat-GNet is due to the requirement for larger quantities 

of data in deep learning methods to perform well compared to RFR and GBR. Although the 

performance is not as good as the handcrafted features, it is remarkable that despite the size of the 

database, HCat-GNet was able to accurately predict with significant accuracy some of the data 

points and obtain comparable results to the other approaches for certain folds, while maintaining 

the advantage of not requiring human input to generate high level features. This can overcome 

modelling problems in asymmetric catalysis, particularly when transition states are completely 

unknown, and the design of handcrafted features is more challenging. 

When comparing the handcrafted and the (medicinal chemistry derived) RDKit features in Figure 

6b, no major differences are found in the accuracy when prediction the face of addition. In the case 

of RMSE, in general, the novel features provide lower errors, where only folds 3, 6, and 10 show 

similarities between methods. Also, no major differences were found in the distribution of errors 

in the strip plot. The results obtained show that there is not much difference between using the 

handcrafted features and the RDKit features. However, the latter makes use of descriptors that, for 

the most part, lack of meaning to human chemists, while the handcrafted features are highly 
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interpretable and meaningful. This small difference is of importance, as de novo design can be 

inspired from the interpretation that can be potentially applied to the model, which ultimately will 

explain the effect of each feature in the model’s final prediction. To demonstrate this, we have 

used SHAP analysis to understand the impact of each variable to the model’s final prediction to 

the RFR and GBR models using the RDKit descriptors and to the RFR using V2 handcrafted 

features. The results are shown in Figure 7. 

 

 

Figure 7. SHAP analysis applied to the models trained using the RDKit and the handcrafted 

features. A) Shows the SHAP analysis of the model GBR using the RDKit descriptors. B) Shows 

the SHAP analysis of the model RFR using the RDKit descriptors. C) Shows the SHAP analysis 

of the model RFR using the handcrafted descriptors and the V2 electronic descriptor. 
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Figure 7a shows the SHAP analysis applied to the GBR model using RDKit descriptors. Although 

the plot shows clearly how low or high values of each feature affect the models’ prediction, some 

of these features (for example min energy state index ligand, Chi1v ligand, min absolute energy 

state index ligand) are not interpretable to scientist, which prevents human design in further chiral 

ligand optimization. Similar effects occur in the RFR model using RDKit features, shown in 

Figure 7b. For this model, more features were used, but there is still a lack of chemical 

interpretability, as the case of Min and Max Energy State Index, Chi0n, and BertzCT (all 

describing the ligand). Although in both these models there are variables that are human 

interpretable, these consist of fragment counts in the substrate, which is not useful as usually the 

substrate to convert is not a variable of the reaction, where ligand optimization is the pre-eminent 

goal. 

Alternatively, Figure 7c shows the SHAP analysis of the RFR model using the handcrafted 

features with the V2 electronic descriptor. Our proposed new features also show a clear trend in 

how they impact the models’ final prediction. For the case of the UL volume of the ligand, high 

values in general increase the model’s prediction (larger %topA or prediction of addition on the 

top side), while UR volume and LL volume decrease the model prediction (lower %topA or 

prediction of addition on the bottom side) when the values are bigger. This result agrees with the 

proposed selectivity model in Figure 1, which means that the model is effectively learning the 

relation between the steric of the ligand and the selectivity outcome. Unlike the RDKit descriptors, 

these ligand descriptors are highly interpretable and ultimately can help chemists to design de novo 

ligands to optimize this type of conversions. Other properties are found to impact the 

stereochemical outcome of the reaction, however, these properties depend on the substrate, which 

is not a molecule to be optimized. 

HCat-GNet also allows interpretability by applying SHAP analysis to each node feature vector. 

We applied this tool as it was implemented originally to analyze a subset of three reactions that 

shared same substrate and solvent, and the only difference between them was the ligand used. The 

results are shown in Figure 8. 

From Figure 1 and the analysis presented in Figure 7c, it is expected that the interpretations from 

SHAP in HCat-GNet are related to the disposition of atoms in space resulting from the chiral 

carbons in the structure. For the case of ligand (R,R)-L3, the addition is done in the top face, while 

for (S,S)-L1 and (S,S)-L2 is done in the bottom face. Remarkably, the SHAP analysis demonstrates 

that HCat-GNet is effectively learning that the main drivers of the facial selectivity in the reaction 

are the asymmetric carbons in the structure. As shown in Figure 8a, the asymmetric carbons in 

the structure are found to contribute positively to the outcome variable (larger %topA), while from 

Figure 8b and 8c the asymmetric carbons are found to contribute negatively (lower %topA). This 

is reassuring, as it indicates that the model is being able to learn the correlation between the 

configuration of the ligands and the selectivity outcome, and that the predictions done make sense 

from a chemical perspective. Due to the limited diversity of ligands in our dataset, no further 

information, such as the impact of substituents in the structure of the ligand, is available.  

When comparing the three approaches, the novel proposed featurization process outperforms the 

RDKit featurization and HCat-GNet approaches for this sparse data set. In the case of HCat-GNet, 

the biggest limitation found is its poor performance due to the lack of data, while for the RDKit 

descriptors, although attain high accuracies, are harder to interpret, which makes de novo ligand 

design from them more challenging. Our novel features are demonstrated to competently represent 
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the reaction and are highly interpretable. This means that the models are not only useful to predict 

selectivity of new reactions, but also the conclusions from SHAP analysis can be used to ultimately 

optimize a ligand structure to obtain more efficient transformations. 

 

 

 

Figure 8. SHAP analysis applied to the ligand structure used in HCat-GNet for three reactions 

that only differed in the ligand used. a) Shows the SHAP analysis for ligand (R,R)-L3, b) for 

(S,S)-L1, and c) for (S,S)-L2. d) Shows the structure of the substrate and solvent. 

 

Conclusions 

We proposed a novel feature generation procedure for the representation of DAAA reactions and 

the training of ML models. This representation is based on simple molecular mechanics 

calculations of optimized ligand structures, where simple descriptors of steric and electronic 

factors are used. We combined this reaction representation with different ML algorithms to 

identify the combination that generated the most accurate predictions. To benchmark our proposal, 

other two competitor ML methods were compared: RDKit descriptors and the GNN HCat-GNet. 

We found that the RDKit descriptors perform almost as well as our novel descriptors, while we 

found that HCat-GNet, although giving satisfactory results, it performed the poorest of the three 

methods. SHAP analysis was performed to understand the impact of the variables to the models’ 

final predictions. We found that the RDKit descriptors generated a distinct separation in variables 

that clearly show the direction of impact of each variable. However, these descriptors were less 

understandable and therefore less useful for de novo design. For our novel features, a clear 
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separation of variables showed the direction of impact to the final prediction, but maintaining high 

interpretability, which can be used by chemists to ultimately create novel ligands to obtain more 

efficient transformations. We analyzed the interpretability of HCat-GNet by applying SHAP 

analysis in terms of its node feature vectors. We found that the models were effectively learning 

the relation between the configuration of the ligands and the selectivity outcome they induced, 

which demonstrated the ability of this method to understand to a certain level the relation between 

reactants and selectivity outcome.  Our proposed methodology has shown to be effective to model 

the reaction, while overcoming limitations of former methods including interpretability and data 

requirements.  
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