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ABSTRACT:	Aryl	fluorosulfates	of	varying	complexities	have	been	used	in	amination	reactions	in	water	using	a	new	Pd	oxi-
dative	addition	complex	(OAC)	developed	specifically	to	match	the	needs	of	the	fine	chemicals	industry,	not	only	in	terms	of	
functional	group	tolerance,	but	also	reflecting	time	considerations	associated	with	these	important	C–N	couplings.	Also	es-
pecially	noteworthy	is	that	they	replace	both	PFAS-related	triflates	and	nonaflates,	which	are	today	out	of	favor	due	to	re-
cent	government	regulations.	The	new	complex	based	on	the	BippyPhos	ligand	is	used	at	low	loadings	and	under	aqueous	
micellar	conditions.	Moreover,	it	is	easily	prepared	and	stable	to	long	term	storage.	DFT	calculations	on	the	OAC	precatalyst	
compare	well	with	the	X-ray	structure	of	the	crystals	with	p-complexation	to	the	aromatic	system	of	the	ligand	and	also	con-
firm	the	NMR	data	showing	a	mixture	of	conformers	in	solution	that	differ	from	the	X-ray	structure	in	rotation	of	the	phenyl	
and	t-butyl	ligand	substituents.	An	extensive	variety	of	coupling	partners,	including	pharmaceutically	relevant	APIs,	readily	
participate	 under	 mild	 and	 environmentally	 responsible	 reaction	 conditions.

INTRODUCTION	
Over	 the	 past	 29	 years,	 Group	 10-metal-catalyzed	 ami-

nations	of	 aryl	pseudohalides	mainly	 focusing	on	 triflates	
and	more	recently,	Knochel’s	nonaflates,	have	become	fun-
damental	processes	in	organic	synthesis	for	the	formation	
of	 C(sp2)–N	bonds.	 Given	 the	 ubiquitous	 nature	 of	 the	N-
aryl	 and	N-heteroaryl-amine	motif	 in	 natural	 products,1-4	
pharmaceuticals,1,5-7	and	fine	chemicals,8-10	should	the	sta-
tus	of	one	or	more	components	of	a	reaction	be	altered,	a	
need	for	the	development	of	new	technologies	arises,	pref-
erably	those	that	are	not	only	environmentally	responsible	
but	are	also	efficient,	mild,	and	general.	Couplings	with	aryl	
triflates	 and	 nonaflates	 are	 especially	 common,	 notwith-
standing	the	alternative,	albeit	less	reactive,	mesylates	and	
tosylates.11-15	 And	 while	 they	 have	 some	 inherent	 disad-
vantages	 (such	 as	 instability,	 environmental	 toxicity,	 cost	
of	 preparation,	 and	poor	 atom	economy	 in	 the	making	of	
triflates),16	they	are	taken	for	granted	as	the	two	main	op-
tions	 available	 for	 use	 in	 synthetic	 organic	 chemistry.17	
Unfortunately,	 as	 both	 contain	 C(sp3)–F	 bonds,	 they	 are	
technically	 polyfluorinated	 alkyl	 substances	 (PFASs),18	
reagents	that	only	recently	have	been	flagged	for	their	en-
vironmental	impact.	On	the	other	hand,	aryl	fluorosulfates,	
first	 described	 more	 than	 four	 decades	 ago,19	 have	 thus	
become	 increasingly	popular	 as	 coupling	partners,	 all	 the	
more	 so	 given	 the	 range	 of	 processes	 that	 now	 exist	 for	
their	generation	from	phenolic	starting	materials	(Scheme	
1).	 Hence,	 a	 new	 process	 that	 fulfills	 all	 of	 these	 criteria	
may	 represent	 a	 breakthrough	 in	 the	 common	utilization	

of	phenol-based	electrophiles	in	cross-coupling	research	in	
modern	synthetic	chemistry.20-26	

Scheme	1.	Approaches	to	aryl	fluorosulfates	from	phe-
nols.
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Scheme	2.	Previously	developed	Pd-Oxidative	addition	complexes	for	cross	coupling	reactions.	

The	evolution	of	new	generations	of	 ligands	 is	a	 recent	
trend	in	modern	transition	metal-catalyzed	cross	coupling	
reactions.27	 As	 examples	 in	 this	 regard,	 several	 biaryl	
phosphines,28	 QPhos-based	 ligands,29	 as	 well	 as	 Cata-
CXium-based	ligands30	have	been	developed	to	tackle	chal-
lenging	 reactions	 involving	 pseudohalides.	 Additionally,	
significant	advancements	have	been	made	with	the	discov-
ery	of	ferrocene-based	ligands	by	the	Colacot	group,31	and	
N–heterocyclic	carbene	(NHC)-based	ligands	by	Hermann,	
Nolan,	and	Organ.32-34	Nonetheless,	 the	search	for	alterna-
tive	 monodentate	 phosphine-based	 pre-catalysts	 is	 still	
very	 much	 ongoing,	 especially	 given	 the	 differences	 be-
tween	 their	 anticipated	 usage	 in	 traditional	 organic	 sol-
vents	versus	use	in	more	environmentally	responsible	pro-
cesses,	 including	 in	water	 under	micellar	 catalysis	 condi-
tions.	 One	 area	 that	 remains	 underexplored,	 especially	
from	 the	 green	 chemistry	 perspective,	 is	 development	 of	
metal-containing	Oxidative	Addition	Complexes	 (OACs).	A	
number	 of	 groups35-37	 have	 previously	 prepared	 palladi-
um-containing	OACs,	 albeit	 for	mechanistic	 studies.	More	
recently,	 OACs	 using	 biarylphosphines	 (e.g.,	 Buchwald’s	
Pd-G6	complexes)	have	been	 found	useful	 for	various	ap-
plications	(Scheme	2A).	 38,	 39	 	Carrow	has	reported	studies	
describing	the	Pd–OAC	formed	using	Ad3P	as	a	unique	lig-
and	 to	 carry	 out	 both	 Suzuki-Miyaura	 couplings	 of	 chal-
lenging	 polyfluoroarylboronic	 acids,	 as	 well	 as	 otherwise	
difficult	 C–N	 couplings	 of	 aryl	 halides	 under	 mild	 condi-
tions	 (Scheme	2B).40,41	 Especially	 noteworthy	 is	 the	work	

by	 Colacot	 et	 al.	 who	 have	 developed	 a	 general	 Pd–OAC	
using	relatively	inexpensive	tBu3P	as	ligand	enabling	vari-
ous	C–C	and	C–N	 cross	 couplings	of	 aryl	 halides	 (Scheme	
2C).42	
Prior	 seminal	 studies43-46	have	 already	 established	 that	

aryl	 fluorosulfates	 function	 as	 effective	 cross-coupling	
partners	 using	 traditional	 Pd	 (or	 Ni)	 catalysis	 in	 amina-
tions43b	and	other	C–C	cross	coupling	reactions.44–46	None-
theless,	catalyst	loadings	are	not	only	costly	but	unsustain-
able	(typically	run	 in	organic	solvents	with	>2	mol	%	Pd)	
when	considered	for	use	at	scale.	Moreover,	 the	very	 lim-
ited	substrate	scope	 in	each	renders	these	protocols	even	
more	 worthy	 of	 further	 exploration.	 Importantly,	 other	
factors	such	as	solvent	and/or	catalyst	recycling,	and	met-
rics	 relating	 to	 the	 environmental	 friendliness	 of	 these	
processes	 (such	 as	 E	 Factors,47	 PMI,48	 etc.)	 have	 rarely	
been	 considered.	 These	 parameters,	 yet	 again,	 highlight	
the	pressing	need	for	an	alternative,	far	more	environmen-
tally	attractive	and	sustainable	process	 for	aminations.	 In	
addition,	 significant	 reaction	 rate	 enhancements	 associat-
ed	with	what	are	otherwise	typically	time-consuming	pro-
cesses	would	also	represent	a	significant	advance.	
This	report,	therefore,	is	the	outcome	of	a	lengthy	inves-

tigation	 into	 the	development	and	use	of	 a	new	oxidative	
addition	complex	(1)	based	on	the	commercially	available	
bipyrazole	 ligand,	 BippyPhos	 (Scheme	 2D).49	 This	 previ-
ously	unknown	OAC	leads	to	rapid	aminations	of	fluorosul-
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fates,	matched	to	its	use		in	water50	containing	our	recently	
introduced	biodegradable	 amphiphile,	 Savie.51	As	a	newly	
fashioned	pre-catalyst,	OAC-1	offers	several	attractive	fea-
tures,	including	(1)	it	is	considerably	less	expensive49b	and	
yet,	easier	to	synthesize	(see	SI)	as	compared	to	other	pre-
viously	 developed	 OACs;39–42	 (2)	OAC–1	 catalyzes	 amina-
tions	between	educts	 that	display	broad	 functional	 group	
tolerance;	(3)	reactions	occur	at	relatively	low	Pd	loadings	
in	the	presence	of	Et3N,	an	inexpensive	and	mild	base;	(4)	
OAC–1	 outperforms	 traditional	 Pd-phosphine	 complexes	
in	terms	of	catalyst	loading	and	substrate	scope,	including	
a	variety	of	sensitive	functional	groups;	and	(5)	it	leads	to	
faster	 reactions	 relative	 to	 other	 aminations	 using	 OAC	
complexes;	 (6)	 it	 allows	 the	 use	 of	 fluorosulfates	 as	 non-
PFAS-containing	 pseudohalides,	 leading	 to	 an	 overall	 at-
tractive	option	for	aminations	in	both	academic	and	indus-
trial	settings.	
	
RESULTS	AND	DISCUSSION	
	
Optimization.	In	efforts	to	find	a	ligand	for	chelation	to	

Pd	that	leads	to	an	effective	catalyst	under	aqueous	micel-
lar	coinditions,	naphthalen-1-yl	sulfurofluoridate	(1a)	and	
4-aminoacetophenone	 (1b),	 as	 model	 substrates,	 were	
selected	 for	 initial	 amination	 studies	 (Table	 1).	 Based	 on	
our	prior	aminations	of	aryl	halides,50a,	b	reactions	were	run	
starting	with	catalytic	amounts	of	Colacot’s	readily	availa-
ble	and	bench	stable	dimeric	species	[Pd(crotyl)Cl]2	as	the	
source	 of	 Pd(II)	 in	 2	wt	%	Savie	 as	 the	 aqueous	 reaction	
medium.	Potassium	t–butoxide	(KOtBu)	was	selected	since	
aryl	 amination	 protocols	 tend	 to	 utilize	 alkoxide	 bases.52	
An	initial	investment	of	0.25	mol	%	of	Pd	dimer	(hence,	0.5	
mol	%	 [Pd];	 administered	as	a	 stock	 solution	 in	THF;	 see	
SI,	section	3)	was	made.	The	key	to	success,	and	to	eventu-
ally	focus	on	OAC-1,	was	the	eventual	finding	that	the	lig-
and	BippyPhos	complexed	with	Pd	efficiently	mediated	C–
N	 bond	 construction	 (entry	 3;	 see	 SI,	 section	 3.1	 for	 the	
complete	list	of	ligands	screened).	Among	other	ligands28-30	
evaluated,	 none	 led	 to	 productive	 C–N	 couplings	 (entries	
1–2	and	5–7).	Screening	bases	(see	SI,	section	3.2)	indicat-
ed	 that	 milder	 conditions	 would	 be	 necessary,	 as	 aryl	
fluorosulfates	 are	 known	 to	 undergo	 sulfamation	 in	 the	
presence	 of	 amines	 under	 strongly	 basic	 conditions.53	 Ul-
timately,	 Et3N	 (entry	 11)	 proved	 to	 be	 the	most	 effective	
base,	affording	biarylamine	1	in	98%	yield	(as	determined	
by	 1H	 NMR;	 92%	 isolated).	 Other	 weak	 bases	 such	 as	
Cs2CO3	 and	Proton	Sponge	proved	equally	 effective;	how-
ever,	 considering	 cost,	 Et3N	 turned	 out	 to	 be	 the	 base	 of	
choice.	Screening	co-solvents	led	to	use	of	10	v/v	%	cyclo-
pentyl	methyl	ether	(CPME),	a	greener	alternative	to	THF	
and	2-MeTHF	(entry	15).54	Of	note	is	that	these	aminations	
also	work	efficiently	using	no	co-solvent	(entry	16),	which	
may	 be	 of	 considerable	 value	 if	 used	 at	 industrial	 scales.	
Also	worth	pointing	out	as	foreshadowing,	full	conversion	
was	 observed	 within	 a	 2	 h	 period	 under	 these	 reaction	
conditions	(i.e.,	a	global	concentration	of	0.5	M).		
Another	 variable	 was	 the	 choice	 of	 surfactant,	 which	

leads	 to	 variations	 in	 the	nature	of	 the	nanomicelles	 (i.e.,	
the	nanoreactors)	formed	in	the	aqueous	micellar	medium	
in	which	 the	 couplings	 take	place.55	 Thus,	 a	 series	of	 am-
phiphiles	was	evaluated	in	terms	of	effectiveness	at	ena-	

Table	1.	Screening	of	reaction	conditions.	

 
bling	aminations	(Table	2).	Under	otherwise	identical	con-
ditions	 (2	wt	%	 of	 each	 surfactant	 in	 water),	 yields	 of	1	
ranged	 from	 27	 to	 99%.	 The	 recently	 introduced,	 more	
polar	 and	 biodegradable	 Savie51	 gave	 the	 best	 result	 for	
this	model	coupling	(entry	6;	99%)	as	compared	 to	other	
ionic	and	nonionic	amphiphiles	(entries	1–3,	5,	7–11).	The	
corresponding	background	reaction	“on	water”56	(entry	4),	
likewise,	 afforded	 the	desired	product,	 albeit	 in	 a	modest	
51%	yield.		
Synthesis	 and	 characterization	 of	 OAC-1.	 Once	 Bip-

pyPhos	had	been	identified	as	the	 ligand	within	a	new	Pd	
complex	 for	 catalyzing	 C–N	 couplings	 in	water,	 the	 focus	
shifted	to	the	corresponding	OAC.	While	preparation	of	the	
G6	oxidative	addition	complex	uses	(cod)Pd(CH2TMS)2,39,57	
as	the	Pd	precursor,	its	high	cost	and	extreme	air	and	tem-
perature	sensitivity	led	us	to	search	for	an	alternative	ap-
proach.	 Ultimately,	 starting	 with	 commercially	 available	
allyl	 palladium	 chloride	 (Scheme	 3A),58	 OAC-1	 could	 be	
smoothly	 prepared	 using	 a	 slightly	modified	 protocol	 re-
ported	from	Pfizer	(see	SI,	section	4).59	Thus,	treatment	of	
(Pd(allyl)Cl)2	with	BippyPhos	in	degassed,	anhydrous	THF,	
and	sodium	triflate	led	to	coordination	of	the	metal	to	the	
ligand,	the	targeted	species	being	formed	in	situ.60	Without	
its	isolation,	subsequent	nucleophilic	attack	by	the	sodium	
salt	of	diethyl	malonate	 (generated	 in	 situ;	 see	SI,	 section	
4)	afforded	the	Pd(0)	species	that	underwent	subsequent		
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Table	2.	Surfactant	screening.	

 
oxidative	addition	with	p-fluorobromobenzene.	The	choice	
of	 this	aromatic	halide,	once	again,	was	 influenced	by	 the	
recent	state-of-affairs	suggesting	avoidance	of	a	precursor	
containing	a	Csp3-F	bond	 (e.g.,	 a	CF3-substituted	aromatic	
ring).	 	 This	 led	 to	 selection	of	4-bromofluorobenzene	 (bp	
150	°C),	ultimately	affording	OAC-1	isolated	in	83%	yield.	
This	method	is	attractive	in	that	it	is	accomplished	in	a	1-
pot	 operation	 and	 avoids	 use	 of	 a	 glovebox,	 producing	 a	
bench-,	 air-,	 and	moisture-stable	 complex	 that	 can	 easily	
be	purified	on	silica	gel.		

Scheme	 3.	 Route	 to	 the	 oxidative	 addition	 complex	
OAC-1.		

 
Upon	 screening,	 the	 amount	of	Pd	needed	 to	 form	1	 in	

the	model	 reaction	using	OAC-1	 (see	 SI,	 section	6.2)	was	
0.5	mol	%	for	complete	reaction	in	10	min,	versus	2	h	when	
run	without	the	oxidative	addition	complex	(vide	supra).	

Scheme	 4.	 Attempts	 towards	 other	 biarylphosphine-
containing	OACs.	

	

The	Pd	loading	was	then	lowered	to	0.25	mol	%,	thereby	
affording	an	almost	quantitative	yield	of	1	 in	only	30	min.	
Attempts	 to	 make	 OACs	 from	 biaryl	 phosphines,28	 using	
tBuXPhos	 and	 tBuBrettPhos	 as	 representative	 examples	
and	 applying	 the	 identical	 successful	 protocol	 that	 led	 to	
OAC-1,	were	 unsuccessful	 due	 to	 their	 instability	 to	 both	
air	and	silica	gel	(Scheme	4).	The	fast	rate	of	reaction	can	
presumably	be	attributed	to	OAC–1	being	a	pre-catalyst40–
42	 (i.e.,	 bypassing	 an	 initial	 oxidative	 addition	 for	 catalyst	
activation;	Scheme	5).	 	Scheme	5	has	the	usually	postulat-
ed	 catalytic	 mechanism	 for	 arylbromides,39	modified	 to	
show	 fluorosulfate	 salt	 intermediates.	 It	 also	 shows	 one	
possible	 way	 that	 the	 precatalyst	OAC-1	could	 form	
the	LPd0	catalyst	 by	 amine	 coordination,	 followed	 by	
deprotonation	 and	 reductive	 elimination	 to	 produce	P1,	
initially.	Ultimately,	this	could	form	LPd0,	which	then	could	
undergo	oxidative	addition	to	the	aryl	fluorosulfate,	there-
by	starting	the	actual	the	catalytic	cycle	leading	to	the	de-
sired	product.	
Scheme	5.	Postulated	Mechanism	of	 aminations	using	
an	OAC.	
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Figure	1.	X–ray	structures	for	OAC–1,	conformer	D.		

	
To	gain	insight	into	the	structure	of	OAC-1,	a	single	crys-

tal	 X-ray	 structure	 was	 determined	 (see	 Figure	 1a).	 A	
structure	 for	 OAC-1	 was	 also	 calculated	 at	 the	 M06/6-
31+G(d,p)/SDD(Pd,Br)	 level	 of	 theory,	 giving	 a	 geometry	
for	 a	 conformer,	 D,	 that	 very	 closely	 matches	 the	 X-ray	
crystal	 structure,	 except	 for	 a	 minor	 difference	 of	 15°	 in	
dihedral	angle	for	one	phenyl	group	(Figure	1b),	consistent	
with	 other	 comparisons	 we	 have	 made	 between	 X-ray	
crystal	 structures	 and	 calculated	 gas-phase	 structures.61		
Surprisingly,	 the	 1H	 and	 13C	 NMR	 spectra	 for	 chloroform	
solutions	 of	 OAC-1	 show	 evidence	 of	 three	 low-energy	
conformers	with	 a	 ratio	 of	 9.0:6.5:1.3.	 Relative	 free	 ener-
gies	 [M06/6-31+G(d,p)/SDD(Pd,Br)/SMD(CHCl3)]	 for	 the	
four	 lowest	 energy	 conformers	A,	B,	C	 and	D	 were	 0.00,	
0.13,	0.29,	and	2.17	kcal/mol,	respectively,	with	low	barri-
ers	 for	 rotation	 of	 the	 phenyl	 and	 t-butyl	 groups	 as	 ob-
served	 in	 the	NMR	spectra	 (see	SI–2	 for	details).	This	ac-
counts	nicely	for	the	experimental	NMR	ratios	but	is	unu-
sual	in	that	the	highest	energy	conformer	D	corresponds	to	
the	observed	geometry	in	the	crystal	structure.		This	could	
be	 the	 result	 of	 crystal	 packing	 forces	 that	 have	 a	 large	
enough	effect	that	all	three	of	the	lowest	energy	conform-
ers	become	less	stable	than	conformer	D.61			

An	 interesting	 feature	 of	 the	 calculated	 structure	
for	OAC-1	was	the	bonding	between	Pd	and	a	pyrazole	ring	
in	BippyPhos,	which	was	later	confirmed	in	the	X-ray	crys-
tal	structure	(vide	supra). 	 	This	appears	to	be	a	sort	of	p-
complexation	to	the	heterocycle	ring	carbon	and	has	some	
precedent	in	an	X-ray	structure	of	an	aryl	group	bound	to	
Pd	in	a	G6	OAC	pre-catalyst,	(see	Scheme	2A).39a,62	We	find	
evidence	 of	 the	 energetic	 consequences	 of	 this	 p-
complexation	to	Pd	by	comparing	the	free	energy	at	298K	
of	 conformer	A	 of	OAC-1	with	 that	 of	 conformer	OAC-1-
anti	in	which	the	Pd	is	rotated	anti	to	the	heterocycle	rings	
of	the	ligand,	as	shown	in	Scheme	6.		Species	OAC-1-anti	is	
uphill	 by	 12.1	 kcal/mol	 in	 chloroform	 when	 this	 p-
complexation	 is	ruptured.	The	reductive	elimination	tran-
sition	state	OAC-1-TS–1	would	be	on	one	of	several	path-
ways	by	which	OAC-1	could	conceivably	return	to	a	Pd(0)	
catalytic	intermediate	for	the	coupling	reaction.39b			
	

Scheme	 6.	 Some	 reaction	 pathways	 associated	 with	
OAC–1.		Free	energies	(in	kcal/mol)	of	reaction	in	chlo-
roform(clfm)	 at	 298K	 are	 from	 M06/6-
31+G(d,p)/SDD(Pd,Br)/SMD(CHCl3)	calculations.	

	

	
Scope	 of	 C–N	 cross	 couplings.	 A	wide	 variety	 of	 cou-

plings	between	aryl	fluorosulfates	and	substituted	anilines	
catalyzed	 by	 OAC-1	 is	 illustrated	 in	 Scheme	 7.	 Catalyst	
loadings	 were	 0.25–0.5	 mol	 %	 while	 reaction	 tempera-
tures	of	60	oC	for	typically	30	min	to	2	h	led	to	moderate-
to-high	 isolated	 yields	 of	 functionalized	 amina	 ted	 prod-
ucts.	 Reaction	 partners	 containing	 electron-donating	 or	
electron-withdrawing	groups,	or	both,	readily	participated	
in	 the	 coupling	 independent	 of	 their	 placement	 in	 either	
the	 fluorosulfate	 or	 amine.	 Base-sensitive	 functionality	
(e.g.,	 ester,	 aldehyde,	 oxazolidinone)	 was	 well-tolerated	
(products	3,	9,	14,	15).	Aryl	fluorosulfates	or	anilines	con-
taining	acidic	protons	(e.g.,	product	2)	demonstrated	excel-
lent	selectivity	towards	amination,	rather	than	competitive	
⍺–arylation	 or	 imine	 formation	 (product	 3).

	

a. OAC-1 X-ray crystal structure as conformer D.

b. OAC-1 Conformer D structure calculated at the 
M06/6-31+G(d,p)/SDD(Pd,Br) level of theory.
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Scheme	7.	Scope	of	aminations:		representative	examples.	

 
a	Unless	otherwise	mentioned:	ArOSO2F	(1	equiv),	Ar’’NH2	(1.5	equiv),	OAC-1	(0.25	mol	%),	Et3N	(1.5	equiv),	2	wt	%	Savie/H2O	

(0.5	M),	10	v/v	%	CPME,	60	oC;	b	OAC-1	(0.5	mol	%);	c	Reaction	was	run	at	65	oC;	d	attempted	couplings	that	were	unsuccessful;	
Yields	 mentioned	 are	 of	 isolated	 compounds.
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Scheme	8.	Representative	examples	of	late-stage	C–N	bond	formation.	

 
a	Unless	otherwise	mentioned:	ArOSO2F	(1	equiv),	Ar’’NH2	(1.5	equiv),	OAC-1	(0.5	mol	%),	Et3N	(1.5	equiv),	2	wt	%	Savie/H2O	

(0.5	M),	10	v/v	%	CPME,	60	oC;	b	OAC-1	(0.75	mol	%);	c	Reaction	was	run	at	80	oC;	d	ArOSO2F	(1.5	equiv),	Ar’’NH2	(1	equiv);	Yields	
mentioned	 are	 of	 isolated	 compounds.

As	 the	 extent	 of	 functionality	 in	 each	 partner	 increased,	 the	
loading	of	catalyst	increased	to	0.50	mol	%.	This	was	the	case	
with	 several	 N-heterocycle–containing	 anilines,	 presumably	
due	 to	 their	 known	 propensity	 to	 coordinate	 with	 the	 cata-
lyst63	(see	products	7–9,	12,	13,	16,	and	19).	It	is	also	worthy	
of	note	that	ortho–substituted	fluorosulfates	and	amines	cou-
ple	without	incident	(e.g.,	see	products	9,	16	and	17).	On	the	
other	 hand,	 amines	 with	 low	 nucleophilicity	 at	 the	 NH2,	 in-
cluding	 2-aminobenzothiazoles,	 2-aminopyridine,	 2-
aminopyrimidine,	 and	 substrates	 containing	 pyrazoles	 or	 te-
trazoles	(that	would	have	 led	to	products	20–23,	respective-
ly)	were	poor	coupling	partners.		

	

Late–stage	C–N	cross	couplings	with	complex,	phar-
maceutically	 relevant	 substrates.	 C–N	 Bond	 formation	
involving	 late–stage	 pharmaceutical	 derivatives	 bearing	
multiple	 functional	 groups	 can	 exhibit	 a	 high	 rate	 of	 fail-
ure.64	 	 Nevertheless,	 given	 the	 large	 number	 of	 nitrogen-
containing	 biologically	 active	 compounds,	 both	 discovery	
and	 process	 chemists	 place	 significant	 value	 in	 Pd–
catalyzed	C–N	couplings.65	In	order	to	extend	the	generali-
ty	of	 this	methodology,	 several	pharmaceutically	 relevant	
compounds	were	made	using	OAC-1.	Thus,	with	only	0.50–
0.75	 mol	 %	 of	 OAC-1,	 complex	 pharmaceuticals	 bearing	
multiple	 functional	groups	could	be	aminated	to	products	
24-32	 with	 a	 variety	 of	 aryl	 fluorosulfates	 (Scheme	 8).	
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Arylation	 of	 a	 pyrimidine	 containing	 polycyclic	 aniline,	 a	
reaction	partner	en	route	to	the	anti-cancer	drug	imatinib	
(Gleevec™,	affording	product	24)	was	realized	in	excellent	
yield.	 Furthermore,	 arylation	 of	 aminoglutethimide	 (Elip-
ten™),	which	is	used	in	the	treatment	of	seizures,	Cushing’s	
syndrome,	 breast,	 and	 prostate	 cancer	 proceeded	 very	
smoothly	 to	 product	 25	 in	 close	 to	 quantitative	 isolated	
yield.	It	is	noteworthy	that	under	these	mild	reaction	con-
ditions,	 the	 glutarimide	 moiety	 does	 not	 fragment.	 Like-
wise,	 arylation	 of	 (i)	 Procaine	 (affording	product	26;	No-
vocain™),	a	local	anesthetic;	(ii)	Metoclopramide	(affording	
product	 27;	 Reglan™);	 an	 anti-emetic	 and	 gut	 motility	
stimulator;	 and	 (iii)	 Mosapride	 (affording	 product	 28;	
Gasmotin™);	 a	 prokinetic	5-HT4	 receptor	 agonist	 used	to	
stimulate	gastric	motility,	all	proceeded	very	efficiently	to	
afford	excellent	yields	of	the	corresponding	coupled	prod-
ucts.	Moreover,	 aryl	 fluorosulfates	 derived	 from	 pharma-
ceutically	 relevant	phenols,	 such	as:	 (i)	Capsaicin,	used	 in	
the	 treatment	 of	 neuralgia	 and	 rheumatoid	 arthritis	 (af-
fording	 product	 28);	 (ii)	 Estrone	 (Estragyn™;	 affording	
product	 29),	 used	 in	 hormone	 therapy;	 (iii)	 Ezetimibe	
(Zetia™;	 affording	 product	 31),	 used	 in	 the	 treatment	 of	
high	 cholesterol,	 and	 (iv)	 Arctigenin,	 a	 plant	 lignan	 with	
antioxidant,	 anti-inflammatory,	 and	 antiviral	 properties	
(affording	product	32),	all	proceeded	smoothly.	Collective-
ly,	 C−N	 couplings	 of	 this	 nature	 involving	 complex	 phar-
maceuticals	 and	 materials	 used	 under	 environmentally	
responsible	conditions	further	establishes	the	generality	of	
these	 technologies	 as	 important	 tools	 in	 the	 growing	
toolbox	that	are	based	on	chemistry	in	water.	Noteworthy	
is	 the	 finding	 that	 levels	 of	 residual	 Pd	 in	 products	 from	
ICP-MS	 analyses	 are	 relatively	 quite	 low	 (see	 30-32	 in	
Scheme	8).	This	is	reflective	of	the	levels	needed	for	these	
otherwise	 challenging	 aminations	 which,	 as	 part	 of	 any	
sequence,	 should	 eventually	 lead	 to	 products	 well	 below	
FDA	limits.66	

Reactivity	 comparisons	 with	 other	 electrophiles	
(OFs	vs.	OTf	vs.	Br	vs.	Cl).	An	interesting	comparison	was	
made	of	 the	rates	of	amination	of	aryl	 fluorosulfates	with	
other	 common	 aryl	 electrophiles	 under	 these	 relatively	
mild	reaction	conditions.	Arylation	involving	two	different	
anilines	 (1b	 and	 1c)	 with	 a	 variety	 of	 aryl	 electrophiles	
originating	 from	 1-naphthol	 were	 investigated	 (Table	 3).	
Notably,	 the	 fluorosulfate	 was	 the	 most	 reactive	 electro-
phile,	affording	products	1	and	33,	respectively,	in	almost	
quantitative	 yield	 in	 just	 after	 30	 min.	 Amination	 of	 the	
aryl	bromide	was	slightly	slower,	giving	1	and	33	in	78	and	
68%	yields,	respectively.	Surprisingly,	the	aryl	triflate	and	
aryl	chloride	only	formed	trace	amounts	of	these	products.	
It	 is	 known	 that	 aryl	 triflates	 have	 rates	 similar	 to	 bro-
mides	 towards	 oxidative	 addition	 to	 palladium;67,	 68	 how-
ever,	 under	 these	 reaction	 conditions,	 ligand	 exchange	
(after	 the	 first	 cycle;	 vide	 supra)	 may	 be	 the	 rate-
determining	step.	These	data	suggest	that	the	nature	of	the	
leaving	group	X	in	the	resultant	species	LnPd(1-naphthyl)X	
formed	after	oxidative	addition	(vide	supra)	greatly	affects	
the	rates	of	these	aminations	in	water.	The	aryl	fluorosul-
fate,	 therefore	appear	 to	offer	 the	optimal	combination	of	
activity	 toward	 oxidative	 addition	 and	 the	 ability	 to	 pro-
mote	facile	nucleophilic	attack	by	the	amine	substrate	in	

Table	 3.	 Aminations	 of	 various	 aryl	 electrophiles	 un-
der	mild	conditions.	

 

the	presence	of	a	weak	base	like	Et3N.	
	
Direct	 comparisons	 with	 recent	 literature.	 Direct	

comparisons	with	the	current,	state-of-the-art	procedures	
for	 the	 aminations	 of	 phenol-derived	 electrophiles	 were	
also	made.42,43a,69-71	Aminations	arriving	at	products	34–38	
indicate	that	the	catalytic	system	described	here	based	on	
the	oxidative	addition	complex	OAC-1,	in	general,	appears	
to	 be	more	 effective	 than	 the	 other	 systems	 (Scheme	 9).	
That	 is	 aminations	 occur	 at	 lower	 catalyst	 loadings,	 take	
place	 in	predominantly	 aqueous	micellar	media,	 and	 lead	
to	 typically	 far	 faster	 couplings	 than	 the	 corresponding	
reactions	 in	 organic	 solvents.	 The	 same	 is	 the	 case	 even	
when	 using	 an	 alternative	 OAC	 (see	 entry	 5).	 Moreover,	
yields	tend	to	be	comparable,	 if	not	higher,	than	those	re-
ported	 previously.	 The	 commercial	 availability	 of	 the	 Pd	
dimer	precursor58	and	BippyPhos,49b	along	with	the	sheer	
simplicity	of	 the	synthesis	of	OAC-1	 suggest	 that	 this	sys-
tem	offers	many	advantages	that	were	previously	unavail-
able.	
	
Recycling	 studies.	 One	 of	 the	 most	 employed	 bench-

marks	for	promptly	evaluating	a	reaction’s	environmental	
viability	 is	 Sheldon’s	 time-honored	 E	 Factor.47	 However,	
alternative	 metrics	 including	 process	 mass	 intensity	
(PMI),48	notably,	life	cycle	assessment	(LCA)72	are	increas-
ingly	 gaining	 prominence.	 Recycling	 of	 aqueous	 reaction	
mixtures	 can	 have	 a	 significant	 impact	 on	 each	 of	 these	
parameters.	 Thus,	 following	 an	 initial	 reaction	 between	
naphthalen-1-yl	 sulfurofluoridate	 (1a)	 and	 4-
aminoacetophenone	 (1b)	 (Scheme	 10),	 the	 desired	 prod-
uct	1	 can	 be	 readily	 isolated	 using	 an	 in-flask	 extraction	
with	minimal	amounts	of	recyclable	EtOAc	(see	SI,	section	
7).	 Subsequently,	 re–use	 of	 the	 aqueous	 phase	 remaining	
in	the	original	reaction	vessel	for	two	additional	cycles	led	
to	excellent	yields	of	aminated	product	1.	Only	additional	
catalyst,	 ligand,	 base,	 and	 starting	 materials	 need	 to	 be	
added,	preferably	under	inert	atmosphere,	after	each	coup-
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Scheme	9.	Direct	comparisons	with	recent	literature.		

														
ling.	Overall,	these	three	reactions	required	a	total	 invest-
ment	 of	 only	 0.25	mol	%	 Pd	 per	 amination.	 After	 the	 3rd	
reaction	 (2nd	 recycle),	 salt	 buildup	 increased	 viscosity	 to	
the	point	where	additional	usage	of	 the	aqueous	 reaction	
mixture	was	precluded.	E	Factors	associated	with	 this	re-
cycling	were	2.5	(when	recyclable	EtOAc	is	not	considered	
waste;	 see	SI	 section	7)	 and	17	 (when	EtOAc	 is	not	 recy-
cled).	These	values	compare	very	favorably	with	typical	E	
Factors	 associated	with	 the	 pharmaceutical	 industry	 that	
vary,	according	to	Sheldon,47	between	25	and	100,	without	
inclusion	of	water	in	the	calculation.	
	
Representative	 3-step,	 tandem	 sequence.	 As	 the	

scope	of	 reactions	 feasible	under	aqueous	micellar	 condi-
tions	continues	to	broaden,73	so	too	do	the	benefits	of	tele-
scoping,	 yielding	 significant	 efficiencies	 in	 both	 “time”74	
and	“pot”75	economies.	These	advantages,	alongside	organ-
ic	 waste	 reduction,	 have	 become	 focal	 points	 in	 recent	
scholarly	reports	and	analyses	highlighting	the	imperative	
of	optimizing	reaction	methodologies	for	both	sustainabil-
ity	 and	 productivity.	 In	 Scheme	 11,	 a	 3-step	 tandem	 se-
quence	is	 illustrated	that	employs	some	of	the	more	com-
monly	 used	 reactions	 in	 the	 pharmaceutical	 industry.76	
Hence,	 an	 initial	 Pd–catalyzed	 amination	 between	 4-
nitroaniline	and	a	highly	functionalized	aryl	fluorosulfate		

Scheme	10.	Recycling	studies	
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Scheme	11.	A	representative	3-step	tandem	sequence	showing	pharmaceutically	relevant	reactions.	

       
derived	from	ezetimibe	(12a)	was	carried	out	to	afford	the	
corresponding	secondary	amine.	The	resulting	crude	mix-
ture	was	 acidified	 using	 conc.	 HCl	 to	 pH	 3-4,	 after	which	
the	mixture	was	subjected	 to	nitro	group	reduction	using	
carbonyl	 iron	powder	(CIP)77	 in	 the	same	pot.	The	result-
ing	aniline,	used	 crude	after	 filtration	away	 from	 the	CIP,	
was	 subjected	 to	 amide	 bond	 formation	 upon	 treatment	
with	the	thioester78	of	N–Boc	t-leucine	(used	previously	en	
route	 to	 nirmatrelvir),79	 to	 afford	product	40	 in	 64%	 iso-
lated	yield	over	3	steps.	
 

Finally,	 the	 applicability	 of	OAC-1	 to	 C-C	 bond-forming	
reactions	was	 initially	 tested	using	 fluorosulfate	7a	 and	a	
pyridyl-3-boronic	acid	shown	in	Scheme	12.	The	resulting	
biaryl	 product	 41	 was	 isolated	 in	 close	 to	 quantitative	
yield,	 while	 the	 coupling	 using	 BippyPhos,	 but	 not	 in	 its	
OAC	 form,	 led	 to	only	a	20%	yield	under	 the	same	condi-
tions	 of	 reaction	 concentration,	 temperature,	 and	 time.	
These	 results	 suggest	 that	OAC-1	may	provide,	with	 fine-
tuning,	similar	enhancements	in	other	types	of	highly	val-
ued	cross	couplings.		
	
	

 

Scheme	 12.	 Representative	 rates	 of	 Suzuki-Miyaura	
couplings	with	and	without	OAC-1.	

 
CONCLUSIONS	
In	 summary,	 a	 novel	 Pd-containing	 oxidative	 addition	

complex	(OAC-1)	has	been	developed	and	applied	to	ami-
nations	of	aryl	fluorosulfates	in	water	using	aqueous	micel-
lar	media	derived	 from	a	biodegradable	 surfactant,	 Savie.	
DFT	calculations	on	OAC-1	match	the	X-ray	structure,	with	
p-complexation	of	the	Pd	to	one	of	the	heterocycle	rings	in	
the	 ligand.	 	 The	 calculations	 also	 show	 that	 three	 confor-
mations	of	 the	phenyl	 and	 t-butyl	 ligand	 substituents	 are	
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more	 stable	 than	 the	 conformation	of	 the	X-ray	 structure	
in	the	solid	state,	consistent	with	the	NMR	spectra.	
This	 homogeneous	 catalysis	 technology	 relies	 on	 low	

loadings	of	precious	metal,	and	offers	several	advances	 in	
sustainability,	including:	
• the	 first	use	of	an	oxidative	addition	complex	 for	Pd-

catalyzed	aminations	in	an	aqueous	medium;	
• reliance	 on	 commercially	 available	 catalyst	 precur-

sors;	
• use	of	a	recyclable	aqueous	medium;	
• aminations	 of	 structurally	 diverse,	 non-PFAS	 aryl	

fluorosulfates	as	pseudohalides	and	amines,	which	can	
also	 be	 highly	 functionalized,	 complex	 pharmaceuti-
cals	and	related	species;	

• The	 option	 of	 applying	 this	 technology	 to	multi-step	
sequences,	 all	 performed	 in	 an	 aqueous	 surfactant	
medium.	
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