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Abstract

Power-law fluid flows in the converging-diverging tubes and rectangular channel are prevalent in en-
gineered microfluidic devices, many industrial processes and heat transfer applications. We analyzed
optimal flow conditions and network structures for power-law fluids in linear, parabolic, hyperbolic,
hyperbolic cosine and sinusoidal converging-diverging dendritic networks of tubes and rectangular
channels, and aiming to maximize flow conductance under volume and surface-area constraints. This
model shed light on strategies to achieve efficient fluid transport within these complex dendritic
networks. Our study focused on steady, incompressible, 2D planar and axisymmetric laminar flow
without considering network losses. We found that the flow conductance is highly sensitive to net-
work geometry. The maximum conductance occurs when a specific radius/channel-height ratio β is
achieved. This value depends on the constraint as well as on the vessel geometry such as tube or rect-
angular channel. However independent of the kind of the converging-diverging profile along the length
of the vessel. We found that the scaling, i.e., β∗

max = β∗
min = N−1/3 for constrained tube volume and

β∗
max = β∗

min = N−(n+1)/(3n+2) for constrained surface area for all converging-diverging tube-networks
profile remains the same as found by Garg et al. [1] for the power-law fluid flow in a uniform tube.
Here, β∗

max, β
∗
min are the radius ratios of daughter-parent pair at the maximum divergent part or min-

imum convergent part of the vessel. N represents the number of branches splitting at each junction,
and n is the power-law index of the fluid. Further, we found that the optimal flow scaling for the
height ratio in the rectangular channel, i.e., β∗

max = β∗
min = N−1/2α−1/2 for constrained tube volume

and β∗
max = β∗

min = N−1/2α−n/(2n+2) for constrained surface area for all converging-diverging channel-
networks, respectively, where α is the channel-width ratio between parent and daughter branches. We
validated our results with experiments, existing theory for limiting conditions, and extended Hess-
Murray’s law to encompass shear-thinning and shear-thickening fluids for any branching number N .
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1 Introduction

Fluid flow through intricate tree-like dendritic networks is ubiquitous in nature, from blood vessels
in our bodies to the branching structures of plants as well as in the technology [2–5, 5–7]. The
understanding and optimizing this flow is crucial in various fields, including microfluidics, biomedical
engineering, and even designing efficient transport systems. These networks resemble branching
structures like trees, with a self-similar repeating pattern. This work investigate the fractal dendritic
networks. However, unlike typical fluid systems with simple cylindrical tubes, these networks can
have a combination of converging-diverging or corrugated tubes and rectangular channels. Our focus
is on power-law fluids. These fluids exhibit a non-linear relationship between shear stress and shear
rate, making their flow behavior more complex compared to Newtonian fluids (like water) [8, 9].

Understanding how non-Newtonian fluids, like power-law fluids, behave in converging-diverging
corrugated channels is vital for many industrial processes. These complex fluid properties combined
with the structured geometry of corrugated channels benefit various applications. In flexographic
printing, they control ink thickness [10, 11]; in food processing, they ensure uniform coating [12, 13];
in polymer processing, corrugated channels are used in extrusion and injection molding processes
where they optimize flow [14, 15]; in oil and gas, they enhance transportation efficiency [16]. They
are also crucial in biomedical drug delivery systems [17] and wastewater treatment [18–21]. The
recirculation formed in corrugation valleys enhances heat transfer [22], offering valuable insights into
fluid dynamics and heat transfer properties, essential for industrial system optimization. Additionally,
in the fabrication of impact-absorbing fabric materials, shear-thickening fluids, a combination of
Newtonian, power-law shear thinning, and shear thickening fluids depending on the applied shear
rate, flow through such converging-diverging porous geometries [23, 24]. A schematic of a dendritic
tree-like converging-diverging tube or rectangular channel network is depicted in Figure 1. This
network has a bifurcation number of N = 2 and extends up to k = 4 generations of branches. Here
Rmax, Rmin and Hmax, Hmin are the maximum and minimum radius or height of the tube and channel,
respectively.

Scaling laws provide powerful relationships between different network parameters, allowing us to
predict flow behavior across different network sizes. Expanding upon Murray’s application of the prin-
ciple of minimum work in circular tubes [25], researchers have investigated flow dynamics in tree-like
branching networks. For instance, Revellin et al. [26] extended Murray’s law to analyze non-Newtonian
power-law fluid flow in two channels, revealing a constant diameter ratio (D(k+1)/Dk = 2−1/3) for the
optimal flow irrespective of the fluid’s power-law index n. Advancements by Garg et al. [1, 27, 28]
delved into networks with varying branching numbers and power-law indices, examining circular and
elliptical cross-sections under volume and surface area constraints for both laminar and turbulent
flows. Notably, in the laminar flow regime, Garg et al. [1, 27] discovered that under volume con-
straints, the optimal radius/diameter/length relationship remains consistent regardless of the fluid’s
shear-thinning or shear-thickening behavior, denoted as (D(k+1)/Dk)

∗ = N−1/3. However, under
surface area constraints, this relationship becomes significantly influenced by the power-law index,
expressed as (D(k+1)/Dk)

∗ = N−(n+1)/(3n+2). For turbulent flow, Garg et al. [28] identified scaling pat-
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Figure 1: This schematic depicts a self-similar dendritic structure. Here Rmax, Rmin and Hmax, Hmin

are the maximum and minimum radius or height of the tube and channel, respectively. The k

represents the generation level. N , the bifurcation number of branches splitting. L denotes the
tube/channel length.

terns for smooth and rough tube networks, respectively described as Dk+1

Dk
= β∗ = N−(10n+1)/(24n+3)

and Dk+1

Dk
= N−3/7, respectively. In a recent study Garg [29], investigate the yield stress fluid flow in

tree-like networks where proposing the conjecture with its proof, they find that one of the optimal
solution obey Murray law under constraint volume. Additionally, Lee et al. [30] introduced a theory
on capillary microchannel flows within tree-like branches, while investigations at the nanoscale, con-
ducted by Garg [21, 31], Garg and Bishnoi [32] and Mishra and Garg [33], explored the impact of
network geometry on Newtonian fluid behavior, adding further complexity to the analysis.

Prior research on converging-diverging tubes and rectangular channels tree-like networks has es-
tablished various flow scaling relationships, however these studies are quite limited and had different
focus. Jing and Zhan [34] studied the electro-osmotic Flow in fractal converging diverging width of
the rectangular network, where they find the optimal width ratio is proportional to branching number
as 1/N . Further [35] studied an analytical model for the effective permeability of fractal branched
networks composed of converging–diverging capillaries. This study aims to unveil the scaling laws gov-
erning the optimal flow of power-law fluids within these intricate converging-diverging or corrugated
tubes and rectangular channels dendritic networks. By analyzing the interplay between power-law
behavior, converging-diverging geometries, and the network’s fractal nature, we aim to develop an
analytical model for optimizing flow within these systems. In this study, we investigate the linear,
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parabolic, hyperbolic, hyperbolic cosine and sinusoidal converging-diverging tubes and rectangular
channel and provide scaling laws for all in a generalised framework. This model will shed light on
strategies to achieve efficient fluid transport within these complex dendritic networks. The paper is
structured as follows. Section 2 details the axisymmetric model for the tube and the 2D planar model
for the rectangular channels under the lubrication approximation in a single converging- diverging
vessel. Section 3 explores the concepts of flow resistance and conductance for tree-like self-similar
branching networks under volume and surface-area constraints. Section 4 presents the results and
discussions. Finally, Section 5 concludes the paper.

2 Theoretical model: Axisymmetric and 2D planar model

We examine the steady, incompressible, without body forces such as the gravitational effect is negli-
gible, 2D planar and axisymmetric laminar flow of an incompressible power-law non-Newtonian fluid
within a circular tube and rectangular shallow cross-section of a channel. The tube has a varying ra-
dius R(x) along the length L, whereas the channel has a varying height H(x) and a constant width W
along the length L, as illustrated in figures 2. These figures depict five distinct converging-diverging
geometries: linear in (a); parabolic, hyperbolic, and yperbolic cosine in (b); and the sinusoidal (c)
converging-diverging tube and channel. The tube is assumed to be considerably long in compari-
son to its radius and the channel is considerably long and wide compared to its height, satisfying
R(x)/L ≪ 1, H(x)/W ≪ 1 and H(x)/L ≪ 1, allowing for a axisymmetric and two-dimensional
planar model under lubrication limits [31].

The mid-plane origin of the tube is the centreline at mid length or between the plates, with the
flow domain extending from x = −L/2 to x = L/2. Let the cartesian velocity components u represent
the longitudinal velocity along x direction. Here the r represents the radial direction in tube, and z

direction denotes the vertical direction in the channel, respectively. Under lubrication assumptions,
the leading-order solution ensures the radial and the normal velocity vanishes everywhere. In addition,
the leading order pressure gradient along radial and normal direction also vanishes, i.e.,

∂p

∂r
= 0, in the tube, and

∂p

∂z
= 0 in the channel, (1)

respectively. Here pressure p is only the function of x at the leading order. Therefore
∂p

∂x
=
dp

dx
. For

an infinitesimal length, dx, of the tube or channel, the infinitesimal pressure drop for a given flow
rate Q can be written as

dp =
2KQn(3n+ 1)ndx

πnnnR(x)(3n+1)
, for tube, and dp =

KQn(2n+ 1)ndx

2nW nnnH(x)(2n+1)
for channel, (2)

respectively [36, 37]. The above formulation occur for the power-law fluid model as [38]

η =
τ

γ̇
= Kγ̇n−1, (3)
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(a) Conical tube or rectangular channel

(b) Parabolic, Hyperbolic, Hyperbolic cosine
tube or rectangular channel

(c) Sinusoidal tube or rectangular channel

Figure 2: Schematic diagram of the upper half part of the shallow tube or channel of length L. For
the tube, the R represents the varying cross–sectional radius across length with Rmax and Rmin denote
the radius at the most divergent and convergent part of the tube. For the channels of constant width
W in a branch, the H represents the varying cross–sectional mid-height across length with Hmax and
Hmin denote the channel-height at the most divergent and convergent part of the upper-part/lower-
part of the channel. The Cartesian axis is taken at the mid plane of the channel at the throat.

where η is the fluid viscosity, τ is the stress, γ̇ is the strain rate, K is the consistency factor, and n

is the flow behavior index.
In the case of an incompressible fluid, the volumetric flow rate across any arbitrary cross-section

of the channel remains the same. Consequently, the total pressure drop across the tube and channel
with variable radius R(x) and, height H(x), over a length L is expressed as

∆P =
2KQn(3n+ 1)n

πnnn

∫ L/2

−L/2

dx

R(x)(3n+1)
, for tube, and ∆P =

KQn(2n+ 1)n

2nW nnn

∫ L/2

−L/2

dx

H(x)(2n+1)

(4)
for the channel, respectively. Using equation (4), in the following sections, we will derive the analytical
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expressions for the relation between pressure drop and volumetric flow rate by using the different
definitions of variable radius R(x) and height H(x) profiles for five converging-diverging geometries
of axisymmetric tube and 2D planar channels.

2.1 Linear converging-diverging tube and rectangular channel

2.1.1 ∆P −Q relation for tube

For a corrugated linear converging-diverging tube, as shown in figure 2(a), the radius R(x), varying
with the axial coordinate x can be define as

R(x) = a+ b|x| for − L/2 ≤ x ≤ L/2; a > 0, b > 0, (5)

where

a = Rmin and b =
2 (Rmax −Rmin)

L
. (6)

Using equation (5), the equation (4) leads to

∆P =
2KQn(3n+ 1)n

πnnn

∫ L/2

−L/2

dx

(a+ b|x|)3n+1
,

=
2KQn(3n+ 1)n

πnnn

([
1

3bn(a− bx)3n

]0
−L/2

+

[
− 1

3bn(a+ bx)3n

]L/2
0

)
,

=
4KQn(3n+ 1)n

3b πnnn+1

[
1

a3n
− 1

(a+ bL/2)3n

]
.

(7)

Further, using the definitions of a, and b from equation (10), we get

∆P =
2LKQn(3n+ 1)n

3πnnn+1 (Rmax −Rmin)

[
1

R3n
min

− 1

R3n
max

]
. (8)

Equation (8) is the same as analytical model as derived by Sochi [36].

2.1.2 ∆P −Q relation for rectangular channel

For a corrugated linear wedge converging-diverging channel, as depicted in figure 2(a), the channel
height H(x), varying with the axial coordinate x is expressed as

H(x) = a+ b|x| for − L/2 ≤ x ≤ L/2; a > 0, b > 0, (9)

where

a = Hmin and b =
2 (Hmax −Hmin)

L
. (10)

Using equation (9), the equation (4) transforms into
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∆P =
KQn(2n+ 1)n

2nW nnn

∫ L/2

−L/2

dx

(a+ b|x|)2n+1
,

=
KQn(2n+ 1)n

2nW nnn

([
1

2bn(a− bx)2n

]0
−L/2

+

[
− 1

2bn(a+ bx)2n

]L/2
0

)
,

=
2KQn(2n+ 1)n

2n+1W nnn+1b

[
1

a2n
− 1

(a+ bL/2)2n

]
.

(11)

Further, using the definitions of a, and b from equation (10), we get

∆P =
LKQn(2n+ 1)n

2n+1W nnn+1 (Hmax −Hmin)

[
1

H2n
min

− 1

H2n
max

]
. (12)

Equation (12) is the same as analytical model as derived by Garg [37] for the converging-diverging
rectangular channel. Under the Newtonian and power-law fluid limit, equation (12) is the same as
analytical model derived by Vishal et al. [24].

2.2 Other converging-diverging tube and rectangular channel

2.2.1 ∆P −Q relation for tube

Similarly, for a parabolic, hyperbolic, hyperbolic cosine and sinusoidal converging-diverging tube, (see
figure 2(b-c)), ∆P −Q relations are given by [36]

∆P =
2LKQn(3n+ 1)n

πnnnR3n+1
min

[
2F1

(
1

2
, 3n+ 1;

3

2
; 1− Rmax

Rmin

)]
for parabolic, (13)

∆P =
2LKQn(3n+ 1)n

πnnnR3n+1
min

[
2F1

(
1

2
,
3n+ 1

2
;
3

2
; 1− R2

max

R2
min

)]
for hyperbolic, (14)

∆P =
2KLQn(3n+ 1)n

3πnnn+1RminR3n
max arccosh

(
Rmax

Rmin

) Im

[
2F1

(
1

2
,
−3n

2
;
2− 3n

2
;
R2

max

R2
min

)]
, for hyperbolic cosine

(15)
and

∆P =
2KLQn(3n+ 1)n

3πn+1nn+1R3n
max

√
RmaxRmin

Im

(
F1

(
−3n;

1

2
,
1

2
; 1− 3n; 1,

Rmax

Rmin

))
, for the sinusoidal,

(16)
converging-diverging tubes respectively, where 2F1 is the hypergeometric function, Im (2F1) is the
imaginary part of the hypergeometric function and F1 is the imaginary part of the Appell hyperge-
ometric function in equations (13)-(16). It is worth mentioning that all these relationships maintain
dimensional consistency and validated for a Newtonian fluid flow [36].
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2.2.2 ∆P −Q relation for rectangular channel

Similarly, for a parabolic, hyperbolic, hyperbolic cosine and sinusoidal converging-diverging rectan-
gular channel, (see figure 2(b-c)), ∆P −Q relations are given by [37]

∆P =
LKQn(2n+ 1)n

2nW nnnH2n+1
min

[
2F1

(
1

2
, 2n+ 1;

3

2
; 1− Hmax

Hmin

)]
for parabolic, (17)

∆P =
LKQn(2n+ 1)n

2nW nnnH2n+1
min

[
2F1

(
1

2
,
2n+ 1

2
;
3

2
; 1− H2

max

H2
min

)]
for hyperbolic, (18)

∆P =
KLQn(2n+ 1)n

2n+1 arccosh
(

Hmax

Hmin

)
W nnn+1H2n+1

min

Im

[
2F1

(
1

2
,−n; 1− n;

H2
max

H2
min

)]
, for hyperbolic cosine

(19)
and

∆P =
KLQn(2n+ 1)n

2n+1πW nnn+1H2n
max

√
HmaxHmin

Im

(
F1

(
−2n;

1

2
,
1

2
; 1− 2n; 1,

Hmax

Hmin

))
, for the sinusoidal,

(20)
converging-diverging channels respectively, where 2F1 is the hypergeometric function, Im (2F1) is the
imaginary part of the hypergeometric function and F1 is the imaginary part of the Appell hyperge-
ometric function in equations (17)-(20). It is worth mentioning that all these relationships maintain
dimensional consistency and validated for a Newtonian fluid flow.

3 Flow resistance for branching network

We define the maximum to minimum radius ratio and channel-height ratio for the network tubes and
channels at the k-th generation as

Rmax,k+1

Rmin,k+1

=
Rmax,k

Rmin,k

= et, and
Hmax,k+1

Hmin,k+1

=
Hmax,k

Hmin,k

= ec, (21)

respectively. Using the ∆P − Q relation for the various converging-diverging tubes and rectangular
channels from the previous section, from equations (8), (13) to (16) along with equation (21), we can
easily write ∆P −Q relation for the converging-diverging tubes at the k-th generation as

∆Pk = ϕi
LkQ

n
k

R3n+1
min,k

, (22)

and from equations (12), (17) to (20) along with equation (21), we can easily write ∆P −Q relation
for the converging-diverging channels at the k-th generation as

∆Pk = ξi
LkQ

n
k

W n
kH

2n+1
min,k

, (23)

where for the linear, parabolic, hyperbolic, hyperbolic cosine and sinusoidal converging-diverging
tubes, by comparing the equations the ϕi and ξi are independent of the varying geometrical parameters
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between the generations level k and depends upon the fluid properties n, K, or the maximum-
minimum radius/height ratio et and ec, respectively. Also, the Lk is the length of the tube, and Rk

is the radius of the tube, where the Rmax,k and Rmin,k denote the radius at the most divergent and
convergent part of the tube at the k-th generation. For the channels, the Wk is the constant width
in a branch at the k-th generation, the Hk represents the varying cross–sectional mid-height across
length with Hmax,k and Hmin,k denote the channel-height at the most divergent and convergent part of
the upper-part/lower-part of the channel at the k-th generation. Also ∆Pk and Qk are the respective
pressure drop and the flow rate at the kth level branch. Therefore, by defining the flow resistance Rk

for the tube and the channel in a kth level branch, we can write

Rk =
∆Pk

Qn
k

= ϕi
Lk

R3n+1
min,k

for the tube, (24)

and
Rk =

∆Pk

Qn
k

= ξi
Lk

W n
kH

2n+1
min,k

for the channel, (25)

respectively. For each branching generation k, the radius and length for the tube can be scaled by

factors β and γ, such as β =
Rk

Rk−1

=
Rmax,k

Rmax,k−1

=
Rmin,k

Rmin,k−1

, and γ =
Lk

Lk−1

, respectively. Thus, for the

k-th generation, we have

Rk = R0β
k, Rmax,k = Rmax,0β

k, Rmin,k = Rmin,0β
k and Lk = L0γ

k, (26)

respectively. Similarly for each branching generation k in the channel networks, the height, width and

length for the channels can be scaled by factors β, α and γ, such as β =
Hk

Hk−1

=
Hmax,k

Hmax,k−1

=
Hmin,k

Hmin,k−1

,

α =
Wk

Wk−1

, and γ =
Lk

Lk−1

, respectively. Thus, for the k-th generation, we have

Hk = H0β
k, Hmax,k = Hmax,0β

k, Hmin,k = Hmin,0β
k, Wk = W0α

k and Lk = L0γ
k, (27)

respectively. Substituting the defined scaling into the resistance formula, we obtain

Rk =
∆Pk

Qn
k

= ϕi
L0

R3n+1
min,0

(
γ

β(3n+1)

)k

, (28)

for the tube and

Rk =
∆Pk

Qn
k

= ξi
L0

W n
0 H

2n+1
min,0

(
γ

αnβ(2n+1)

)k

, (29)

for the channel network, respectively. Further, we define the total network resistance Rt as

Rt =
∆P

Qn
, (30)

where

∆P =
m∑
k=0

∆Pk. (31)
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Here, the total pressure drop across the network is denoted by ∆P , and Q represents the total flow
rate within the network. Here, k = 0 and m signify the first and last generations, respectively. Within
the network, at each generation, branches split into N new ones. Consequently, at the k-th generation,
there are Nk branches. Additionally, the flow rate Qk through each branch equals the total flow rate
Q divided by the number of branches Nk. Therefore, considering equations (28) through (31), the
total resistance for the tube network and channel network leads to

Rt =
∆P

Qn
=

1

Qn

m∑
k=0

∆Pk =
m∑
k=0

RkQ
n
k

Qn
=

m∑
k=0

Rk

(Nn)k
= ϕi

Lo

R3n+1
min,0

m∑
k=0

(
γ

Nn β(3n+1)

)k

, (32)

and

Rt =
∆P

Qn
=

1

Qn

m∑
k=0

∆Pk =
m∑
k=0

RkQ
n
k

Qn
=

m∑
k=0

Rk

(Nn)k
= ξi

L0

W n
0 H

2n+1
min,0

m∑
k=0

(
γ

Nn αn β(2n+1)

)k

, (33)

respectively. Substituting this into equations ( 32), ( 74) as well as utilizing geometric series summa-
tion, we obtain the total resistance for the tube network and channel network as

Rt = ϕi
Lo

R3n+1
min,o

([
1−

(
γ

Nn β(3n+1)

)m+1
]/[

1− γ

Nn β(3n+1)

])
, (34)

and

Rt = ξi
Lo

W n
o H

2n+1
min,o

([
1−

(
γ

Nn αn β(2n+1)

)m+1
]/[

1− γ

Nn αn β(2n+1)

])
, (35)

respectively.

3.1 Flow conductance E for self-similar tube networks under volume and
surface area constraint

The total volume and surface area of the kth level branch in a linear converging-diverging tube is
given by

Vk = 2π

∫ Lk/2

0

(a+ bx)2kdx =
π(e2t + et + 1)

3
LkR

2
min,k, (36)

and

Sk = 4π

∫ Lk/2

0

(a+ bx)kdx = π(et + 1)LkRmin,k, (37)

respectively. Therefore upon summation over the whole network, the total volume and surface area
of the network considering the number of branches N yields

V =
π(e2t + et + 1)

3
R2

min,0L0

m∑
k=0

(
Nβ2γ

)k and S = π(et + 1)Rmin,0L0

m∑
k=0

(Nβγ)k , (38)
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respectively. This is a geometric series with the common ratio Nβ2γ and Nβγ for volume and
surface-area, respectively. Summing the series, we get

V = ψi,vR
2
min,0L0

1− (Nβ2γ)m+1

1−Nβ2γ
and S = Ψi,sRmin,0L0

1− (Nβγ)m+1

1−Nβγ
, (39)

where for the linear converging-diverging tube, the ψi,v(et) =
π(e2t + et + 1)

3
, and the Ψi,s(et) = π(et+

1). Similarly the volume and surface area of the tube for other converging-diverging sections such as
parabolic, hyperbolic, hyperbolic cosine and sinusoidal can be evaluated as (39), where ψi,v(et), and the
Ψi,s(et) which have different values but are dependent only on the constant ratio Rmax,k/Rmin,k = et.
Also, the total length of the network is

L = L0
1− γm+1

1− γ
(40)

Further, using the total volume and surface area constraint with the same length as of network in a
single equivalent tube, we get the equivalent radius under these two volume and surface area constraint
for all converging-diverging tube network sections as

Rmin,s|V = Rmin,0

(
1− γ

1− γm+1

1− (Nβ2γ)m+1

1−Nβ2γ

)1/2

, and Rmin,s|S = Rmin,0

(
1− γ

1− γm+1

1− (Nβγ)m+1

1−Nβγ

)
,

(41)
respectively. Using equation (41), flow resistance under volume and surface area constraint of single
equivalent tube for all converging-diverging tube network yields

Rs|V = ϕi
Ls

R3n+1
min,s

= ϕi
L0

R3n+1
min,0

[
1− γm+1

1− γ

](3n+3)/2 [
1−Nβ2γ

1− (Nβ2γ)m+1

](3n+1)/2

, (42)

and

Rs|S = ϕi
Ls

R3n+1
min,s

= ϕi
L0

R3n+1
min,0

[
1− γm+1

1− γ

](3n+2) [
1−Nβγ

1− (Nβγ)m+1

](3n+1)

, (43)

respectively. Further, the non-dimensional flow conductance E of the network, defined as the ratio of
total flow conductance Et = 1/Rt to the equivalent single tube flow conductance Es = 1/Rs under
volume and surface area constraint for all converging-diverging tube network leads to

E|V,tube =
1/Rt

1/Rs

=
Rs

Rt

=

[
1− γm+1

1− γ

](3n+3)/2 [
1−Nβ2γ

1− (Nβ2γ)m+1

](3n+1)/2 [
1− γ/Nnβ(3n+1)

1− (γ/Nnβ(3n+1))m+1

]
,

(44)
and

E|S,tube =
Rs

Rt

=

[
1− γm+1

1− γ

](3n+2) [
1−Nβγ

1− (Nβγ)m+1

](3n+1) [
1− γ/Nnβ(3n+1)

1− (γ/Nnβ(3n+1))m+1

]
, (45)

respectively.
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3.2 Flow conductance E for self-similar rectangular channel networks un-
der volume and surface area constraint

Similar formulation for the flow conductance can be derived for the self-similar rectangular channel
networks. The total volume and surface area of the kth level branch in a linear converging-diverging
rectangular channel is given by

Vk = 4Wk

∫ Lk/2

0

(a+ bx)kdx = (ec + 1)WkLkHmin,k, (46)

and

Sk = 4

∫ Lk/2

0

(Wk + 2(a+ bx)k)dx = 4π

∫ Lk/2

0

(a+ bx)kdx = 2Lk(Wk + (ec + 1)Hmin,k), (47)

respectively. Therefore upon summation over the whole network, the total volume and surface area
of the network considering the number of branches N yields

V = (ec + 1)Hmin,0L0W0

m∑
k=0

(Nαβγ)k , and S = 2W0L0

m∑
k=0

(Nαγ)k + 2(ec + 1)Hmin,0L0

m∑
k=0

(Nβγ)k ,

(48)
respectively. This is a geometric series with the common ratio Nαβγ for volume; and Nαγ, Nβγ for
the surface-area, respectively. Summing the series, we get

V = ψi,vHmin,0L0W0
1− (Nαβγ)m+1

1−Nαβγ
, and S = Ψi,s,1W0L0

1− (Nαγ)m+1

1−Nαγ
+Ψi,s,2Hmin,0L0

1− (Nβγ)m+1

1−Nβγ
,

(49)
respectively, where for the linear converging-diverging rectangular channel, the ψi,v(ec) = (ec + 1),
Ψi,s,1 = 2, and the Ψi,s,2 = 2(ec + 1). Similarly the volume and surface area of the tube for other
converging-diverging sections such as parabolic, hyperbolic, hyperbolic cosine and sinusoidal can be
evaluated as (49), where ψi,v(ec), Ψi,s,1(ec), and Ψi,s,2(ec) which have different values but are dependent
only on the constant ratio Hmax,k/Hmin,k = ec. Further, using the total volume constraint with the
same length and width as of network in a single equivalent rectangular channel, we get the equivalent
height and width under volume constraint for all converging-diverging rectangular channel network
sections as

Ws|V = W0
1− αm+1

1− α
, and Hmin,s|V = Hmin,0

(
1− γ

1− γm+1

1− α

1− αm+1

1− (Nαβγ)m+1

1−Nαβγ

)
, (50)

Similarly, the single equivalent rectangular channel surface area can be defined as

Ss = Ψi,s,1WsLs +Ψi,s,2Hmin,sLs. (51)

By comparing equation (49) and (51), we get the equivalent width and height under the total surface
area constraint with the same length as of the network in a single equivalent rectangular channel for
all converging-diverging rectangular channel network sections as

Ws|S = W0

(
1− γ

1− γm+1

1− (Nαγ)m+1

1−Nαγ

)
, and Hmin,s|S = Hmin,0

(
1− γ

1− γm+1

1− (Nβγ)m+1

1−Nβγ

)
, (52)
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respectively. Using equation (50), and (52) with (25), the flow resistance under volume and surface
area constraint of single equivalent tube for all converging-diverging tube network yields

Rs|V = ξi
Ls

W n
s H

2n+1
min,s

= ξi
L0

W n
0 H

2n+1
min,0

[
1− γm+1

1− γ

](2n+2) [
1− αm+1

1− α

](n+1) [
1−Nαβγ

1− (Nαβγ)m+1

](2n+1)

,

(53)
and

Rs|S = ξi
Ls

W n
s H

2n+1
min,s

= ξi
L0

W n
0 H

2n+1
min,0

[
1− γm+1

1− γ

](3n+2) [
1−Nαγ

1− (Nαγ)m+1

]n [
1−Nβγ

1− (Nβγ)m+1

](2n+1)

,

(54)
respectively. Further, the non-dimensional flow conductance E of the network, defined as the ratio of
total flow conductance Et = 1/Rt to the equivalent single tube flow conductance Es = 1/Rs under
volume and surface area constraint for all converging-diverging rectangular channel network leads to

E|V,channel =
1/Rt

1/Rs

=
Rs

Rt

=

[
1− γm+1

1− γ

](2n+2) [
1− αm+1

1− α

](n+1) [
1−Nαβγ

1− (Nαβγ)m+1

](2n+1) [
1− γ/Nnαnβ(2n+1)

1− (γ/Nnαnβ(2n+1))m+1

]
,

(55)
and

E|S,channel =
1/Rt

1/Rs

=
Rs

Rt

=

[
1− γm+1

1− γ

](3n+2) [
1−Nαγ

1− (Nαγ)m+1

]n [
1−Nβγ

1− (Nβγ)m+1

](2n+1) [
1− γ/Nnαnβ(2n+1)

1− (γ/Nnαnβ(2n+1))m+1

]
,

(56)
respectively.

4 Results and Discussion

Building upon the comprehensive analysis of flow conductance for the power-law shear-thinning and
thickening fluid flow by preserving the volume and the surface area of the converging-diverging tubes
and rectangular channels networks (refer sections 3.1 and 3.2), we can delve deeper into the influence
of network geometry on optimal design for a given fluid flow. Equations (44) and (45) highlight the
critical role of geometrical parameters (m, N , γ, and β) in converging-diverging tubes fractal branch-
ing networks. Further, equations (55) and (56) highlight the critical role of geometrical parameters
(m, α , N , γ, and β) in converging-diverging rectangular channels fractal branching networks. Using
these equations, we can establish the relationship between effective flow conductance ratio E and the
network’s geometrical characteristics. This paves the way for uncovering the scaling laws governing
the optimal radius and height ratio for the power-law shear-thinning and thickening fluid flow in the
converging-diverging tubes and rectangular channels, respectively.
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4.1 Volume constrained networks for converging-diverging tubes

We find that the non-dimensional flow conductance E of the linear, parabolic, hyperbolic, hyperbolic
cosine and sinusoidal converging-diverging tubes network under volume and surface area constraint
leads to the same flow conductance E as derived by Garg et al. [1] for the power-law fluids in circular
tubes. Hence the results and scaling for all converging-diverging tubes networks remains the same.
These scaling are that the maximum flow conductance occurs when a dimensionless radius ratio
β∗ satisfies the equation β∗ = N−1/3, and β∗ = N−(n+1)/(3n+2) under constrained tube-volume and
surface-area, respectively. Here, N represents the bifurcation number of branches splitting at each
junction and n is the fluid power-law index. Further, the optimal condition occur at the equipartition
of pressure drop across each branching level. Therefore in the next section we directly show the new
results on the converging diverging rectangular channels in detail.

4.2 Volume constrained networks for converging diverging rectangular
channels

4.2.1 Effect of γ, α, m, and N

Figure 3(a)-(l) shows E for the power-law fluid flow in the linear, parabolic, hyperbolic, hyperbolic
cosine and sinusoidal converging-diverging tree-like rectangular channels network under the constraint
volume, plotted against the β for varying combinations of channel-length ratios γ (a-c), at N = 4,
α = 0.35, and m = 3; for various combinations of branching levels m (d-f) at γ = 0.6, α = 0.35, and
N = 4; for varying combinations of channel-width ratio α (g-i) at m = 3, N = 5 and γ = 0.6 and for
varying combinations of branching splitting numbers N (j-l) at m = 3, α = 0.35 and γ = 0.6. The
figures (a,d,g,j) show results for n = 0.5, (b,e,h,k) for n = 1 and (c,f,i,l) for n = 1.5, respectively. We
observe a non-linear correlation between β and E in all figures. This suggests that, E is influenced
by all parameters γ, α, m, and N . Initially E increases with β and reaches a peak and subsequently
declines. This maximum E corresponds to an optimal β∗ defined in equation (55).

For β ≈ 0, E tends towards zero, regardless of n, γ, α, m, and N , reflecting the minimal con-
ductance. This zero flow conductance remains for larger β values as power-law index n increases.
Furthermore, the steepness of E increases with increase in n. Moreover, the maximum E at the
optimal ratio β∗ decreases for all power-law indices n as γ, α, m, and N increase.

In all figures 3(a)-(l), the optimal β∗ remains identical regardless of γ and m, for all n. However,
β∗ varies with both α with values like β∗ = 0.5, 0.58, 0.71, 1 for α = 0.2, 0.4, 0.6, 0.8, respectively,
as well as with N such as β∗ = 0.69, 0.76, 0.85, 0.98 for N = 3, 4, 5, 6, respectively . Moreover, at
a given value of α and N , the β∗ remains the same for all n. Furthermore, as the channel-width α as
well as the branching N increases, both the β∗ and corresponding E decreases.
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Figure 3: The flow-conductance E of the power-law fluid flow in the linear, parabolic, hyperbolic,
hyperbolic cosine and sinusoidal converging-diverging tree-like rectangular channels network under
the volume constraint, plotted against the β for varying combinations of channel-length ratios γ (a-
c), at N = 4, α = 0.35, and m = 3; for various combinations of branching levels m (d-f) at γ = 0.6,
α = 0.35, and N = 4; for varying combinations of channel-width α (g-i) at m = 3, N = 5 and γ = 0.6

and for varying combinations of branching splitting numbers N (j-l) at m = 3, α = 0.35 and γ = 0.6.
The figures (a,d,g,j) show results for n = 0.5, (b,e,h,k) for n = 1 and (c,f,i,l) for n = 1.5, respectively.
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4.2.2 Optimal parameters and scaling law

Figure 4(a) and 4(b) shows that the optima β∗ for maximum E varies with the N at given α and vice
versa, respectively. We show the plot on log-log scale. Our findings reveal a power-law relationship
among the optimal height ratio β∗, the channel-width ratio α and the number of branching rectangular
channels N in the network. This relationship can be expressed as: β∗ ∝ αs1 N s2 , where s1, and s1

are the scaling exponent.
In order to understand that how β∗ scales with the channel-width α and the branching N , we can

minimise the total resistance of one parent-child network at kth branching level as

Rt =
k+1∑
k=k

Rk

(Nn)k
= ξi

(
Lk

(Nn)k W n
k H

(2n+1)
min,k

+
Lk+1

(Nn)k+1 W n
k+1 H

(2n+1)
min,k+1

)
. (57)

There exist a minimum resistance and optimal solution for given length and the channel width, such

that
dRt

dHmin,k
= 0. Similar to Garg et al. [1], minimising equation (57) is equivalent to minimise,

M =
Lk

(Nn)k W n
k H

(2n+1)
min,k

+
Lk+1

(Nn)k+1 W n
k+1 H

(2n+1)
min,k+1

, (58)

under the volume constraint of

V = ψi,v(N)kHmin,kLkWk + ψi,v(N)k+1 Hmin,k+1Lk+1Wk+1. (59)
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Figure 4: Figure (a) and (b) shows that the optimal β∗ for maximum E varies with the N at given
α and vice versa, respectively. We show the plot on log-log scale. Our findings reveal a power-law
relationship among the optimal height ratio β∗, the channel-width ratio α and the number of branching
rectangular channels N in the network. This relationship can be expressed as: β∗ ∝ αs1 N s2 , where s1,
and s1 are the scaling exponent. This is true for all fluid index n for all linear, parabolic, hyperbolic,
hyperbolic cosine and sinusoidal converging-diverging tree-like rectangular channels network under
volume constraint.
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Assuming
x = Hmin,k, and y = Hmin,k+1, (60)

we get

M =
Lk

(Nn)k W n
k x(2n+1)

+
Lk+1

(Nn)k+1 W n
k+1 (A−Bx)(2n+1)

, (61)

where A = V/(ψi,v(N)k+1Lk+1Wk+1) and B = LkWk/(N Lk+1Wk+1). Further, differentiating with x,
we get

dM
dx

= 0 =⇒ −Lk

(Nn)k W n
k x(2n+2)

+
BLk+1

(Nn)k+1 W n
k+1 (A−Bx)(2n+2)

= 0. (62)

which further implies(
(A−Bx)

x

)(2n+2)

=

(
Hmin,k+1

Hmin,k

)(2n+2)

= N−(n+1)α−(n+1). (63)

Hmin,k+1

Hmin,k

= β∗ = N−1/2α−1/2. (64)

As β∗ at any kth level is independent of k. Therefore, this scaling hold true in complete linear,
parabolic, hyperbolic, hyperbolic cosine and sinusoidal converging-diverging tree-like rectangular
channels network. Further, optimal height ratio β∗ is also independent of the length ratio γ, m
and power-law index n of the power-law fluids. Further, by comparing the relationship β∗ ∝ αs1 N s2 ,
we get s1 = −1/2 and s2 = −1/2 for all n. Also, using equation (64), we get(

Qk+1

Qk

)∗

=
1

N
=

(
Hmin,k+1

Hmin,k

)2(
Wk+1

Wk

)
=⇒ Qk ∝ H2

min,kWk, for all n. (65)

Under a limiting case for the rectangular channel with β = 1, we get the α∗ = N−1, which has been
derived by Jing and Zhan [34] and validate our more genelise formulation for varying height and width
of five converging-diverging tree-like rectangular channels geometries.

4.3 Surface-area constrained networks for converging diverging rectangu-
lar channels

4.3.1 Effect of γ, α, m, and N

Figure 5(a)-(l) shows E for the power-law fluid flow in the linear, parabolic, hyperbolic, hyperbolic
cosine and sinusoidal converging-diverging tree-like rectangular channels network under the constraint
surface area, plotted against the β for varying combinations of channel-length ratios γ (a-c), at N = 4,
α = 0.35, and m = 3; for various combinations of branching levels m (d-f) at γ = 0.6, α = 0.35, and
N = 4; for varying combinations of channel-width ratio α (g-i) at m = 3, N = 5 and γ = 0.6 and for
varying combinations of branching splitting numbers N (j-l) at m = 3, α = 0.35 and γ = 0.6. The
figures (a,d,g,j) show results for n = 0.5, (b,e,h,k) for n = 1 and (c,f,i,l) for n = 1.5, respectively. We
observe a non-linear correlation between β and E in all figures. This suggests that, E is influenced
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Figure 5: The flow-conductance E of the power-law fluid flow in the linear, parabolic, hyperbolic,
hyperbolic cosine and sinusoidal converging-diverging tree-like rectangular channels network under
the surface-area constraint, plotted against the β for varying combinations of channel-length ratios γ
(a-c), at N = 4, α = 0.35, and m = 3; for various combinations of branching levels m (d-f) at γ = 0.6,
α = 0.35, and N = 4; for varying combinations of channel-width α (g-i) at m = 3, N = 5 and γ = 0.6

and for varying combinations of branching splitting numbers N (j-l) at m = 3, α = 0.35 and γ = 0.6.
The figures (a,d,g,j) show results for n = 0.5, (b,e,h,k) for n = 1 and (c,f,i,l) for n = 1.5, respectively.
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by all parameters γ, α, m, and N . Initially E increases with β and reaches a peak and subsequently
declines. This maximum E corresponds to an optimal β∗ defined in equation (56).

For β ≈ 0, E tends towards zero, regardless of n, γ, α, m, and N , reflecting the minimal con-
ductance. This zero flow conductance remains for larger β values as power-law index n increases.
Furthermore, the steepness of E increases with increase in n. Moreover, the maximum E at the
optimal ratio β∗ decreases for all power-law indices n as γ, α, m, and N increase.

In all figures 5(a)-(l), the optimal β∗ remains identical regardless of γ and m, for a given n.
However, it depends on fluid index n, where as n, increases, β∗ also increases. Further, β∗ varies
with α with values like β∗ = 0.49, 0.52, 0.58, β∗ = 0.51, 0.56, 0.67 and β∗ = 0.52, 0.59, 0.72 at
α = 0.2, 0.4, 0.6 for n = 0.5, n = 1, and n = 1.5 respectively. Furthermore, β∗ also varies with N

with values like β∗ = 0.6, 0.69, 0.84, β∗ = 0.65, 0.75, 0.92, β∗ = 0.69, 0.79, 0.97 at N = 2, 3, 4, for
n = 0.5, n = 1, and n = 1.5 respectively. Moreover, at a given value of α and N , the β∗ increase as
n increases. Furthermore, as the channel-width α as well as the branching N increases, both the β∗

and corresponding E decreases.

4.3.2 Optimal parameters and scaling law

Figure 6(a-c) and 7(a-c) shows that the optimal β∗ for maximum E varies with the N at given α

and vice versa, respectively for a given n. We show the plot on log-log scale. Our findings reveal
a power-law relationship among the optimal height ratio β∗, the channel-width ratio α and the
number of branching rectangular channels N in the network. This relationship can be expressed as:
β∗ ∝ αs3 N s4 , where s3, and s4 are the scaling exponent.

In order to understand that how β∗ scales with the channel-width α and the branching N , we can
minimise the total resistance of one parent-child network at kth branching level as

Rt =
k+1∑
k=k

Rk

(Nn)k
= ξi

(
Lk

(Nn)k W n
k H

(2n+1)
min,k

+
Lk+1

(Nn)k+1 W n
k+1 H

(2n+1)
min,k+1

)
. (66)

There exist a minimum resistance and optimal solution for given length and the channel width, such

that
dRt

dHmin,k
= 0. Similar to Garg et al. [1], minimising equation (66) is equivalent to minimise,

Ms =
Lk

(Nn)k W n
k H

(2n+1)
min,k

+
Lk+1

(Nn)k+1 W n
k+1 H

(2n+1)
min,k+1

, (67)

under the surface area constraint of

S = Ψi,s,1N
kWkLk +Ψi,s,2(N

n)kHmin,kLk +Ψi,s,1N
k+1Wk+1Lk+1 +Ψi,s,2(N

n)k+1Hmin,k+1Lk+1. (68)

Assuming
x = Hmin,k, and y = Hmin,k+1, (69)

we get

Ms =
Lk

(Nn)k W n
k x(2n+1)

+
Lk+1

(Nn)k+1 W n
k+1 (As −Bsx)(2n+1)

, (70)
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Figure 6: We show the optimal β∗ for maximum E varies with the N at given α for (a) n = 0.5,
(b) n = 1, and (c) n = 1.5, respectively for all linear, parabolic, hyperbolic, hyperbolic cosine and
sinusoidal converging-diverging tree-like rectangular channels network under surface-area constraint.
The plot is on the log-log scale.

where

As =
S −Ψi,s,1N

kWkLk −Ψi,s,1N
k+1Wk+1Lk+1

Ψi,s,2Nk+1Lk+1

(71)

and
Bs =

Lk

N Lk+1

, (72)

respectively. Further, differentiating with x, we get

dMs

dx
= 0 =⇒ −Lk

(Nn)k W n
k x(2n+2)

+
BLk+1

(Nn)k+1 W n
k+1 (As −Bsx)(2n+2)

= 0. (73)

which further implies (
(As −Bsx)

x

)(2n+2)

=

(
Hmin,k+1

Hmin,k

)(2n+2)

= N−(n+1)α−n. (74)

Hmin,k+1

Hmin,k

= β∗ = N−1/2α−n/(2n+2). (75)
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Figure 7: We show the optimal β∗ for maximum E varies with the α at given N for (a) n = 0.5,
(b) n = 1, and (c) n = 1.5, respectively for all linear, parabolic, hyperbolic, hyperbolic cosine and
sinusoidal converging-diverging tree-like rectangular channels network under surface-area constraint.
The plot is on the log-log scale.

As β∗ at any kth level is independent of k. Therefore, this scaling hold true in complete linear,
parabolic, hyperbolic, hyperbolic cosine and sinusoidal converging-diverging tree-like rectangular
channels network. Further, optimal height ratio β∗ is also independent of the length ratio γ, and
m at a given power-law index n of the power-law fluids. Further, by comparing the relationship
β∗ ∝ αs3 N s4 , we get s3 = −1/2 and s4 = −n/(2n+ 2) for all n. Also, using equation (75), we get(

Qk+1

Qk

)∗

=
1

N
=

(
Hmin,k+1

Hmin,k

)2(
Wk+1

Wk

)n/(n+1)

=⇒ Qk ∝ H2
min,kW

n/(n+1)
k , for all n. (76)

The analysis focuses on the optimal height ratio for minimum flow resistance or maximum flow
conductance E. By analyzing how the optimal β∗ scales with channel-width ratio α, and the number
of branches N , we gain insights into how the network design needs to adapt for efficient flow with
varying branching complexities. The β∗ is not constant but changes with the channel-width ratio α
and number of daughter branches N with scaling exponent -1/2 each in case of constraint volume
of the channels and −n/(2n + 2) and −1/2 in case of constraint surface-area of the channels. This
highlights the influence of the channel-width ratio and the bifurcation number on the optimal design

21

https://doi.org/10.26434/chemrxiv-2024-m3g5r ORCID: https://orcid.org/0000-0003-4544-7036 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-m3g5r
https://orcid.org/0000-0003-4544-7036
https://creativecommons.org/licenses/by-nc-nd/4.0/


in the linear, parabolic, hyperbolic, hyperbolic cosine and sinusoidal converging-diverging tree-like
rectangular channels networks. This type of analysis helps in designing efficient branching networks
for fluid flow in various applications.

5 Conclusions

This study generalizes Murray’s Law by incorporating a non-Newtonian power-law fluid model within
various converging-diverging dendritic networks of tubes and rectangular channels with arbitrary bi-
furcation number N and generation level m. We analyzed five different converging-diverging profiles
as linear, parabolic, hyperbolic, hyperbolic cosine and sinusoidal converging-diverging dendritic net-
work. We introduce two constraints: constant total tube volume (relevant for natural flow) and
constant total surface area (important for industrial and heat/mass transfer applications) assuming
steady, incompressible, 2D planar and axisymmetric laminar flow without considering network losses
in this study. Analyzing networks with arbitrary N , m, power-law index n, and channel width ratio
α allows for a broader applicability.

We define a dimensionless effective flow conductance E to quantify flow behavior based on the
parent-daughter radius or channel height ratio β, length ratio γ, N , α and m. Our results show that
dimensionless effective flow conductance decreases with increasing length ratio, N , α and m. The
peak conductance is reached when a specific radius/channel-height ratio, denoted as β, is attained,
contingent upon both the constraints and the vessel’s geometry, whether it be tubular or rectangular in
shape. Interestingly, this ratio remains consistent regardless of the type of converging-diverging profile
along the vessel’s length. Our investigation confirms that this scaling, indicated by β∗

max = β∗
min =

N−1/3 for tube volume constraints and β∗
max = β∗

min = N−(n+1)/(3n+2) for surface area constraints,
aligns with the findings of Garg et al. [1] regarding power-law fluid flow in uniform tubes. In this
context, βmax and βmin represent the radius ratios between parent and daughter branches at the most
divergent or convergent parts of the vessel, respectively. Here, N denotes the number of branches
dividing at each junction, and n signifies the power-law index of the fluid. Importantly, under the
volume and surface-constraint constraint for the Newtonian fluids in the converging-diverging tubes,
the classic Murray’s Law scaling remains valid at the optimal condition.

Furthermore, we found that the optimal flow scaling for height ratio in rectangular channels is
β∗
max = β∗

min = N−1/2α−1/2 for tube volume constraints and β∗
max = β∗

min = N−1/2α−n/(2n+2) for surface
area constraints in all converging-diverging channel networks, where α is the channel-width ratio
between parent and daughter branches. Under a limiting case for the rectangular channel with β = 1,
we get the α∗ = N−1, which has been derived by Jing and Zhan [34] and validate our scaling law which
are more generalise formulation for varying height and width of five converging-diverging tree-like
rectangular channels geometries. Our findings are substantiated through experimentation, comparison
with existing theories under limiting conditions as shown by Garg et al. [1] for the uniform tube-
networks, and an expansion of Hess-Murray’s law to encompass shear-thinning and shear-thickening
fluids across varying branching numbers N .
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In conclusion, this work expands Murray’s Law by incorporating non-Newtonian power-law fluid
behavior under both volume and surface area constraints in the various converging-diverging dendritic
networks of tubes and rectangular channels. The findings reveal different optimal scaling and design
principles depending on the constraint, cross-sectional geometry of the vessel and fluid properties such
as n for optimizing flow in tree-like branching networks.

Data availability statement

All data generated and analyzed during this study are included within this manuscript.
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