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ABSTRACT: Here, we present the first enantioselective total syntheses of the natural products (+)-kasugamycin, a potent 
antifungal antibiotic, and (+)-kasuganobiosamine, a compound that results from kasugamycin degradation. Salient features 
of these syntheses include a second-generation enantioselective preparation of a kasugamine derivative (much improved in 
efficiency relative to our first chiral-pool effort) and our laboratory’s sulfamate-tethered aza-Wacker cyclization.

In 1965, Umezawa and co-workers isolated an 
aminoglycoside antibiotic from the bacteria Streptomyces 
kasugiensis; because this bacterial strain was found in a soil 
sample near the Kasuga shrine in Nara, Japan, they named 
the natural product kasugamycin (Figure 1).1-4 Remarka-
bly, unlike many other aminoglycosides, which are potent 
antibacterial antibiotics, kasugamycin only exhibited weak 
antibacterial activity.5-8 However, it was found to be a po-
tent antifungal agent and continues to be agriculturally used 
to control rice blast disease.9, 10 Kasugamycin is quite sensi-
tive to heat and light exposure, and, in the environment, 
rapidly degrades into a related compound named ka-
suganobiosamine.11  As a target for total synthesis, kasug-
amycin has lain dormant for more than 50 years.12-14  Our 
laboratory has a deep interest in the development of new 
reactions to simplify the syntheses of structurally complex, 
anti-infective molecules.15-17 We envision such syntheses 
will serve as foundations for future function-oriented18 me-
dicinal chemistry efforts. Thus, we chose kasugamycin as a 
worthy target both for its challenging, heteroatom adorned 
framework and for its potent antifungal activity. Here, we 
report the first enantioselective total syntheses of (+)-ka-
sugamycin and (+)-kasuganobiosamine.  

 

 (+)-Kasugamycin is an aminoglycoside, composed 
of the aza-monosaccharide kasugamine (ring A) attached to 
1D-chiro-inositol (ring B).4 We planned to synthesize 

protected versions of each of these components and conjoin 
them with a late-stage glycosylation (Scheme 1). Following 
glycosylation, attachment of the amidinoformic acid moiety 
and global deprotection would deliver (+)-kasugamycin. 
Kasugamine would be systematically synthesized from a 
chiral epoxide synthon in a sequence highlighting our labor-
atory’s sulfamate-tethered aza-Wacker cyclization.19-22 1D-
chiro-inositol is commercially available but would have to 
be protected prior to glycosylation.  
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 Our synthesis of (+)-kasugamycin commenced 
with commercially available 2-butyn-1-ol, which was re-
duced into (E)-2-buten-1-ol (1) using lithium aluminum hy-
dride (Scheme 2).23 The corresponding chloride was pre-
pared using triphenylphosphine and hexachloroacetone 
(modified Appel conditions).24  Sharpless dihydroxylation 
gave chloro-diol 3 in a 63% yield and 89% ee.25, 26 Treatment 
of 3 with NaOH gave an epoxy-alcohol which was converted 
into the corresponding TBS ether prior to purification.27 
This epoxide was regioselectively opened using cis-1-pro-
penylmagnesium bromide and CuI. Resulting alcohol 5 was 
sulfamoylated using conditions developed by Sguazzin, 
Johnson, and Magolan.28 

 

Sulfamate 6 was subjected to our laboratory’s aza-
Wacker cyclization reaction,29 giving oxathiazinane 7 in an 
excellent yield and as a single diastereomer (within limits of 
1H NMR detection) (Scheme 3). 7 was activated by append-
ing a Cbz group and ring-opened using NaN3.30 9 was unsta-
ble in acidic NMR solvents but was readily di-hydroxylated 
using K2OsO4•2H2O and NMO. The diol was cleaved using 
NaIO4. In one-pot, the TBS group was removed using pTsOH 
and cyclization of the resulting aldose gave kasugamine 

derivative 11 as a mixture of anomers. The anomeric OH 
group was converted into the corresponding acetate using 
Ac2O/pyridine/DMAP. The acetate was exchanged with thi-
ophenol using BF3•OEt2. Enantiopure thioglycoside 13 crys-
tallized along with its racemate, consistent with the ob-
served % ee for 3, and both were confirmed by X-ray diffrac-
tion analysis (CCDC 2335847 and CCDC 2353400). We 
note that this is enantioselective synthesis of a kasugamine 
derivative is much improved (10 steps) relative to our first 
chiral-pool attempt (~17 steps from a literature com-
pound).29 

 

Commercially available 1D-chiro-inositol was con-
verted into its tris-acetonide derivative using 2,2-dimethox-
ypropane and catalytic pTsOH (Scheme 4).31 One of these 
acetonides was selectively removed using aqueous acetic 
acid to give C2-symmetric diol 15.31 15 was mono-ben-
zylated using NaH and BnBr in DMF. 
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 Glycosylative coupling of 13 and 16 proceeded 
smoothly using AgOTf and NIS (Scheme 5).32 We had previ-
ously envisioned a Schmidt reaction between the trichloro-
acetimidate derivative of 11 and 16; while we were able to 
synthesize the trichloroacetimidate of 11, the product was 
very unstable and difficult to handle. The azide of 17 was 
converted into the corresponding amine using a Staudinger 
reduction. 18 was reacted with commercially available 
ethyl 2-ethoxy-2-iminoacetate in THF.33  We observed that 
the resulting amidine ethyl carboxylate was highly unstable 
and was partially hydrolyzing during the attachment step, 
affording a mixture of products which was difficult to sepa-
rate. Quenching the reaction with H2O and stirring for a few 
hours gave desired amidine carboxylic acid 19 as a single 
product in a two-step, one-pot protocol. The Cbz and benzyl 
groups were removed by hydrogenolysis; here, using a 1:1 
mixture of glacial acetic acid and H2O as the solvent was far 
superior to earlier attempts with MeOH. The acetonides 
were cleaved with 6 M aqueous HCl in 1,4-dioxane. The syn-
thetic (+)-kasugamycin hydrochloride salt was found to be 
identical with a commercial sample in all respects (see Sup-
porting Information for full details).  

 

 
 

18 was a convenient intermediate for the comple-
tion of (+)-kasuganobiosamine (Scheme 6). Hydrogenoly-
sis removed the Cbz and benzyl groups. Acetonide cleavage 
using 6 M aqueous HCl in 1,4-dioxane delivered (+)-ka-
suganobiosamine as its bis-hydrochloride salt. 

In summary, we have completed the first enanti-
oselective total syntheses of (+)-kasugamycin and (+)-ka-
suganobiosamine. The synthesis of (+)-kasugamycin pro-
ceeds in a longest linear sequence of 15 steps from a known 
epoxide and with an approximate yield of 12%. An interme-
diate in this sequence was used for the preparation of (+)-
kasuganobiosamine. A highlight of our syntheses is our la-
boratory’s sulfamate tethered aza-Wacker reaction. This 
work underscores the power of tethered aza-Wacker chem-
istry for complex nitrogenous molecule assembly. 
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