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ABSTRACT: 

In recent years, with the rapid advance of computer science, various modern intelligent 
algorithms have successively emerged. Transformer, based on multi-head attention 
mechanism, is one of the most favored AI models among in this century. The introduction of 
these algorithms leads to dramatic progress in retrosynthesis prediction. Unlike conventional 
retrosynthesis prediction models, retrosynthesis prediction based on intelligent algorithms 
can automatically extract chemistry knowledge from chemical reaction datasets to predict 
retrosynthesis routes. In this review, we provide a comprehensive overview of retrosynthesis 
prediction based on modern intelligent algorithms, particularly artificial intelligence 
algorithm. After introducing the related deep learning model, the existing chemical reaction 
datasets and molecular representations are presented. Subsequently, the current state-of-the 
art of AI-assisted retrosynthesis prediction models in recent years is discussed, including 
template-based models, template-free models, and semi-template-based models. Additionally, 
we conclude by comparing retrosynthesis prediction models across different categorizations. 
Finally, several challenges and limitations of these current methods are summarized, with a 
view to promising directions for future research. 
 
KEYWORDS: artificial intelligence, retrosynthesis prediction, Machine learning, Deep 
learning  

1. Introduction 

Organic synthesis, an indispensable branch of chemistry, is often described as an art 
because it requires creativity, inspiration, and aesthetic judgment[1,2]. It is a vital technology 
with broad applications in drug design and synthetic biology[3–6]. Retrosynthetic analysis is 
a common method for the design of organic synthesis[7]. It is a process of deducing a 
synthetic route from the target compound by working backward. The core idea is to 
decompose the target compound into multiple simpler compounds or starting materials, and 
then synthesize these compounds or starting materials to obtain the target compound. 
However, with the increasing diversity and complexity of target molecules, the design of 
organic synthesis pathways has become exponentially difficult. To boost productivity and 
reproducibility of results, there is a growing expectation that organic retrosynthesis can be 
automated[8–10]. Thus, computer-aided synthesis planning (CASP) was born. The initial 
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attempts in this field can be traced back to Corey's pioneering work on rule-based synthesis 
prediction systems, namely the Logic and Heuristics for Automated Synthesis Analysis 
(LHASA) program[11]. It designs a series of reactions that recursively decompose the target 
compound into simpler building blocks until a commercially available starting molecular is 
reached. However, early rule-based models did not achieve satisfactory results due to the 
limitations of computational power and data availability. Recently, with the unprecedented 
advances in computer science[12], intelligent algorithms for a variety of tasks, such as beam 
search algorithms, Monte Carlo tree search algorithms, genetic algorithms, and neural 
network algorithms, are emerging rapidly. Furthermore, an increasing number of artificial 
intelligence models driven by big data have been proposed[13,14]. Due to the outstanding 
achievements of artificial intelligence in various tasks, the application of artificial 
intelligence in chemistry and drug discovery has once again attracted attention[15,16]. 

For chemists, CASP presents a formidable challenge, particularly in the realm of 
retrosynthesis prediction. This stems from the fact that, in contrast to forward reaction 
prediction tasks, retrosynthesis reaction prediction tasks provide limited input information 
while potentially yielding a multitude of output possibilities.  

In recent years, many researchers have proposed various types of models for 
retrosynthesis prediction tasks. Single-step retrosynthesis prediction models can 
automatically disconnect the given product to gain candidate reactants. For candidate 
reactants that are not commercially available, a recursive expansion strategy is employed 
until all reactants along the pathway are commercially accessible or the maximum 
predetermined expansion steps are reached. Once accurate and recursive single-step 
retrosynthesis prediction is complete, multi-step retrosynthesis prediction focuses on 
planning the optimal reaction sequence that minimizes the number of synthesis steps, the cost 
of the starting molecules, the waste produced, and so forth. Hence, the performance of single-
step retrosynthesis prediction models is fundamental to retrosynthesis task. These models can 
be roughly divided into three classes:  

The first category is template-based models, which integrate domain knowledge and 
formal rules based on prior chemical knowledge, such as template-based algorithms. 
Reaction templates are a set of rules that determine how reactants are transformed to products 
through bond disassociation. The terms templates and rules are often used interchangeably. 
These models generally demonstrate high levels of both interpretability and accuracy, but 
they struggle to make accurate predictions outside their knowledge base in most cases.  

The second category is template-free models, which typically do not incorporate 
chemical knowledge and are considered black-box models, such as deep neural networks. 
These black-box models often demonstrate lower interpretability, high computational 
complexity. They are susceptible to generating solutions that violate chemical knowledge. 
Nevertheless, they show the promising potential to discover new reaction pathways 
unconstrained by existing knowledge bases. With the exponential growth in computational 
data processing capabilities, the performance of purely data-driven models has seen a 
substantial improvement.  

The third category is semi-template-based models, which consists of two steps: (1) they 
first identify the reaction centers and transform the product into synthons (intermediate 
molecules) using the reaction centers; and then (2) they complete the synthons into the 
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reactants. 
In this review, we focus on contemporary retrosynthetic strategies. We provide an 

overview and evaluation of retrosynthesis prediction models developed primarily over the 
past three years. In the following sections, we first describe the related AI models in 
retrosynthesis prediction. Then, commonly used data sources and molecular representation 
in retrosynthesis prediction tasks are compared. Next, we delve into the applications of 
modern intelligent algorithms in template-based models, template-free models, and semi-
template-based models. Finally, we provide an outlook and address potential challenges in 
this field. 

2. Related deep learning algorithms 

Artificial intelligence algorithms are developed to mimic human intelligence. These 
algorithms can extract potential rules from dataset and make predictions with these rules 
when provided with novel data. Deep learning (DL), as a rapidly developing branch of 
artificial intelligence, shows unparalleled performance in diverse tasks, thanks to the advance 
of computational power and modern algorithms. Generally, DL models can be divided into 
three categories: supervised learning, unsupervised learning, and reinforcement learning 
(RL). 

In supervised learning method, a model is trained on a dataset of labeled samples. The 
model learns to map from input features to an output label. There are two main types of 
supervised learning models. The classification model learns to predict a discrete output label. 
The regression model learns to predict a continuous output value. In unsupervised learning 
method, a model is trained on a dataset of unlabeled samples. The model learns to identify 
patterns and relationships in the data without being explicitly told what to look for. In 
reinforcement learning methods, the agent learns to behave in an environment by trial and 
error. It receives rewards for taking actions that lead to desired outcomes, and punishments 
for taking actions that lead to undesired outcomes. The goal of the agent is to learn a rule that 
will maximize its expected reward over time. Most of the retrosynthesis prediction models 
use the supervised learning strategy, the framework of which is shown in Fig. 1. 
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Fig. 1 The process of supervised learning method 

Common DL algorithms in retrosynthesis prediction include Seq2Seq models, graph 
neural networks, reinforcement learning and search algorithms. 

 
2.1 Sequence generation model 

As molecules can be represented as SMILES-based sequence, retrosynthesis prediction 
task can be transformed to a sequence-to-sequence task. Sequence-to-Sequence model 
(Seq2Seq model), which is widely used in natural language processing (NLP) field, is 
naturally become an effective tool for chemical sequence modeling. Seq2Seq model can 
generate a sequence of chemical reactants from a chemical product in the case that length of 
input sequence is different from length of output sequence. In this review, we focused on 
recurrent neural network- based Seq2Seq models and attention-based Seq2Seq models. 

To solve the problem of sequence generation (such as machine translation), recurrent 
neural network (RNN) was first introduced for encoding and decoding[17,18]. The difference 
between RNN and feed-forward neural network is that it uses hidden states to record all 
previous information. The encoder of RNN encodes the input sentence into a fixed-length 
vector, and the decoder generates the target words sequentially. The framework of RNN is 
presented in Fig.1. However, RNN models cannot capture long-distance dependencies and 
are unable to parallelize calculations. The Bidirectional Long Short-Term Memory (biLSTM), 
a variant of RNN, is proficient at selectively retaining long-distance dependencies through 
gating mechanisms. Attention Mechanism is a computing resource allocation strategy, which 
can centralize limited computing resources for important information. When combined with 
attention mechanism, this biLSTM-based framework enables the hidden state to incorporate 
global information and addresses the problem of non-parallelizable computations [19]. To 
model the global attention, the multi-step attention mechanism is introduced to every decoder 
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layer. The Transformer model, originally introduced by Vaswani et al21, features encoders 
and decoders that rely solely on Multi-Head Self-Attention mechanisms, enabling it to 
effectively capture long-range correlations within sequences. In recent years, Transformer-
based models have emerged as a dominant force in the field of purely data-driven 
retrosynthesis prediction, primarily attributed to their exceptional performance. 

The attention mechanism is a technique used in deep learning to assign weights to 
different parts of the input data, with higher weights indicating more importance. The self-
attention mechanism is a specific type of attention mechanism that applies attention to 
different positions in the same sequence. This allows the model to capture the relationship 
between any two positions in a sequence, which is important for understanding the structure 
and meaning in the sequence. The self-attention mechanism is implemented using query, key, 
and value vectors, which are used to calculate the attention weights and the output. The query 
vector is used to calculate the similarity between the different key vectors, and the resulting 
weights are used to weight the corresponding value vectors to get the output. 

More specifically, for set of column vectors, , the self-
attention mechanisms can be conceptualized as a process that establishes interactions 
between different vectors ℎ! in a linearly projected space. The encoding formulas of self-
attention mechanisms is as follows: 

self- att(𝑄, 𝐾, 𝑉) = Vsoftmax3
𝐾"𝑄
4𝐷#

6 	 (1) 

𝑄 = 𝑊$𝐻,𝐾 = 𝑊#𝐻, 𝑉 = 𝑊%𝐻 (2) 
here, denotes the dimension of the column vectors in the input matrices 𝑄 (queries) and 

𝐾  (keys). denotes the dimension of column vectors in the matrices V (values). 
, , are three projection matrices. 

The use of Multi-Head Self-Attention allows for the further capture of varied interaction 
information across multiple distinct projection spaces. When the self-attention model is 
applied within 𝑀 such projection spaces, it can be mathematically represented as follows: 

MultiHead (𝐻) = 𝑊&[head';⋯ ;  head (] (3) 
head ) = self-att	(𝑄), 𝐾), 𝑉)) (4) 

∀𝑚 ∈ {1,⋯ ,𝑀}, 𝑄) = 𝑊$)𝐻,𝐾 = 𝑊#
)𝐻, 𝑉 = 𝑊%)𝐻 (5) 

here is output projection matrix, , and
are projection matrices, . 

Fig. 2 shows the network architecture of Transformer model, which can be divided into 
two parts: encoder and decoder. The encoder comprises multiple layers of multi-head 
attention modules. The decoder generates the target sequence autoregressively, which 
consists of masked self-attention modules, decoder-to-encoder attention modules, and 
feedforward neural networks. 

Besides RNN-based models and attention mechanisms-based models, Gehring et al. 
proposed a framework for sequence modeling[20], convolutional sequence to sequence 
(ConvS2S) model. Its encoders and decoders consist of multilayer convolution neural 
networks, which is more efficient than RNNs in some cases.  
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Fig. 2 Transformer framework and RNN framework. 

2.2 Graph neural networks 

Molecules can be represented not only by encoding them into sequences but also by 
encoding them as undirected weighted graphs, a data structure from graph theory. It consists 
of a set of vertices, a set of edges and a set of global information, with each edge assigned a 
weight, and connections between vertices being directionless. For detailed discussion about 
graph representation for molecular, please refer to section 4.3. There are three general types 
of prediction tasks on graphs: graph-level, node-level, and edge-level. In general, prediction 
of chemical molecule belongs to graph-level type, which can be solved with Graph Neural 
Networks (GNNs). 

GNNs are promising parameter-efficient tools for learning the structural information of 
graphs, enabling predictions of molecular transformations in reactions[21]. GNN is an 
optimizable transformation on all attributes of the graph that preserves graph symmetries 
(permutation invariances). Sperduti was the pioneer in applying neural networks to directed 
acyclic graphs[22]. This approach is also applicable to the undirected graph representation of 
chemical molecules. Fig. 3 presents an example of GNN using the “message passing neural 
network” framework for binary classification task, which can easily be extended to the multi-
class or regression task. With the numerical representation of graphs as input, this GNN learn 
new embeddings for all graph attributes (nodes, edges, global), without using the connectivity 
of the graph. This GNN uses a separate multilayer perceptron (MLP) on each component of 
a graph, which is called a GNN layer. For each graph attributes vector, the MLP is applied, 
and a learned vector is generated. Finally, it makes predictions by pooling information (such 
as, gathering information from edges to nodes). 

Researchers have further proposed Recurrent Graph Neural Networks 
(RecGNNs)[23,24], where neighbor information is propagated iteratively to update the 
representations of target nodes. Due to the significant success of convolutional neural 
networks (CNNs) in computer vision, researchers introduced convolutional operations into 
GNNs and developed Graph Convolutional Networks (GCNs) [25]. The convolution 
operation in GCN is a weighted average of the features of the graph to aggregate information 
about features and their neighbors. However, the weights generated by aggregation operation 
isn’t permutation invariances. To overcome this problem, researchers have introduce 
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attention mechanisms into GNN and proposed Graph Attention Networks (GATs)[26] and 
Gated Attention Networks (GAANs)[27]. Based on these works, Graph Autoencoders 
(GAEs)[28], Graph Generation Networks (GGNs)[29], and Spatio-Temporal Graph 
Convolutional Networks (STGCNs)[30] have been further developed. 

 
Fig. 3 GNN framework with message passing neural network for classification tasks. 

2.3 Reinforcement learning 

Reinforcement Learning (RL) is a form of unsupervised learning method[31]. It 
addresses problems where an agent learns from interacting with the environment to achieve 
specific objectives, such as maximizing rewards. Similar to deep learning, a crucial challenge 
in RL is the allocation of contributions. Each action does not receive direct supervised 
information but depends on the ultimate supervised signal (reward) from the entire model, 
often with some delay. The key distinction between RL and supervised learning lies in RL 
not requiring a "correct" strategy as supervised information; instead, it focuses on delivering 
the delayed returns of strategies and adjusting them to maximize expected returns. 

In RL, two interacting entities exist: the agent and the environment. The agent perceives 
the state and reward of the external environment, engaging in learning and decision-making. 
Decision-making involves different actions based on the external environment's state, while 
learning adjusts strategies based on the environment's rewards. The environment comprises 
all external elements to the agent, subject to changes in its state due to the agent's actions and 
providing corresponding rewards to the agent. 

The fundamental components of RL include: 
(1) The description of states	𝑠	as a portrayal of the environment, which can be discrete 

or continuous, forming the state space 𝑆; 
(2) Actions 𝑎 describing the agent's behavior, also in discrete or continuous forms, 

forming the action space 𝐴; 
(3) A policy representing how the agent decides the next action	𝑎 based on the 

environment's state 𝑠; 
(4) State transition probabilities indicating the likelihood of the environment 
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transitioning to state 𝑠′ after the agent's action a from the current state 𝑠; 
(5) Immediate rewards as scalar functions provided to the agent based on its 

action in the current state 𝑠, often correlated with the subsequent state	𝑠′. 
The objective of RL is to learn a policy that maximizes the expected return, with 

the objective function represented by:𝒥(𝜃) = 𝔼*∼,!(*)[𝐺(𝜏)] = 𝔼*∼,!(*)[∑  /0'
123 𝛾1𝑟14'] . 

Here 𝜃 denotes the parameters of the policy function. Value functions are defined to evaluate 
the expected return of a policy 𝜋, including state value functions and state-action value 
functions (Q-Function). The policy can be optimized iteratively based on these value 
functions. Additionally, expected return can be maximized by directly searching the policy 
space, which includes gradient-based optimization[32,33] and gradient-free optimization.  

Deep Reinforcement Learning combines RL and deep learning methodologies, 
employing RL to define problems and optimization goals, using deep learning to address the 
modeling of policy and value function, and subsequently employing error backpropagation 
algorithms to optimize the objective function. Mnih proposed Deep Q Networks (DQNs)[34], 
which serve as a pioneering cornerstone in the field of deep RL, leveraging convolutional 
neural networks to estimate Q values. In the Deep Q Network, two pivotal measures are 
employed: firstly, the freezing of target networks involves fixing the parameters within a 
target for a specified duration to ensure stable learning objectives; secondly, the utilization 
of experience replay involves constructing an experience pool aimed at eliminating data 
correlations. This pool consists of recent experiences gathered by the agent, forming a dataset. 
During training, random samples are drawn from the experience pool to substitute current 
samples for training. This approach breaks the similarity between adjacent training samples, 
preventing the model from converging to local optima. The learning process of the DQNs is 
illustrated as follows. 

 
 
 
 
 

Algorithm: DQN with Experience Replay 
 Input: State space 𝑆, Action space 𝐴, Discount rate 𝛾, Learning rate 𝛼 

1 Initialize experience pool 𝐷 with capacity 𝑁; 
2 Randomly initialize parameters of the Q network 𝜙; 
3 Randomly initialize parameters of the target Q network 𝜙Y = 𝜙; 
4 Repeat   
5  Initialize the starting state 𝑠; 
6  Repeat  
7   In state 𝑠, select action 𝑎 = 𝜋5; 
8   Execute action 𝑎, obtain immediate reward 𝑟 and the new state 𝑠6; 
9   Place 𝑠, 𝑎, 𝑟, 𝑠6into 𝐷; 

10   Sample 𝑠𝑠, 𝑎𝑎, 𝑟𝑟, 𝑠𝑠6 from 𝐷; 

11   y= Z
𝑟𝑟, 𝑠𝑠6 is terminal state 

𝑟𝑟 + 𝛾𝑚𝑎𝑥
7"

 𝑄89 (ss6, a6),  otherwise  

12   Train the Q network with the loss function: ]𝑦 − 𝑄8(ss, aa)`
:; 

13   𝑠 ← 𝑠′; 
14   Every C steps, execute action: 𝜙Y ⟵ 𝜙; 
15  Until 𝑠 is the terminal state; 
16 Until ∀𝑠	𝑎𝑛𝑑	𝑎, 𝑄8(𝑠, 𝑎) converges; 
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 Output: 𝑄8(𝑠, 𝑎) 
 

Since their inception, researchers have introduced numerous extensions to the value-
based approach[35]. Furthermore, model-based methodologies have been proposed[36], 
enabling prediction of post-action states through predictive models and direct optimization 
of policy networks. Deep RL also works on more complex decision-making problems, such 
as those with goal conditions[37], hierarchical task decomposition[38], and multiple 
agents[39]. Deep RL has garnered significant success across diverse applications, ranging 
from games[40], robotics[41], and autonomous driving[42] to molecule generation[43]. This 
advancement is widely perceived as a crucial stride toward the development of general AI[44]. 
2.4 Search algorithms 

Search algorithms retrieve stored information within a data structure or computed in a 
search space, forming the basis for multi-step retrosynthesis prediction in planning synthesis 
routes. Generally, these algorithms fall into two categories: uninformed searches and 
informed searches. Uninformed searches do not leverage information regarding the cost of 
state transitions; typical examples include depth-first searches and breadth-first searches. In 
contrast, informed searches incorporate heuristic functions to assess the distance between the 
current and goal states, guiding the search progress. While not necessarily optimal, this 
approach ensures a favorable solution within a reasonable search time. Best-first searches 
represent typical heuristic searches employing a priority queue concept. The OPEN list 
contains currently traversable nodes, while the CLOSED list stores traversed nodes. Beam 
search enhances best-first search by expanding the most promising nodes within a limited 
set[45]. A* search amalgamates the merits of uniform cost search and best-first search, 
ensuring optimality in solutions[46]. In this context, the cost of each state comprises the 
actual cost from the starting state to the current one and the heuristic cost from the current 
state to the goal state. Monte Carlo Tree Search (MCTS)[47] refines value estimates from the 
current state to the goal state. AlphaGo[48] stands as one of the most renowned applications 
of MCTS, where it explores potential moves and tracks outcomes within a Go search tree. 
MCTS consists of four phases: Selection, Expansion, Simulation and Backpropagation. (see 
Fig. 4) 

 
Fig. 4 The process of MCTS: selection, expansion, simulation, and backpropagation. 
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3. Data sources 

In CASP tasks, whether through symbolic AI or purely data-driven modelling, a dataset 
that can be parsed by a computer is a precondition. The quality of dataset determines the 
model's upper limit. It is not an exaggeration to say that the quality of the dataset is more 
important than the model itself[49]. Therefore, computational chemist needs to pay particular 
attention to the characteristics of the input dataset. This section will provide a summary and 
comparison of common chemical reaction databases. 

Journals and publishing houses have made their datasets available under licensing 
agreements in computer readable format, by means of automatic extraction by algorithm and 
expert manual coding. These include the Reaxys database, published by Elsevier, which 
encompasses more than 73 million reactions as of 2023. Comprehensive and up-to-date 
journal and patent coverage from 16,000 journals and 105 patent offices. It compiles 
comprehensive and up-to-date journal and patent coverage from 16,000 journals and 105 
patent offices. To extract information from chemical patents, Elsevier and the University of 
Melbourne, Australia initiated a project based on NLP models, called ChEMU[50]. The 
Chemical Abstracts Service (CAS) encompasses approximately 150 million reactions 
spanning from 1840 to 2023, including organic, inorganic, total synthesis of natural products, 
and biotransformation reactions, which stands as the largest provider of reaction data. Its data 
sources derive from journals, patents, dissertations, and seminal reference works. 
Furthermore, smaller-scale datasets include SPRESI, developed by InfoChem, which 
encompasses 4.6 million reactions spanning the period from 1974 to 2014. Another notable 
dataset, Pistachio, created by NextMove Software, comprises patent data from 1976 to 2023, 
encompassing a vast corpus of over 13,118,970 reactions. Among researchers, the most 
extensively employed dataset is a subset of patent data extracted by Lowe during the period 
from 1976 to 2016, which encompasses 3.3 million reactions. This dataset is presently the 
sole publicly accessible repository of reaction data and is commonly called USPTO[51]. 
Moreover, USPTO 50K, a subset and preprocessed iteration of Chemical reactions from 
USPTO, is composed of 50,000 reactions selected randomly, covering ten distinct reaction 
types[52]. USPTO-MIT[53] is also a commonly used subset, which contains a wide range of 
reagents and possible catalysts compared with USPTO-50K. The specific detail of commonly 
used dataset is listed in Table 1. 

Although the datasets mentioned above include details about molecular structures, 
reaction conditions (solvents, catalysts, reagents), and yields, they are not immune to errors. 
Moreover, the prevalence of positive data in most patents and literature contributes to an 
uneven distribution of product representations[54,55]. This imbalance in data distribution can 
have detrimental effects on model performance. Furthermore, within the CASP framework, 
the instances of failed reactions play an important role, especially in situations concerning 
regioselectivity and chemoselectivity. To overcome these challenges, THE data have been 
published to generate more consistent data[56]. IBM has released a method employing 
Natural Language Processing (NLP) to extract experimental procedures from patents and 
scientific literature, thereby creating structured, automation-friendly formats[57]. The Pistoia 
Alliance has collaborated with Elsevier to define a Unified Data Model (UDM) for the 
exchange of reaction information. Electronic laboratory notebooks (ELNs), a novel dataset 
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extracted from the electronic laboratory notebooks of a large pharmaceutical company, are 
not subject to the publication bias towards high-yielding reactions[58,59]. 

Of notable mention is that, comparing various data sources, including patents (USPTO 
and Pistachio), literature and patents (Reaxys), and industrial data (AstraZeneca ELN), 
despite similarities in their size of template sets, they differ in the coverage of reaction space. 
Reaxys stands out for its extensive and uniquely diverse collection of reaction templates, 
providing a broader reaction space[60]. 
Table 1 
Overview of dataset used for retrosynthesis prediction models. 

Dataset Source Sample size Reaction space coverage 
Reaxys journals and patent 7300k +++++ 
ChEMU patents - - 

CAS journals and patent 15000k - 
SPRESI literature 4600k - 
Pistachio USPTO + EPO 9000k ++ 

USPTO-full USPTO 3300k ++++ 
USPTO 50K USPTO 50k +++ 

 

4. Molecular representation 

For CASP tasks, the quality of the dataset and the art of feature engineering play 
determining roles in the performance of the model. Therefore, chemists have devised 
numerous distinct molecular representation methods with the aid of mathematical tools. 
These methods aim at encapsulating the complete information of molecules using abstract 
mathematical symbols. 1D molecular representation methods can solely represent global 
molecular properties exclusive of structural patterns, such as pKa, logP, etc. 2D molecular 
representation methods can represent structural patterns without explicit 3D information, 
including SMILES (Simplified Molecular Input Line Entry System)[61,62], fingerprints, and 
molecular graphs, which are the mainstream methods used in retrosynthesis tasks. 3D 
molecular representation methods, such as image-based methods, can contain high-
dimensional information, but it doesn’t necessarily mean better performance in some cases. 
In recent years, a 3D molecular representation learning framework is proposed to capture 
more information in high dimension automatically[63]. 
4.1 Molecular string representation 

SMILES is the most widely adopted molecular string representation system for 
molecular structures. The SMILES system combines specific syntax rules and chemical 
principles to represent molecular structures rigorously. One of the advantages of SMILES is 
the ability to transform reaction prediction tasks into machine translation tasks. For sequence 
modeling problems, leveraging natural language processing (NLP) models in the field of 
artificial intelligence can solve them efficiently[64]. For example, the Transformer 
architecture based on the attention mechanism is one of the most favored NLP models among 
computational chemists. For SMILES representation of chemical reactions, reactants, 
reagents, and products can be linked together using symbols, which is similar with molecular 
fingerprint method. The ">" symbol is used to indicate the direction of the reaction. For 
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instance, "Reactants > Reagents > Products". However, SMILES grammar is sequence 
sensitive and has trouble dealing with stereochemistry. SMARTS, as an extension of the 
SMILES language, serves as a language for describing molecular patterns and properties. 
SMARTS can be used to create queries. One notable feature of SMARTS is its allowance for 
the use of wildcards to represent atoms and chemical bonds. As a result, it is widely employed 
in computerized searches for structures in compound databases, enabling efficient and 
flexible chemical structure searching.  

Self-Referential Embedded Strings (SELFIES)[65] is a method that is both 100% robust 
and human-readable for representing molecular structures, which is proposed to overcome 
the limitation of SMILES. InChI[66], another string-based representation for chemical 
structures, possesses the advantage of uniqueness and reversibility in contrast to SMILES. 
These methods no longer involve atom-atom mapping to identify reaction centers. The 
SMILES of caffeine is showed in the following Fig. 5, including the process of ensuring its 
SMILES representation. 

 
Fig. 5 The process of getting the SMILES representation of caffeine. 

4.2 Molecular fingerprints 

Molecular fingerprints are another valuable tool in chemoinformatics for representing 
molecules. The core idea behind molecular fingerprints is to map a molecular into a bit string 
or a numeric array of length l, where each bit encodes whether the molecular contains a 
specific substructure feature. Molecular fingerprints offer several advantages, including high 
computational efficiency and ease of retrieval, making them an ideal choice for molecular 
similarity assessment. Main approaches include substructure keys-based fingerprints, path-
based fingerprints, and circular fingerprints. Here, we mainly focus on commonly used 
molecular fingerprint methods. For an detailed introduction to complete molecular 
fingerprints and software please refer to Cereto-Massagué's work[67].  

Substructure key-based fingerprint sets a bit string based on the presence of certain 
substructures or features from a given list of structural keys in a compound. The MACCS 
fingerprint system[68] offers two variants, one with 960 bits and the other with a more 
compact 166 bits, both based on SMARTS patterns of structural keys. The shorter variant, 
despite its reduced size, effectively captures most chemically relevant features essential for 
tasks such as drug discovery and virtual screening. In contrast, the PubChem fingerprint[69] 
comprises 881 structural keys, providing a comprehensive representation of diverse 
substructure features and serving as a cornerstone for similarity searches within the PubChem 
database. The BCI fingerprint[70], with user-customizable options and a standard 
substructure dictionary of 1052 keys, offers flexibility in its generation[71]. Lastly, the TGD 
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and TGT fingerprints[71,72], calculated from 2D molecular graphs, present two-point and 
three-point pharmacophore representations, consisting of 735 and 13,824 bits, respectively. 
These fingerprints, with their distinct characteristics, cater to a wide range of 
chemoinformatics applications, allowing researchers to effectively explore and analyze 
chemical compound data. 

Path-based fingerprinting operates by scrutinizing all molecular fragments that follow 
predefined paths (typically linear), up to a specific number of bonds. Subsequently, each of 
these paths undergoes hashing to generate a unique fingerprint. These fingerprints can serve 
in swift substructure searches and effective filtering. Among these fingerprint types, the 
"Daylight Fingerprint" stands out prominently[73], comprising as many as 2048 bits 
meticulously encoding all possible connectivity paths within the molecule, up to a specified 
length. 

Circular fingerprints focus on recording the environment surrounding each atom within 
a defined radius. They are less suitable for substructure verification queries, as identical 
fragments may exhibit distinct environments, but they find utility in full structure similarity 
searches. Molprint2D encodes the atomic environments of each atom in a molecule's 
connectivity table, representing these environments as strings of varying sizes[74,75]. ECFP 
(Extended-Connectivity Fingerprints) is an extension of the circular fingerprint based on the 
Morgan algorithm[76]. They represent cyclic atom neighborhoods and generate variable-
length fingerprints. The commonly used ECFP variant has a diameter of 4, often referred to 
as ECFP4. A diameter of 6 (ECFP6) is also quite common. FCFP (Functional-Class 
Fingerprints) is a variant of ECFP, indexing the function of that atom. Different atoms with 
the similar functions are not distinguished in the fingerprint. It can represent stereochemistry 
information which can further be used to infer structure-activity relationships.  

 
Fig. 6 The result of the caffeine structure with highlighted atoms which are related to Morgan 

fingerprint. 
4.3 Molecular graphs 

With the rapid advancements in graph neural networks, molecular graphs have garnered 
significant attention from researchers in the CASP field. Undirected graph is a fundamental 
data structure in graph theory, consisting of nodes and edges with associated weights. The 
edges in an undirected graph have no explicit direction, allowing for bidirectional edges 
between node A and node B. An adjacency matrix is a square matrix used to represent a finite 
graph. Each of its elements represents whether the nodes are connected by edges. The size of 
the adjacency matrix is the number of vertices in the graph. The diagonal element of the 
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adjacency matrix is 0. If the element of row 𝑖 and column	𝑗	of the adjacency matrix is 1, then 
node 𝑖 and node 𝑗	are connected by an edge. However, the space complexity of the adjacency 
matrix is	𝑂(𝑛:), where 𝑛 is the number of vertices in the graph. Therefore, to improve the 
computational efficiency, if the size of the adjacency matrix is large, adjacency matrix can 
be transformed to the eigenvectors of nodes, edges and global, which are generally used as 
inputs features.  

Molecules, the fundamental constituents of matter, are composed of atoms and electrons 
arranged in three-dimensional space. While all particles interact, a stable separation between 
a pair of atoms constitutes a covalent bond. Varied atomic pairs and bonding configurations, 
including single and double bonds, exhibit distinct interatomic distances. This intrinsic 
characteristic renders the graph representation with atoms as nodes and chemical bonds as 
edges[77–79]. The graph representation of Caffeine is presented in Fig. 7, including its 
molecule structure, molecule graph and adjacency matrix. 

 
Fig. 7 The graph representation of Caffeine. 
Compared to SMILES and molecular fingerprints, molecular graphs can represent more 

information about chemical structures, including atom types, bond types, topologies, etc. 3D 
information such as bond lengths, bond angles can also be added to the node and edge in 
graph representation. Moreover, graph representation is not affected by atom order. However, 
an efficient algorithm extracting graph representation from molecular structure is a 
precondition for practical application of molecular graph[78,80]. 

For representing reaction graphs, extracting reactions from pre-trained models stands as 
a promising approach. Additionally, the use of atom mapping enables a single condensed 
reaction graph (CGR) represent chemical reactions effectively[81], which is a superposition 
of reactant and product graphs. 

5. Retrosynthesis strategy evaluation 

5.1 Candidate reaction evaluation 

In retrosynthesis, “combinatorial explosions” is a sticky problem. Scientists strive to 
limit recursive unfolding to the most promising bond breaks, leading to easily synthesized 
structures. 

Synthesizability of molecular structures is critical in candidate reaction evaluation. The 
Synthesis Accessibility Score (SA Score) leverages the contribution of fragments that scale 
linearly with commonly synthesizable structural features and penalizes the presence of rare 
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and intricate structural features[82,83]. Chematica develops a metric for assessing synthetic 
difficulty, by restricting structural complexity, reaction step length, reaction conflicts and 
protecting groups. The SCScore is founded on the principle that reaction products should 
exhibit higher synthetic complexity than their reactants[84,85]. Other evaluation 
encompasses support vector machine-based DRSVM[86] and current complexity metrics[87]. 
5.2  Model evolution 

In a CASP modeling workflow, model evaluation plays a pivotal role. CASP tasks, 
owing to their specificity, differ significantly from conventional regression and pattern 
recognition tasks. To select models qualified to practical retrosynthesis tasks, different 
evaluation metrics suitable for these tasks should be adopted. Retrosynthesis tasks are 
generally divided into two categories: single-step retrosynthesis and multi-step retrosynthesis 
prediction. 

For single-step retrosynthesis, Top-N accuracy calculation is a commonly used metric 
to evaluate the performance of single-step strategies. It examines whether the entire set of 
ground truth precursors, the actual reactants reported in the template library for the 
corresponding target molecule, are among the first N precursors suggested by the model. This 
metric demands an exact match in molecular structure, which can be measured using a 
molecular similarity. A similarity score of 1 denotes identical structures[88]. Additionally, 
some alternative evaluation metrics for single-step retrosynthesis have been introduced[89]. 
For multi-step retrosynthesis, evaluation can be achieved by using single-step retrosynthesis 
methodology repeatedly. 

6. Template-based models 

Template-based models often involve matching the target molecular with an entire 
template library. Then, the subgraph isomorphism problem is solved to obtain candidate 
reactants. The core of template-based systems lies in the use of retrosynthesis templates. As 
shown in Fig. 8, reaction template is represented by molecular subgraph patterns that encode 
changes in the connectivity of atoms during a reaction. Mathematically, a retrosynthesis 
template 𝑇 is denoted as the following rule: 

 
where is a subgraph of the product 𝑃 and can be regarded as the reaction center, while 
is the subgraph of the 𝑖th reactant. 

Starting from a target molecule, a template is selected following predefined rules and is 
applied to the target molecular to determine the reactants. While template-based methods 
have better interpretability and accuracy than template-free methods, they are 
computationally demanding and have limited generalization outside the template library. The 
mission of modern intelligent algorithms is to lower the computational complexity of this 
process. 
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Fig. 8 Illustration of a chemical reaction and its retrosynthesis template. 
Traditionally, reaction rules have been defined and hand-coded by experts. Szymkuc et 

al. provided a review on using reaction templates coded by human experts for synthetic 
planning[90]. With the reaction space growing exponentially at a rate of 4.4% per year[91], 
manually coding becomes an overwhelming task. An alternative approach to reaction coding 
utilizes algorithms that extract reaction centers via atom-to-atom mapping to identify 
correspondences between reactant and product[92–95]. For a given reaction, one can identify 
the set of atoms that change bond connectivity as reaction centers. Then the reaction centers 
and adjacent atoms are algorithmically extracted and generalized to form the corresponding 
retrosynthesis template. 

With the reaction templates available, Coley et al. proposed a retrosynthesis method 
based on molecular similarity metrics[96], such as Morgan2noFeat, Dice similarity, the 
Tanimoto similarity and the Tversky similarity. This approach decomposes target molecular 
solely according to analogy to known reaction precedents, thus inherently disfavoring 
making creative disconnections. Segler et al. used the extended-connectivity fingerprints 
(ECFP) as input and constructed a deep neural network-based model that can learn to resolve 
reactivity conflicts and prioritize the most appropriate transformation rules, which is one of 
the first ML-based template models[97]. This model solves the multi-class classification 
problem of categorizing similar templates into subgroups. The performance of this model is 
often used as one of the benchmarks in template-based approaches. Watson et al. proposed 
an template-based approach using reverse reaction transforms(RRTs)[98]. RRTs are extracted 
from clusters that contain similar reaction. By searching possible synthesis routes in RRT-
repository, this method decomposes a target molecular into fundamental building blocks. 
Genheden et al. developed the retrosynthesis software, AiZynthFinder[99]. the algorithm is 
based on a Monte Carlo tree search that recursively disconnects molecules into purchasable 
precursors. The tree search is guided by the Artificial Neural Network strategy, which 
suggests possible precursors by utilizing a library of reaction templates. Park et al. proposed 
undersampling based on the similarity (random, dissimilarity) clustering of molecular 
structures of products for the class imbalance problem in chemical reaction datasets[100], 
which significantly improved the prediction accuracy. Chen et al. proposed a local 
retrosynthesis framework, LocalRetro[101], which assumed that the molecular changes occur 
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mostly locally in the process of reaction. As a complement, a global attention mechanism is 
introduced to account for the nonlocal effects. Seidl et al. Proposes a template-based single-
step retrosynthesis model based on modern Hopfield networks[102], which learns the 
encoding of molecules and reaction templates to predict the correlation of the template with 
a given molecule. The template representation allows generalization across different 
reactions. AiZynthTrain developed by Genheden et al[103], which is a robust, reproducible, 
and extensible end-to-end retrosynthesis model. Its process includes two pipelines that build 
a template-based one-step retrosynthesis model and a ringbreaker model. Additionally, they 
highlight the important role of heuristics. Dai et al. proposed a conditional graph logic 
network model based on a hierarchical sampling approach[104]. A conditional graph logic 
network is a conditional graph model built on graph neural networks that learns when the 
rules in a reaction template should be applied, implicitly considering whether the final 
reaction is chemically feasible and strategic. RetroComposer[105], proposed by Yan et al, 
which can synthesize new templates in addition to the training templates. Furthermore, they 
developed an effective candidate scoring model that can capture atomic level transformation. 

In a broad sense, template-based models can include quantum-computation-based 
retrosynthesis models, as quantum computation can generate new reaction templates. Liu et 
al established a reaction kinetics-based retrosynthesis planning framework to design 
synthetic pathways73. The part of forward analysis consists of TST-based reaction kinetic 
model and DFT. The part of retrosynthesis planning includes Decision tree model and 
breadth-first search algorithm. To solve the problem of poor sample quality in datasets, 
Toniato et al. proposed to provide missing data for model retraining via first-principal 
computation[106]. 
Table 2 
Overview of retrosynthesis prediction performance for template-based methods. 
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7. Template-free models 

Recently, template-free methods have attracted increasing attention because they avoid 
the computationally intensive problem of subgraph matching. These methods utilize textual 
representations of molecules (SMILES or InChI) to transform the retrosynthesis task into a 
translation task that can be solved by using powerful methods in Deep Learning. The process 
no longer involves atom-to-atom mapping to identify reaction centers. These kinds of Purely 
data-driven approaches usually do not need to incorporate explicit chemical knowledge. 
When relevant data are abundantly available, these methods can achieve satisfactory 
performance. The following provides an overview of these approaches, which are categorized 
into deep neural networks, sequence-to-sequence models, graphical neural networks, and 
small sample techniques. 
7.1 Deep neural networks 

Baylonet al. present a multiscale retrosynthesis prediction framework based on Deep 
Highway Network (DHN)[107]. The process consists of two parts: a DHN model is built to 
predict the group of reaction, and the transformation rules to generate the molecular are 
predicted using DHNs trained on a subset of reactions within the identified reaction group. 
Hasic et al. train retrosynthetic models for identifying potential breakpoints on molecular 
substructure fingerprint representations[108]. The model uses only the individual molecular 
substructures of the target to identify potential disconnection sites and does not rely on 
additional information such as chemical reaction class. A holistic pathway evaluation 
mechanism is an indispensable part of retrosynthetic model. Mo et al. introduced a dynamic 
tree-structured long short-term memory(tree-LSTM) model[109]. 
7.2 Sequence-to-sequence 

The main idea of seq2seq is to model retrosynthesis prediction as a sequence modeling 
problem with target molecular as the input sequence and reactants, reagents, and catalysts as 
the output sequence. Transformer is the most popular seq2seq model in this century, which 
is purely based on multi-head attention mechanism. The introduction of Bidirectional 
Encoder Representations from Transformers (BERT)[110] also improved the performance of 
template-free strategies. Sequence-modeling-based retrosynthesis models have emerged as 
the most widely used AI models for retrosynthesis, with nearly all of them relying on attention 
mechanisms. 

The idea of combining chemistry with natural language processing was first proposed 
by Cadeddu et al[111]. Liu et al. proposed an encoder-decoder framework consisting of two 
recurrent neural networks, which treats the task of retrosynthesis prediction as a sequence-
to-sequence mapping problem[112]. Seq2seq model has several advantages over template-
based baseline models. First, the seq-2-seq model can implicitly learn reaction rules and 
candidate ranking metrics, which avoids the use of independent reaction complexity ranking 
metrics as in the template-based approach. Second, the seq-2-seq model is easier to expand 
than the rule-based approach. Tetko et al. proposed a Transformer model for a retrosynthetic 
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reaction prediction task[113].  
In recent years, Guo et al. developed a framework of Bayesian inference[114], which 

includes a pretrained Molecular Transformer used to forwardly predict and a model based on 
Bayes' law of conditional probability used to inverse the forward model into the backward 
one. Subsequently, a diverse set of highly probable reaction sequences are achieved via 
conjoint utilization of Monte Carlo search algorithm and backward model. Zheng et al. 
developed a template-free self-correcting retrosynthesis predictor (SCROP) to perform the 
retrosynthesis prediction task trained by using the Transformer model neural network 
framework[115]. For compounds out of training set, this method showed higher accuracy 
than other state-of-the-art methods. Duan et al. proposed an attention-based NMT model[116], 
the Tensor2Tensor (T2T) model, which has a great advantage over the machine translation 
task. It is more parallel and requires significantly less training time. Tetko et al. proposed the 
Transformer model framework based on data augmentation of input and target data[117], 
which removes the effect of the neural network's memorized data and improves the 
performance of the neural network in predicting new sequences. Seo et al. propose a new 
template-free model, graph truncated attention (GTA)[118], which utilizes sequence and 
graph representations by inserting graph information into a seq2seq model. It masks the self-
attention layer using the adjacency matrix of the product numerator in the encoder and applies 
the new loss to the cross-attention layer in the decoder using atomic mappings obtained from 
an automated algorithm. Mann et al. proposed a single-step retrosynthetic prediction method 
using representations based on SMILES grammars[119]. An information-theoretic analysis 
of such grammar representations proves that they outperform SMILES and are better suited 
for machine learning tasks. Ucak et al. proposed a single-step retrosynthetic prediction 
method[120], RetroTRAE, without any SMILES-based translation problem, which also 
introduces a new scheme to use fragment and topological descriptors as natural inputs to the 
retrosynthetic prediction task. Wan et al. presents Retroformer[121], a novel structure based 
on Transformer. It does not rely on any chemoinformatics tools for molecular editing and 
jointly encodes molecular sequences and maps through localized attention. Fang et al. 
developed a substructure-level decoding model in which normally conserved portions of 
product molecules are automatically extracted using a fully data-driven approach[122]. 
Schwaller et al. combined molecular Transformer modeling and hyper-graph exploration 
strategies for predicting reactants as well as reagents[88], solvents, and catalysts for each 
retrosynthesis step. Schwaller et al. use an unsupervised, attention-based network of 
Transformer models to learn atom mappings[123]. This approach provides a link between 
rule-based and data-driven approaches and demonstrates enhanced chemical interpretability 
in the prediction results. 

There are several limitations that lie in the string representation of molecular, which 
includes generating invalid SMILES strings and ignoring the characterization of chemical 
reactions. Ucak et al. introduced a new way to represent chemical reactions based on 
molecular fragments combining with template-free sequence-to-sequence models[124]. 
Zhang et al. combined molecular transformer models with data expansion and normalized 
preprocessing strategies[125], which improves the accuracy of forward prediction of 
chemical reactions, as well as single-step retrosynthesis prediction with and without reaction 
categories. Zhong et al. proposed Root-Aligned SMILES (R-SMILES)[126], which specifies 
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tightly aligned one-to-one mappings between product and reactant SMILES for more 
efficient prediction of synthesis.  

Additionally, to improve the diversity of retrosynthesis prediction, Chen et al. proposed 
a model for making generalizable predictions of diverse retrosynthetic reactions[127]. Two 
novel pre-training methods are introduced to the Transformer framework. Additionally, a 
discrete latent variable model is added to the framework to encourage the model to produce 
diverse predictions. Toniato et al. develop a retrosynthesis model based on Transformer that 
increases the diversity of the predictions by prepending a classification token to the language 
representation of the target molecule[128]. Kim et al. developed connected two-way 
transformers with latent modeling using cycle consistency check[129], parameter sharing, 
and multinomial latent variables. The proposed model improves the accuracy, syntactic errors, 
and diversity of retrosynthesis. Irwin et al. proposed Chemformer[130], a Transformer-based 
model, and showed that self-supervised pre-training improves performance and significantly 
speeds up convergence for downstream tasks. At inference, the use of these prompt tokens 
has contribution to generate various kinds of disconnection strategies. To overcome low 
accuracy of predictions based on small chemical datasets, Bai et al. introduced transfer 
learning into retrosynthesis analysis[131], combining it with seq2seq or Transformer models 
for prediction and validation.  

Recommendation of reaction conditions in retrosynthesis prediction is an important 
aspect. Andronov et al. proposed a molecular Transformer framework to tackle this 
issue[132]. 
7.3 Reinforcement learning 

Schreck et al. applied deep reinforcement learning to reaction path search task that 
identify strategies for making optimal reaction choices at each step of retrosynthesis 
programming based on user-defined cost metrics[133]. A neural network is trained to 
estimate the expected synthetic cost based on simulation experience. Wang et al. introduce a 
new Monte Carlo Tree Search (MCTS) variant that promotes a balance between exploration 
and exploitation across the synthesis space. Combining a value network trained from 
reinforcement learning and a solvent prediction neural network is superior in identifying 
shorter routes with greener solvents under the same search conditions.  
7.4 Graph neural networks 

Graph neural networks (GNNs) are a type of deep learning model that can be used to 
process graph-structured data. Graphs are data structures that represent relationships between 
entities, such as molecules, proteins, or social networks. Undirected graphs, a kind of graph 
representation for molecule, with atoms as nodes and chemical bonds as edges, is inherently 
suitable for capturing chemical molecular structures. 

Graph-enhanced Transformer model (GET), based on molecular sequence and graph 
information, which is significantly superior to the ordinary Transformer model in test 
accuracy, is proposed by Mao et al. In this framework[134], four different GET designs are 
developed that fuse SMILES representations with atomic embeddings learned by improved 
graphical neural networks (GNN). Sun et al. proposed a framework that unifies sequence-
based and graph-based approaches into energy-based models (EBMs) with different energy 
functions[135], which establishes connections between models and reveals differences 
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between them. Furthermore, a new framework within the dual variables was introduced to 
promote consistency between forward and backward predictions. Tu et al. propose a 
Graph2SMILES model that combines the advantage of the Transformer model for text 
generation with the permutation invariance of the molecular map encoder, thereby reducing 
the need for input data augmentation[136]. Liu et al. propose a novel approach, 
RetroGNN[137], to estimate synthesizability. This process includes searching for routes 
using synthesis planning software for many random molecules and training a GNN with this 
information to predict the outcome of the synthesis planner given the target molecule. Sacha 
et al. proposed the Molecular Editing Diagram Attention Network (MEGAN)[138], an end-
to-end encoder-decoder neural model. Representing reactions as a series of edits allows 
MEGAN to effectively explore the space for plausible chemical reactions. Thakkar et al. 
introduced a prompt describing the disconnection of molecular to overcome the training 
database biases in retrosynthesis recommendations[139]. The use of disconnection prompts 
empowers the chemist to have greater control over disconnection predictions, resulting in 
more diverse and creative recommendations. Wang et al. propose RetroExplainer[140], 
which formulates the retrosynthesis task as a molecular assembly process that contains 
several deep learning-guided reverse synthesis actions: multi-meaning and multi-scale graph 
Transformer model, structure-aware contrast learning, and dynamic adaptive multi-task 
learning. It outperforms state-of-the-art single-step inverse synthesis methods and has good 
interpretability. GNN-Retro[141], a method that combines GNN with the latest search 
algorithms, was proposed by Han et al. In this framework, the structure of GNN can 
incorporate the information of neighboring molecules, which will improve the estimation 
accuracy of our framework. Jiang et al. successfully improved the accuracy of the model by 
implementing atomic conservation rules through a molecular reconstruction pretraining task 
and reaction rules specifying reaction centers through a reaction type-guided comparison 
pretraining task[142]. Liu et al. proposed a framework for utilizing contextual information to 
improve retrosynthetic planning[143]. They view synthetic routes as reaction graphs and 
suggest integrating context through three steps: encoding molecules into embeddings, 
aggregating information on routes, and readout to predict reactants. 
7.5 Hybrid AI systems  

Chemistry-informed search methods combine modern search algorithms with symbolic 
AI have been presented. 3N-MCTS was proposed by Segler et al. They combined MCTS 
with an expansion policy network that guides the search[144], and an “in-scope” filter 
network to pre-select the most promising retrosynthetic steps. Compared with traditional 
search methods based on extraction rules and hand-coded heuries, it runs 30 times faster and 
has good accuracy. AutoSynRoute is a template-free retrosynthetic model, proposed by Lin 
et al[145], which includes retrosynthesis prediction using a Transformer model and MCTS 
with heuristic scoring for route planning. Unlike template-based models, it can learn the 
global chemical environments of molecules, but inherits the shortcomings of SMILES-based 
models. Hong et al. proposed an experience-guided Monte Carlo tree search (EG-MCTS), in 
which knowledge is learned from synthesizing experiences instead of rollout[146]. SynRoute, 
proposed by Latendresse et al[147], uses a relatively small number of reaction templates as 
well as a literature-based reaction database to search practical synthetic routes to target 
compounds. For each reaction template, a machine learning classifier is trained to make 
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predictions. Chen et al. proposed an A* search with neural network-based models that 
represented reaction information as AND-OR trees (AND nodes for reactions, OR nodes for 
molecules), and the search was guided by a neural network that learned the synthesis cost of 
molecules from past retrosynthesis planning experiences[148]. Chematica[149,150], based 
on a high-quality chemical database of only 50,000 rules, utilizes penalization of nonselective 
reactions, strained intermediates, and unlikely structural motifs, as well as heuristic searches 
to guide navigation through the reaction network. Routines terminate upon identification of 
commercially available building blocks, saving time and cost by requiring fewer purification 
steps than reported methods. Introducing a bond preservation rule to circumvent reported 
methods enables the development of routines significantly different from patented 
alternatives. Additionally, Chematica has passed the Turing test.  

Additionally, combining suitable ranking systems with AI methods can further improve 
the performance of retrosynthesis models. Lin et al. designed and trained an energy-based 
model to reorder product recommended[151], which can significantly improve the 
performance of models, such as RetroSim, a similarity-based approach, and NeuralSym, a 
deep learning approach. Li et al. proposed RetroRanker[152], a graphical neural network-
based ranking model designed to mitigate frequency bias in the predictions of existing 
retrosynthesis models through reordering. RetroRanker incorporates the potential reaction 
changes of each set of predicted reactants when given products are obtained to reduce the 
rank of chemically implausible predictions. ASICS (Advanced System for Intelligent 
Chemical Synthesis)[153], proposed by Jeong et al. Based on pseudo-A* searches, ASICS 
generates optimal synthetic paths that minimize score of synthetic reaction value function, 
composed of the synthetic accessibility score, likelihood score, and similarity score. 
Additionally, it weighs the search in confirmed reaction spaces and unexplored reaction 
spaces. 
Table 3 
Overview of retrosynthesis prediction performance for template-free methods. 

Methods Algorith
m Dataset Featur

es 
TO
P-1 

TOP
-5 

TO
P-1 

TOP
-5 

source 
code 

availabili
ty 

    
with 

reaction 
class 

without 
reaction 

class 
 

Karpov 
Transformer 

transform
er 

USPTO-
50k 

SMILE
S - - 42.7 69.8 Y 

AutoSynRou
te 

transform
er+MCT

S 

USPTO-
50k 

SMILE
S 54.6 80.2 43.1 71.8 Y 

Bayesian-
Retro(MT-
predictable) 

transform
er+SMC 

USPTO-
50k 

SMILE
S 62.1 88.8 53.8 84.1 N 

Chemformer transform
er 

USPTO-
50k 

SMILE
S - - 54.3 62.3 Y 

tree-LSTM LSTM Pistachio
+ASKC

fingerp
rint - - 79.1 88.6 N 
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OS 

G2Retro MPN USPTO-
50k graph 63.6 88.4 54.1 81.2 Y 

GTA 
attention 
mechanis

m 

USPTO-
50k 

SMILE
S - - 51.1 74.8 N 

LV-
transformer 

transform
er 

USPTO-
50k 

SMILE
S - - 40.5 72.8 N 

GTE GNN+tra
nsformer 

USPTO-
full graph 76.6 89.6 44.9 62.4 Y 

MEGAN GAN USPTO-
50k graph 60.7 87.5 48.1 78.4 Y 

Graph2SMI
LES GNN USPTO-

full graph - - 52.9 70 Y 

SCROP transform
er 

USPTO-
50k 

SIMLE
S 59 78.1 43.7 65.2 N 

Retroformer transform
er 

USPTO-
50k 

SMILE
S 64 86.7 53.2 76.6 Y 

SMILES-
grammar-

based 

transform
er 

USPTO-
50k 

SIMLE
S-like 43.8 61.4 32.1 48.9 N 

T2T 
attention 
mechanis

m 

USPTO-
50k 

SMILE
S - - 51 69 Y 

RetroTRAE transform
er 

USPTO-
full ECFP - - 58.3 - Y 

Liu seq2seq USPTO-
50k 

SMILE
S - - 37.4 57 Y 

Molecular 
Substructure - USPTO-

50k HSFP 61.4 70.4 61.4 70.4 Y 

Fang transform
er 

USPTO-
full 

SMILE
S - - 50.4 - Y 

AT transform
er 

USPTO-
50k 

SMILE
S - - 53.5 81 Y 

Substructure
-based seq2seq USPTO-

full 
MACC
S - - 29 - Y 

Dual-TF GNN+se
q2seq 

USPTO-
50k 

graph+
SMILE
S 

65.7 84.7 53.6 74.6 N 

seq2seq-
transfer 
learning 

transfer 
learning 

USPTO-
50k 

SMILE
S - - 60.7 83.5 N 

Two-way 
transformers 

transform
er 

USPTO-
50k 

SMILE
S - - 47.1 73.1 Y 

RetroExplai
ner 

Graph 
Transfor
mer 

USPTO-
50k graph 66.8 92.5 57.7 84.8 Y 

R-SMILES transform
er 

USPTO-
50k 

SMILE
S - - 56.3 86.2 Y 
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Zhang et al. transform
er 

USPTO-
50k 

SMILE
S 55 79 43 73 N 

Pre-training 
transformer 

transform
er 

USPTO-
50k 

SMILE
S 67.1 85.2 62 78.4 N 

 

8. Semi-template-based models 

Semi-template-based methods do not use reaction templates, or they do not directly 
transform a product into its reactants. Instead, semi-template-based methods follow a two-
step workflow utilizing atom-mappings: (1) they first identify the reaction centers and 
transform the product into synthons (intermediate molecules) using the reaction centers; and 
then (2) they complete the synthons into the reactants.  

G2Gs, was proposed by Shi et al[79], which first segment the target molecular map into 
a set of synthons by identifying reaction centers, and then translate the synthons into the final 
reactant maps through a variogram translation framework. The performance of G2Gs is better 
than two template-based methods, RetroSim[96] and Neuralsym[97]. Chen et al. developed 
a one-step retrosynthesis prediction framework, G2Retro.Its process consists of predicting 
the reactive centers in a target molecule, identifying the synthons to assemble the target, and 
then converting these synthons into reactants. G2Retro defines a comprehensive set of 
reactive center types and learns from the molecular maps of the products to predict potential 
reactive centers. Nicolaou et al. introduce a chemical context aware data-driven method based 
on DDRAM algorithm, to recommend synthetic routes matching a precedent-derived 
template[154]. Yan et al. proposed RetroXpert[155], which decomposes retrosynthesis into 
two steps: identification of potential reaction centers in the target molecular by graph neural 
networks and generation of intermediate synthetics; prediction of relevant reactants based on 
the obtained synthetics by a reactant generation model. Wang et al. proposed a single-step 
template-free and Transformer model-based approach called RetroPrime[156]. Its framework 
consists of decomposing a molecular into a synthon and then generating a reactant by 
attaching leaving groups, which was accomplished by a generalized Transformer model. 
Somnath et al. propose a graph-based approach that utilizes the idea that the graph topology 
of precursor molecules is essentially invariant during chemical reactions[157]. In the first 
step, the model predicts a set of graph edits that transform the target into a synthon. Then 
they are expanded into molecules. ReTReK, a data-driven and rule-based retrosynthesis 
model, is proposed by Ishida et al. They formlate four scores for synthesis route evalution. 
Additionally, Graph convolutional network (GCN) and MCTS are respectively used in data-
driven framework of retrosynthesis prediction and path search[158]. Zhang et al. employ a 
chemistry-informed molecular graph (CIMG) as molecular representation[159], which 
defines NMR chemical shifts as vertex features, bond dissociation energies as edge features, 
and solvent/catalyst information as global features. For a given target, five graph neural 
network (GNN) models with MPNN layers are employed to choose reaction template leading 
to this product, infer reactant CIMG, select appropriate catalyst/solvent, and check the 
plausibility of the proposed reaction. Finally, MCTS is adopted to generate synthesis route 
pathway. Lin et al. proposed a graph-to-graph transformation model, G2GT[160], in which 
the graph encoder and graph decoder are built on the standard Transformer model structure 

https://doi.org/10.26434/chemrxiv-2024-jk7db ORCID: https://orcid.org/0000-0001-7472-3736 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-jk7db
https://orcid.org/0000-0001-7472-3736
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

25 
 

with data augmentation. Additionally, a weak ensemble approach that combine beam search, 
kernel, and top-k sampling methods was developed to enhance diversity. Zhong et al. propose 
the end-to-end framework, Graph2Edits[161], based on a graphical neural network to predict 
the edits of a product graph in an auto-regressive manner and generate the transformation 
intermediates and final reactants sequentially, which combines the two-stage process of the 
semi-template-based approach into one-pot learning.  
Table 4 
Overview of retrosynthesis prediction performance for semi-template-based methods. 
Metho

ds Algorithm datase
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feat
ures 

TOP-
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-1 

TOP
-5 

source code 
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G2Gs GCN USPT
O-50k 

grap
h 61 86 48.9 72.5 N 

ReTRe
K 

GCN+MC
TS 

Reaxy
s 

SMI
LES - - 36.1 - Y 

G2GT GNN+trans
former 

USPT
O-50k 

grap
h - - 54.1 74.5 N 

Graph
Retro MPN USPT

O-50k 
grap

h 63.9 85.2 53.7 72.2 Y 

RetroP
rime transformer USPT

O-50k 
SMI
LES 64.8 81.6 51.4 74 Y 

Graph
2Edits GNN USPT

O-50k 
grap

h 67.1 91.5 55.1 83.4 Y 

Retro
Xpert GNN USPT

O-50k 
grap

h 62.1 75.8 50.4 62.3 N 

 

9. Comparison of three categorizations 

Top-k accuracy is a commonly used metric for evaluating single-step retrosynthesis 
models. However, drawing conclusions about the performance of models based solely on 
top-1 accuracy can be misleading because there can be multiple viable pathways in organic 
synthesis. Therefore, this paper jointly evaluates three different types of models using both 
top-1 and top-5 accuracy. 

As depicted in Fig. 9, for cases involving reaction class, template-based models and 
semi-template-based models exhibit higher average accuracy. For cases where the reaction 
class is unknown, template-based models and semi-template-based models maintain 
relatively high average accuracy. Additionally, examining the data distribution reveals that 
template-based models and semi-template-based models have more tightly clustered 
distributions, indicating greater stability in these approaches. In contrast, template-free 
models consistently maintain high dispersion and lower stability. 

In summary, template-based models consistently demonstrate high accuracy and 
stability. Semi-template-based models, as a relatively recent approach, also perform well 
and show potential to become the top-performing method. However, template-free methods 
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exhibit significant polarization, which highlights the critical importance of selecting 
appropriate AI models and optimal hyperparameters to address retrosynthesis tasks. Despite 
the substantial progress made in recent years, AI-assisted retrosynthesis methods still face 
some unresolved challenges. 

 
Fig. 9 TOP-k accuracy for template-based, template-free, and semi-template-based methods. 

10. Challenges and future directions for retrosynthesis prediction 

researchers 

The past several years has witnessed the rapid development of retrosynthesis models 
with modern intelligent algorithms However, certain challenges and limitations should be 
overcome. 

First, insufficient high-quality data is one of the greatest challenges in utilizing AI-based 
methods to predict reaction route. Developing a high-performance AI model requires both 
quantity and quality of training data. Nevertheless, the available options for public datasets 
are quite limited, and their quality is inferior compared to commercial databases. 
Collaboration for preparing big data presents many opportunities and challenges for 
computational chemists. Moreover, diversity and variability of dataset can promote 
prediction performance. Researchers should make efforts to construct diverse dataset that 
covers a wide variety of data, such as stereochemistry information, solvents, and catalysts. 
The creation of a big and diverse chemical reaction database encompassing a wide range of 
data resources necessitates the development of methods to standardize, manage, and integrate 
various sources of reaction data.  

Second, purely data-driven models often lack interpretability, posing difficulties for 
researchers in understanding the rationale behind predictions made by models, which is 
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another challenging problem. Striking a balance between mechanistic interpretability and 
predictivity is essential. The incorporation of model-agnostic techniques for interpretability, 
such as LIME[162–164], SHAP[162], and Anchors[165], can significantly contribute to the 
analysis of model interpretability. These methods enable both global and local explanations 
while pinpointing crucial features that the model relies on for predictions. Additionally, the 
use of explainable neural networks[166,167] should be encouraged, as they integrate 
interpretable layers that emphasize significant features through attention and gating 
mechanisms.  

Third, template-free models trained on text sequences can neglect important chemical 
meaning behind bond disconnection, which sometimes leads to infeasible suggestions. 
Method to improve interpretability can be a potential solution to this challenge. Meanwhile, 
template-free retrosynthetic methods might be biased because rare reactions are 
underrepresented in dataset. In general, AI-assisted models are more likely to learn from the 
more frequently occurring bond disconnection rules in the dataset and neglect other bond 
disconnection possibilities that are rare but may lead to simpler reaction pathways. To reduce 
model construction bias, a potential future direction is to combine a data-driven approach 
with fundamental principles. 

Finally, for any in silico design process, suggested synthesis routes should be validated 
experimentally. High-throughput and parallelized experimentation are commonly used for 
rapid data generation and experimental validation. However, the absence of experimental 
conditions in most retrosynthesis prediction models imposes further constraints on 
experimental planning. Latest advance in automated design of experiments (DoE) includes 
utilization of AI algorithms to optimize and identify feasible reaction conditions[168,169]. 

Based on the analysis above, there are some promising future directions for 
retrosynthesis prediction researchers: 

1. The construction of high-quality chemical reaction datasets and developing 
intelligent and adaptive algorithms to deal with incomplete and inaccurate data are 
cornerstone of all AI-based models.  

2. The analysis of model interpretability and visualization might be a hot research 
direction. Combining DoE with robotic experimental instruments is also an 
irreplaceable step.  

3. It is recommended to develop more complex and comprehensive reaction rules and 
models to cover a wider range of chemical reaction types and conditions. 

4. The combination of artificial intelligence algorithms and traditional rules should be 
explored. 

5. More attention should be paid to acquire more efficient and environmentally 
friendly chemical synthesis condition in retrosynthesis prediction. 

11. Conclusion 

CASP studies have a significant impact on drug design, which can increase the speed 
and decrease the cost of drug synthesis. Modern intelligent algorithms have the potential to 
improve the efficiency and accuracy of CASP. Future research should focus on developing 
more robust and interpretable retrosynthesis models and extracting higher quality chemical 
reaction datasets from patents and literature. Interpretable analysis of AI can improve the 
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transparency and reliability of predictions based on AI models. The performance of data-
oriented methods largely depends on the quality of reaction databases. Therefore, a high 
quality of dataset is indispensable. In the future, interdisciplinary collaborations between 
computer scientists, statisticians, organic chemists, and computational chemists will become 
increasingly important as they bring together different perspectives and expertise to solve 
organic retrosynthesis tasks. AI-assisted synthetic planning research is currently immature 
and further research is needed to assess its potential significance. Due to the discrepancy in 
training datasets, even when using identical evaluation metrics, direct comparisons of 
artificial intelligence model performances may not be feasible. In most cases, no model 
emerges as the optimal performer across all tasks. 

In this review, we provide a thorough overview of the latest advancements in Computer-
Assisted Structure Planning (CASP) research driven by modern intelligent algorithms. These 
models can be broadly categorized into three groups: template-based models, template-free 
models, and semi-template-based models. We present a comparative analysis of these three 
classes of models and concluded that semi-template-based models generally have better 
performances. Furthermore, we delineate the critical challenges faced in the current 
landscape and highlight the future direction of CASP. The recent studies in these 
investigations demonstrate the significant potential of artificial intelligence algorithms in 
retrosynthetic prediction, which can mitigate the time and cost burdens on organic chemists 
in synthesis planning. Finally, after reading this review, we hope that scientists working in 
the field of AI-assisted retrosynthesis prediction can select appropriate approaches that aligns 
with their research strengths. Based on the preliminary work summarized in these three 
classes, researchers can derive inspiration for future improvements and research directions. 
As retrosynthesis techniques mature, we may witness their integration into automated 
chemical synthesis system[170], which can improve automated chemical compounds 
manufacture and bring tremendous social and technological impact. 
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