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Abstract15

Most literature on the application of Non-Destructive Spectral Sensors (NDSS)
reports proofs of concept limited to model calculation (calibration) and its
application on a so-called independent data set (validation, or test). However,
developing NDSS also requires proving that the performance obtained dur-
ing this first validation remains valid when conditions change. This generic
problem is referred to as robustness in chemometrics. When the measure-
ment conditions change, the measured spectrum is subject to a deviation.
The reproducibility of the model, and thus of the sensor, with respect to
this deviation, defines its robustness. The application of NDSS involves a
large number of processes, and thus deviation sources. Instrument cloning,
between laboratory instruments or from a benchtop to an online device, is
certainly the most concerning issue for deploying NDSS-based applications.
This problem has been studied for many years in chemometrics, under the
paradigm of calibration transfer, through geometric corrections of spectra,
spectral spaces, or calibration model corrections. The same problem has been
addressed in the machine learning community under the domain adaptation
paradigm. Although all these issues have been addressed separately over the
last twenty years, they all fall under the same topic, i.e., model maintenance
under dataset shift. This paper aims to provide a vocabulary of concepts
for formalizing the calibration model maintenance problem, reviewing recent
developments on the subject, and categorizing prior work according to the
proposed concepts.
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1. Introduction18

Public policies on food safety, quality, and traceability rely on a global,19

unified characterization of the entire food supply chain. Moreover, the food20

industry’s analytical needs go beyond simply complying with current regu-21

lations; they also encompass the imperative of controlling processes, under-22

standing the variability of raw materials and final products, and how one23

influences the other. All this has necessitated the adoption of new analyti-24

cal technologies to meet the demands of industry, consumers, and regulators25

alike. Non-destructive spectral sensors (NDSS) - such as near-infrared spec-26

troscopy, hyperspectral imaging, fluorescence, and Raman spectroscopy - are27

particularly well suited to answering these questions [1], [2], [3]. NDSS offers28

a fast, non-destructive, and environmentally friendly method for assessing29

numerous parameters in a wide range of products and processes. They have30

proved their worth outdoors, indoors, and online, from farm to supermarket,31

for a wide range of products [4]. However, NDSS operation relies on cali-32

bration, which relates the measured signals (a.k.a. spectra) to the desired33

response, such as analyte concentration or the product class (e.g. fruit vari-34

ety). Maintaining the predictive accuracy of multivariate calibration models35

upon matrix, instrumental, or environmental (i.e., measurement condition)36

changes is one of the key challenges for the practical success of NDSS-based37

systems. Despite the large number of studies on the subject and the avail-38

ability of a vast number of algorithms, approaches, and/or workflows for cali-39

bration model maintenance (CMM), the problem seems to be far from solved40

as of now. The lack of a theoretical framework formalizing the CMM prob-41

lem that would allow the categorization of current methodologies and predict42

under which conditions they are suited for CMM, as well as the spillover of43

ideas from the machine learning community (coupled with the terminology44

gap with chemometrics) complicates the alignment of research activities and45

the efficient application of existing approaches to address CMM in practice.46

Thus, this review aims at:47

i) Providing a vocabulary of concepts towards formalizing the CMM prob-48

lem49

ii) Reviewing recent developments on the subject50

iii) Categorizing prior work according to the concepts proposed in i)51
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The rest of this review is organized as follows: Section 2 introduces com-52

mon terminology related to calibration model maintenance, provides a for-53

mal problem statement, and reviews some historical background on how the54

problem has been addressed since the 1980s, highlighting some more recent55

developments rooted in machine learning research. Section 3 reviews rele-56

vant literature related to the subject, and section 4 concludes the paper and57

outlines open problems.58

2. Problem Statement59

Statistical learning theory posits that a model learned from some train-60

ing data - in this case spectra and corresponding quality attributes - will61

produce accurate predictions on new, test data as long as the underlying62

distributions of training and test data are equivalent [5]. However, in most63

real-world applications pertaining to NDSS, the data generating process, and64

thus the data distribution, tends to change upon internal or external influ-65

ences that might deteriorate the predictive capability of the corresponding66

calibration model [6]. Thereby a change in the joint distribution over spectra67

X and corresponding quality attribute Y (e.g., analyte concentration), i.e.,68

P (X, Y ), can occur due to changes in the so-called marginal distribution69

over the spectra, i.e., P (X), the quality attribute, i.e., P (Y ), and/or the70

conditional distribution P (Y |X). The corresponding changes are referred71

to as covariate, prior and conditional shift, respectively. The dataset shift72

concept is often associated with the notion of a domain, i.e., the entity where73

the joint distribution is stationary. Formally, a domain is composed of a pair74

⟨P (X), P (Y |X)⟩. The domains in which a model is trained and deployed75

are often referred to as source domain (DS := ⟨PS(X), PS(Y |X)⟩) and target76

domain (DT := ⟨PT (X), PT (Y |X)⟩), respectively.77

The implications of dataset shift on model performance are diverse and78

depend upon which distributions are affected by the changes in the spec-79

tra and/or quality attributes, and the particular nature of the change (e.g.,80

whether it is a constant offset affecting the spectra or a more complicated81

change in the covariance structure of the marginal distribution). Figure 182

illustrates the (base) types of prediction drift that must be expected under83

dataset shift. Often a combination of the prediction drift types is encoun-84

tered, such as a drift in slope and bias.85

As illustrated in Figure 2a, a calibration model is robust against prior86

shift only if the conditional distribution does not change between the source87
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Figure 1: Prediction drift types.

Figure 2: Dataset shifts. a) Prior shift with (blue area) and without (red area) conditional
shift. The dashed lines indicate (optimal) source and target domain models, and the green
data points indicate predictions of the source model on the target domain patterns X. b)
Covariate shifts given some source (XS) and target (XT ) domain data. The function
g(·) re-scales XT to match the distribution of XS leading to an alignment of the joint
distribution P (X,Y ).

and target domain, i.e., if PS(Y |X) = PT (Y |X). Under conditional shift,88

however, there is a risk that the source domain model predictions on the89

target domain spectra (green points) systematically deviate from the true90

values of Y (blue points). In contrast to prior shift, which is always associ-91

ated either with a covariate (as in Figure 2a) or conditional shift1, covariate92

shift exclusively affects the marginal distribution over the spectra (P (X)).93

Thus, it can be corrected by proper alignment of the corresponding marginal94

distributions (Figure 2b).95

The goal of instrument cloning and model maintenance in NDSS is to use96

data sampled from either DS and/or DT to obtain a model that performs97

well in the latter – usually in terms of the mean squared error (MSE) of98

prediction. On the other hand, the goal of robust calibration is to derive a99

1Note that if PS(X) would be equivalent to PT (X) in Figure 2A, while PS(Y ) ̸= PT (Y ),
implies conditional shift.
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Figure 3: Illustration of the effect of a spectral perturbation on the model output. x is
the measured spectrum, δx is the spectral perturbation, ŷ is the predicted response and
δŷ is the resulting error. Inspired from [13]

model that is invariant with respect to the domain in which it is deployed,100

such that on average it has the same performance in every (possible) domain.101

2.1. How the robustness problem has been handled in chemometrics102

Any quality control regulatory body has not officially defined the concept103

of robustness. However, it is acknowledged as a critical quality of the NDSS104

calibration models. The robustness has been extensively discussed in the105

literature, with various definitions tailored to each specific field of application106

[7, 8, 9]. In chemometrics applied to NDSS, robustness can be defined as the107

reproducibility of the calibration model in the face of spectral perturbations108

[10].109

When the measurement conditions of the spectrum change, a spectral110

disturbance δx is added to the spectrum x which should have been measured111

in calibration conditions [11]. As illustrated in Figure 3, the addition of δx112

provokes an error δŷ in the y estimation [12, 13]. In Figure 3-a, the mea-113

sured spectrum is projected onto the model direction, yielding an estimated114

response ŷ. In Figure 3-b, it can be noticed that following the same mech-115

anism, the spectral perturbation provokes an error δŷ. Thus, improving the116

robustness of a calibration relies on managing δx and its influence on ŷ.117

Changes in measurement conditions, which cause spectral disturbances,118

may correspond to changes in a continuous variable, such as product tem-119

perature, particle size, or spectrometer temperature. Likewise, they may be120

linked to changes in a discrete variable, such as the instrument, the season,121

or the product origin. Each specific value of this variable that influences122

the measurements establishes a measurement condition. Thus, maintaining123
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the calibration’s robustness relies on keeping the model running under differ-124

ent measurement conditions. In the chemometrics community, consideration125

of this problem dates back to the era of personal computers, i.e., to the126

1980s. The concept of measurement condition initially concerned the change127

of spectrometer, to develop calibrations that are robust across instruments128

of laboratory networks. In 1985, Shenk discussed the possibility of not re-129

calibrating a model when changing spectrometers. He suggested performing130

a calibration transfer instead, following his patented method [14, 15]. The131

change of spectrometer then became an emblematic cause of the robustness132

problem, and the vocabulary master and slave became established to des-133

ignate two measurement conditions between which the calibration transfer134

takes place [14].135

Shenk’s method acts by geometrically correcting slave spectra to resemble136

master spectra (or vice versa). Other geometric methods have been proposed,137

introducing the term optical standardization [16, 17, 18, 19, 20, 21]. All these138

methods try to suppress the source of disturbances, i.e., to lower δx in Figure139

3.140

Unlike previous methods, which treat spectra as signals, methods for141

correcting the measurement vector space emerged in the 2000s. In 2001,142

Wise et al. proposed to correct the differences between master and slave143

covariance structures using a General Least Squares (GLS) [22]. Next came144

orthogonal projection-based methods, which remove from the spectral vector145

space the subspace generated by variations in measurement conditions [23,146

24, 25, 26]. All these methods try to make the model space independent from147

the disturbances, i.e. to lower the projection of δx on b in Figure 3, and thus148

making the model as close as possible to the Net Analyte Signal (NAS) [27].149

2.2. How machine learning concepts can help to improve the robustness150

From a statistical point of view, the ”lack of robustness under data set151

shift” problem is a so-called sample selection bias problem. It arises due to152

the fact that, in practice, it is usually impossible to calibrate using a com-153

prehensive sample covering all possible sources of variability (either mea-154

surement and sample related) affecting the spectral signals. Inferring the155

parameters of a statistical model under a biased sample is a long-standing156

problem in statistics and related disciplines. In the 1970s Heckmann, in his157

seminal work on estimating statistical models under sample selection bias,158

proposed to estimate the selection probability for each (calibration) sample159

and use this probability to derive an unbiased estimate under the ordinary160
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least squares (OLS) model [28]. However, the Heckmann correction requires161

the observation of some (instrument) variable that constitutes the sample162

selection mechanism (e.g., when it is known that only samples with some163

interferent concentration above a certain threshold are included in the cali-164

bration set). In the mid-2000s, with the advent of (open-source) deep learning165

models, the sample selection bias problem was re-discovered by the machine166

learning community. The importance weighting approach by Zadrozny rep-167

resents an important development from this period that has constituted the168

fields of domain adaptation (DA) and transfer learning (TL) [29]. Impor-169

tance weighting assigns a weight to each source domain sample (x, y) that is170

proportional to PT (X=x)
PS(X=x)

, i.e., assigning a high weight to those samples that171

have a high probability under the target domain (marginal) distribution.172

Transfer learning and domain adaptation are machine learning problems173

where a model developed respectively for one task, or domain, should be174

reused to improve learning on a related task, or in a related domain [30].175

For example, TL is used to fine-tune a model, initially developed to dis-176

criminate between images of cats and dogs, to enable discrimination between177

images of cars and boats. DA is a special case of TL, where the task does178

not change across domains [31]. The first generally accepted formalization179

of TL/DA was proposed in 2006 by Ben-David et al., which provided impor-180

tant insights into the necessary conditions for generalization under data set181

shift [32, 33] prompting a research boom on the subject in machine learning182

[34] and later also in chemometrics community [6]. By applying the domain183

adaptation paradigm to analytical chemistry, we can notice that the concepts184

of initial and secondary conditions, or master and slave instruments, com-185

monly used in chemometrics correspond to the ones of source domain and186

the target domain used in DA. Furthermore, different problems encountered187

in analytical chemistry can be characterized by a particular type of dataset188

shift. Calibration transfer problems, for instance, often amount to correcting189

for covariate shift while a change in sample matrix often leads to conditional190

shift [6]. Finally, the robustness concept can be defined as the reproducibility191

of a calibration model in the face of domain changes.192

2.3. How to manage the robustness193

Managing the robustness of calibration models benefits from following a194

strategy that depends on the characteristics of the influencing variables, i.e.195

the domains [7, 35, 36, 37]. Figure 4 shows a decision tree that can help select196
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a domain transfer method, depending on the characteristics of the domain197

in which the model is applied.198

• The first step is to decide how damaging the domain change really is.199

Answering this question is not so simple, and has been the subject of200

much discussion in statistical journals, under the heading of sensitivity201

analysis [38], but also in chemometrics [10, 39].202

• If the answer is yes, the second step is to consider the controllability203

of the influencing variables responsible for the domain change. For204

example, if the domain change is due to the spectrometer’s temperature205

variation, placing it in a temperature-controlled environment may solve206

the problem.207

• If this control is impossible or not desired, the third step is to ask208

whether the domain is known when the model is applied. For exam-209

ple, is the spectrometer temperature measured simultaneously with the210

spectrum?211

• If the domain is known while applying the model, three solutions exist:212

– a priori correction: The measured spectrum is modified using the213

information about D. For example, a spectrum measured on a214

slave spectrometer can be geometrically modified to match that215

which should have been measured on the master spectrometer.216

– model correction: The model is modified according to the infor-217

mation about D. For example, the model can be chosen according218

to the variety of the fruit measured.219

– a posteriori correction: The model output is modified according220

to the information about D. For example, the estimated sugar221

content of a fruit is modified using the law relating the estimation222

error to its temperature, which will have been learned experimen-223

tally.224

• If the domain is unknown when the model is applied, a robust calibra-225

tion must be performed, for example by calibrating a model on a data226

set comprising a diversity of fruit origins.227
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Figure 4: A strategy for managing the model robustness. D is the current domain. Cited
methods are described in section 3

3. Review on calibration transfer / domain adaptation methods228

Table 1 summarizes the categories of methods, indicating the types of229

samples required and whether or not they produce a model that works in230

both domains. Categories are based on Figure 4. We will describe here each231

category’s characteristics and generalize the methods’ trends.232

3.1. a priori correction233

Linear standardization methods have been the most classical and predom-234

inant solutions for calibration transfer. In the context of transfer between235

instruments, where they are called optical standardization, the objective is236

to standardize the signal response between source and target instruments.237

These methods can be used in two different ways: forward or backward [71].238

Forward standardization transforms the source spectra so that they resemble239

the target spectra; this transformation must then be applied to all the spectra240

in the calibration database, and a new model recalculated, which can then be241

applied directly to the target spectra. Backward standardization transforms242

target spectra so that they resemble source spectra; this transformation must243

then be applied to each measured spectrum before the model calibrated in244

the source domain is applied to it.245

The two most predominant techniques in this category are called Direct246

Standardization (DS) and Piecewise Direct Standardization (PDS) [40, 41].247
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These two techniques depend on the availability of standard samples which248

are used to fit a linear model to transform the target instrument signal into249

the source instrument signal. The difference between DS and PDS is the cor-250

respondence that is assumed between the wavelengths of each instrument. In251

DS, the transformation to a wavelength of one instrument is considered a lin-252

ear combination of all the wavelengths of the other instrument. In the PDS,253

the transformation to a wavelength of one instrument corresponds to a linear254

combination of wavelengths within a small window around the wavelength of255

the other instrument (i.e. piecewise).256

Another predominant method in this category is Spectral Space Trans-257

formation (SST) [42]. In SST, the same type of standardization as in DS258

and PDS takes place but is fit under a different approach. SST uses the for-259

mulation of Beer Lambert’s law on each instrument and couples it with the260

Singular Value Decomposition (SVD) of a horizontally concatenated matrix261

of standard samples. This allows to standardize the spectra via the loadings262

of each domain [42].263

3.2. a posteriori correction264

The second category of calibration transfer methods involves the transfor-265

mation or adjustment of predictions when using a source calibration model266

directly on target spectra. The most predominant classical technique in this267

category is Slope and Bias Correction (SBC) where, as the name indicates,268

the slope and bias of the predictions are corrected [48]. The slope and bias269

terms are estimated with least squares linear regression using samples mea-270

sured in the target domain whose reference values are available. One of the271

major advantages of SBC is that it can cope with either prior, covariate and272

conditional shifts without the need for transfer standards. However, its main273

drawback is that multivariate outlier statistics like e.g., Hotelling’s T 2, Q-274

Residuals [72], or cumulative sum statistics [73] are not available to assess275

if predictions for new samples (in the target domain) are reliable. Further-276

more, SBC requires spectra and corresponding reference measurements (i.e.,277

labeled samples) from the target domain to learn the correction function.278

Calibration transfer with affine invariance, on the other hand, does not use279

standard samples nor target reference values but obtains scores and predic-280

tions for the source samples and the target samples based on a separate set281

of samples in the target domain. Then, regression coefficients between the282

scores and the predicted values are calculated for each set. To align these283

regression coefficients, angle and bias terms are calculated. These are then284
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used to correct the predictions for the target instrument [49]. On the down-285

side, the method can handle only covariate shift problems and might thus286

have limited applicability in practice.287

3.3. Model correction: Variable selection288

As a step in the pipeline of model building, variable selection started289

being considered to achieve calibration transfer. While variable selection290

has been greatly explored for model building, only three approaches were291

found to tackle the difference between instruments. The first approach cor-292

responds to wavelength selection based on correlation analysis (CAWS). In293

CAWS, standard samples are used to calculate Pearson correlations for each294

wavelength between the two instruments. The wavelengths with the highest295

absolute correlation values are selected for further recalibration, so the re-296

sulting model can be directly applied to spectral measurements in the target297

instrument [61].298

Another solution was recently proposed to relax the requirement for the299

availability of standard samples. In this solution, a screening of wavelengths300

is done by calculating the consistency and stability of the wavelength in each301

instrument (SWCSS2). Such consistency is quantified by the similarity in302

standard deviation and mean between the two sets of samples. As in CAWS,303

the wavelength selection is followed by a recalibration of the model. A major304

drawback of both approaches is that despite their capability to select wave-305

lengths that are consistent across domains with respect to their (marginal)306

distributions, it is not guaranteed that these variables will carry (sufficient)307

Y -predictive information. To address this shortcoming, di-CovSel was re-308

cently proposed as an extension to the original CovSel algorithm by Roger309

et al.. [74] aiming at identifying variables that are both consistent across310

domains and predictive with respect to Y [63] without requiring transfer311

standards nor labeled target domain samples. Conceptually, di-CovSel in-312

volves a DA-inspired domain regularization approach first proposed in [56].313

We note that all variable selection approaches discussed here aim at obtain-314

ing robust models that are domain-independent, whereas they are capable of315

handling covariate shifts only.316

2The abbreviation comes from the title of the original publication [62]
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3.4. Model correction: Domain adaptation methods317

One of the first approaches within the framework of domain adaptation318

was Transfer Component Analysis (TCA) which has recently been tested319

for calibration transfer [51, 13]. In unsupervised TCA, a kernel matrix is320

calculated to be indicative of the discrepancy of the samples within each in-321

strument and between the two instruments. This optimization is a trade-off322

between finding maximum variance and finding common variance between323

the two sample sets [50]. The components can then be used for further cal-324

ibration. A semi-supervised TCA uses the kernel matrix and the available325

reference values to extend the optimization criterion to include the depen-326

dence between the kernel matrix of spectral measurements and the kernel327

matrix of reference values [50].328

The main drawback of TCA is that when used with a linear kernel, which329

for NDSS applications is often the optimal choice due to (approximately) lin-330

ear relationships between the predictors and the response variable, it can only331

account for differences in the means related to PS(X) and PT (X). When the332

shift involves more complicated changes related to higher order distributional333

properties like e.g., variance, a universal kernel (like the Gaussian kernel) is334

required which comes at the risk of over-fitting the corresponding (non-linear)335

calibration model – in particular for small calibration sets. To address this336

problem, Nikzad-Langerodi et al. in [56] proposed a domain-regularization337

approach for partial least squares regression that allows to model the response338

Y using a linear model, while (implicitly) accounting for domain differences339

in terms of mean and variance, i.e. di-PLS regression. Despite the flexibility340

of the corresponding model in the sense that it can accommodate labeled341

and/or unlabeled data from the target domain, and work with calibration342

standards [59] or in standards-free settings, it assumes normal distribution343

of the domains. In domain adaptative PLS (da-PLS), proposed later, a simi-344

lar optimization problem that employs the (non-parametric) Hilbert-Schmidt345

independence criterion (HSIC) between the domains, as a constraint, is for-346

mulated [75], which does not make assumptions about the underlying distri-347

butions. In terms of the classification presented in Table 1, apart from TCA,348

all domain adaptation approaches proposed/employed so far (in the realm349

of analytical chemistry) yield domain-dependent models, i.e., when used to350

make predictions it must be known which domain the data originates from.351

When reviewing existing literature we also noted that some approaches, while352

not explicitly referring to DA, are related to this category of methods, e.g.,353

trimmed scores regression (TSR) and maximum likelihood PCA (MLPCA)354

14

https://doi.org/10.26434/chemrxiv-2024-ghf2g ORCID: https://orcid.org/0000-0003-3495-8949 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-ghf2g
https://orcid.org/0000-0003-3495-8949
https://creativecommons.org/licenses/by-nc-nd/4.0/


proposed in [52, 54, 53]. The basic idea of these approaches is to model a355

common latent structure underlying the source and target domains, and sub-356

sequently use this structure to infer how the source domain spectra would357

look like in the target domain. A similar (multi-block) approach was pro-358

posed by Skotare et al. in [55], where the authors used On-PLS to extract359

common latent variables across transfer standards measured on multiple NIR360

spectrometers to stabilize the transfer between some source and target do-361

main instrument. In a similar line of research, Mikulasek et al. recently362

extended the original di-PLS method to accommodate Mango samples from363

multiple domains and found that the corresponding model not only per-364

formed better in the target domains but was also more robust when applied365

in an out-of-domain context [58].366

3.5. Robust modeling: Concatenation367

Concatenation refers to the methods that merge datasets obtained from368

the source and target domain to achieve an adaptation of the model that369

takes into account the variability of both domains.370

The easiest way to do this is simply to supplement the source calibra-371

tion database with target spectra and corresponding reference values [76].372

Another way consists in augmenting the database with a repeatability file,373

which consists in the collection of differences in measured spectra between374

two instruments or two conditions, i.e. δx from Figure 3, associated with375

null Y values [66]. Two natural questions arise with concatenation-based376

modeling approaches: Are the domains ”compatible” at all and if so, what377

emphasis should be put on the the source and target domain data when fit-378

ting the model? The first question is not easy to answer (theoretically) and379

is an area of active research. However, if the domains are not compatible,380

so-called negative transfer might be the consequence, i.e., including source381

domain data harms learning in, and generalization to, the target domain [77].382

As to the weighting problem, Stork & Kowalski showed that the variance in383

the predicted concentration on a test sample is related to its outlyingness384

(a.k.a. leverage) with respect to the augmented calibration set [64], and that385

the leverage is the only quantity affected by changing the sample weighting.386

This allows us to derive an optimal weighting of (labeled) source and target387

domain data that minimizes the prediction variance for a (unlabeled) test388

set. One decade later Kalivas et al. re-addressed the weighting problem389

and showed that it can be cast as a least-squares regression problem with a390

two-norm penalty [78]. The corresponding regularization parameter controls391
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the weight that is assigned to the target domain samples. Concatenation ap-392

proaches have also been disseminated for calibration transfer. Joint-Y PLS393

is a technique that attempts to unify a calibration model across several in-394

struments by concatenating the scores of two instruments and modifying the395

regression step in PLSR to acquire a unique regression vector [67, 53]. This396

method is suitable when standard samples are available, but also when sep-397

arate sets with reference values are available for the different instruments.398

In terms of dataset shift, concatenation-based techniques that involve la-399

beled data from all domains are, in principle, capable of correcting for all400

three types of shifts while those that only use unlabeled data from the target401

domain(s) account for covariate shift only.402

3.6. Robust modeling: Orthogonalization403

Orthogonalization techniques have been developed to modify the space in404

which the model is constructed, to make b orthogonal to δx (Cf Figure 3). In405

short, these techniques project the vector space spanned by X, Row(X) or-406

thogonally to the vector subspace containing the δx, and as b lies in Row(X),407

it naturally becomes orthogonal to any δx.408

This mechanism was initially developed in External Parameter Orthog-409

onalization (EPO), which has proved effective in making a Brix prediction410

model insensitive to the temperature of the fruit [23]. Then, orthogonal-411

ization started to be used as a solution to make calibration models robust412

against the differences between source and target instruments, with Transfer413

by Orthogonal Projection (TOP) [24].414

With the availability of standard samples, the most direct solution for415

transfer using orthogonalization is to estimate the interference information416

from the difference between the two measurement conditions. A new calibra-417

tion model is fitted with the orthogonalized signals. The resulting calibration418

model is robust against the difference between the measurement conditions.419

Other orthogonalization techniques estimate the interference matrix un-420

der different criteria. One of the first methods that proposed orthogonaliza-421

tion solutions for multiple instruments simultaneously is TOP in which the422

interference matrix is based on the mean spectra for all instruments [24]. In423

this way, orthogonalization allows handling the between-instrument variabil-424

ity among different spectrometers.425

Inspired by TOP, other methods such as Dual-Domain Calibration Trans-426

fer (DDTOP) use orthogonalization by estimating the difference between427
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instruments from wavelet decomposition of the spectral signals in both in-428

struments [69]. Because these methods are based on mean or structural dif-429

ferences between the instruments, they can be performed without standard430

samples.431

Another solution from process control monitoring suitable for calibra-432

tion transfer is Dynamic Orthogonal Projection (DOP), which estimates the433

interference matrix from the spectral differences of samples with similar ref-434

erence values. This method uses reference values in the source and the target435

domain to create a set of virtual standard samples. Such virtual standard436

samples are identified using a nearest neighbors approach which serves to437

calculate the spectral signals of the target samples as if they were measured438

on the source instrument. This allows us to obtain the set of target samples439

and its virtual standards which are used to calculate the interference matrix440

and proceed with orthogonalization [25]. This method has been applied to441

different types of corrections, such as process control conditions, temperature442

drifts, and calibration transfer [25, 51, 79].443

An unsupervised version of DOP has recently been published [70]. It pro-444

poses the creation of virtual standards based solely on two spectra matrices of445

the source and target domains. An SVD provides the scores and loadings of446

these two matrices. A source version of the target spectra is then estimated447

by projecting the target scores onto the source loadings. This method has448

been successfully applied to the transfer of a PLS model predicting the acid449

detergent fiber fraction of sugarcane between two portable spectrometers. It450

was also used to establish a PLS model for predicting the dry matter value451

of mangoes, robust over two varieties and two harvest seasons.452

Orthogonalization approaches may be too aggressive in the sense that453

they can remove domain differences at the expense of the NAS. It’s worth454

noting, however, that this risk can be easily detected since it translates into455

model degradation, visible in calibration and cross-validation performances.456

Some approaches though, such as the Tikhonov regularization approach by457

Kalivas et. al [65], or the GLS approach by Wise et al. [22] relax the orthog-458

onality constraint and try to balance better the trade-off between making b459

orthogonal to δx (Cf Figure 3) and preserving the NAS.460

4. Discussion and open problems461

This review shows that the causes of robustness problems in calibration462

models can be formalized as dataset shifts, whereas covariate shift is the most463
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common one. It corresponds to cases where the measurement condition is464

affected, for example when a spectrometer is changed, leading to a change in465

the marginal distribution over the spectra. This is the easiest case and has466

been addressed by historical correction methods developed by the chemomet-467

rics community. Conditional shifts correspond to a change in the relationship468

between the measured spectrum and the response to be predicted. They can469

occur frequently in NDSS when calibrations are based on secondary cor-470

relations. For example, the estimation of a fruit’s sugar content by NIRS471

spectroscopy is based on the spectral responses of all the compounds in the472

fruit that are correlated with the sugar content. However, this internal fruit473

correlation can change with the variety or the origin of the fruit. Finally,474

prior shits correspond to changes in the distribution of the response to be475

predicted, which can occur when the NDSS needs to extrapolate beyond the476

concentration range of the calibration samples.477

Numerous methods have been developed to improve the robustness of478

calibration models, both in the field of chemometrics and machine learning.479

They differ according to whether or not they need paired samples (i.e., trans-480

fer standards) or reference values from both domains, whether or not they481

require knowledge of the domain when applying the model, and whether or482

not they handle prior, conditional, and/or covariate shifts. A careful analysis483

of the situation is therefore imperative before implementing a CMM.484

As far as covariate shift is concerned, domain adaptation techniques can485

be considered the most promising methodology since they provably minimize486

an upper bound on the generalization error in the target domain, and neither487

require transfer standards nor labeled samples from the target domain [57].488

Methods dedicated to prior and conditional shifts are less numerous and489

require the use of labeled target domain samples. A largely open challenge490

here is the assessment of the ”compatibility” of the domains to avoid negative491

transfer.492

Almost all published methods are aimed at the simple case of a source493

and a target domain. In reality, however, the user is often confronted with494

the case of multiple domain changes. For example, a change of spectrometer495

will often occur simultaneously with a change of harvest year. This raises the496

question of how to combine several transfers. Some methods, such as those497

using data augmentation or orthogonalization, can deal with this problem498

globally, while others, such as those based on model correction, will have to be499

used successively for each domain change. New methodological developments500

are expected in this field.501
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A similar problem arises for instrument networks. What is the best strat-502

egy to employ in this case? Is it possible to have a single model for all503

instruments? This would offer the advantage of not having to manage sev-504

eral models. Should we decide that there is only one master instrument?505

This multi-domain problem, as yet little treated as such in the literature,506

should be the subject of specific research, that will address the problem of507

multiple and combined shifts. With the trend towards the availability of508

larger and open-source data, we also foresee further developments related509

to the application of deep learning to address the robustness problem. The510

first promising results in this direction comprise, e.g., the recently proposed511

Deep Tutti Frutti model by Passos & Mishra capable of fruit-independent,512

NIR-based dry matter prediction [80].513

The methods described in this review show that progress has been made514

in solving the problem of calibration transfer in chemometrics. Nevertheless,515

industrial practitioners are often still unaware of methodological advances516

that offer the efficient solutions required to transfer calibration models. To517

date, most commercial chemometrics software only offers solutions based on518

linear normalization and orthogonalization, with none of the many methods519

identified in this review available. Efforts must therefore be made to develop520

and enrich open software, such as ChemFlow [81], FACT [82] or Saisir [83].521

This study aims to explain the reasons for robustness problems and to list522

the main methods for improving it. In other words, it aims to answer the why523

and the how. However, the question of when to carry out a CMM is also prac-524

tically very relevant. The most reliable solution is still to acquire reference525

measurements periodically and implement a conventional, threshold-based526

process diagnostic tool. Little methodological research has been carried out527

to provide more elaborate tools. When the products being measured are528

stable, such as flour, sealed cups containing a range of samples can be mea-529

sured periodically. The predicted values for these cups can be used to replace530

comparisons with reference analyses [84]. The evolution of measured spectra531

can be examined using multivariate techniques [85]. In short, new spectra532

are projected into the space of a PCA or a PLS, where the quality of their533

projection is evaluated with the so-called Hotelling statistic and residuals (T 2
534

and Q). A new method has recently been proposed for estimating a regres-535

sion model’s prediction bias and covariate shift in real-time, without using536

target reference values [37]. A set of current spectra, acquired during process537

monitoring is used to re-estimate the intercept of the calibration model. The538

covariance structure of the current spectra is also calculated as loadings. The539
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calibration set is then projected onto these loadings, giving scores that are540

compared with the scores obtained directly by a PCA on the calibration set.541

Despite this original contribution, the issue of unsupervised diagnosis of the542

calibration models remains largely open.543

This review shows that CMM is a common concern in both machine544

learning and chemometrics, but conceptual approaches differ. Chemomet-545

ric approaches are essentially based on signal processing and linear algebra,546

while machine learning approaches are based on the notions of conditional547

distribution and probability. It’s a safe bet that the combination of these548

two paradigms will pave the way for new methods capable of resolving the549

questions still open to us.550

This review does not cover all methodological developments on CMM551

in chemometrics since this would be prohibitive in the current format. We552

thus want to point the interested reader to the excellent literature surveys by553

Workman [86] and Mishra et al. [87] on calibration transfer and standards-554

free calibration transfer, respectively, and to Feudale et al. [88] for a general555

primer on the more general CMM problem.556
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