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Abstract

Utilizing the growing wealth of chemical reaction data can boost synthesis planning and increase success
rates. Yet, the effectiveness of machine learning tools for retrosynthesis planning and forward reaction
prediction relies on accessible, well-curated data presented in a structured format. Although some public
and licensed reaction databases exist, they often lack essential information about reaction conditions. To
address this issue and promote the principles of findable, accessible, interoperable, and reusable (FAIR)
data reporting and sharing, we introduce the Simple User-Friendly Reaction Format (SURF). SURF
standardizes the documentation of reaction data through a structured tabular format, requiring only a
basic understanding of spreadsheets. This format enables chemists to record the synthesis of molecules
in a format that is understandable by both humans and machines, which facilitates seamless sharing
and integration directly into machine learning pipelines. SURF files are designed to be interoperable,
easily imported into relational databases, and convertible into other formats. This complements existing
initiatives like the Open Reaction Database (ORD) and Unified Data Model (UDM). At Roche, SURF
plays a crucial role in democratizing FAIR reaction data sharing and expediting the chemical synthesis process.

Introduction

The synthesis of chemical matter is often viewed as
a rate-limiting step in material sciences, crop pro-
tection and drug discovery [1–4]. Crafting complex
molecules typically involves multi-step syntheses, en-
compassing various reaction steps, each presenting
multi-parameter optimization challenges [5, 6]. This
high complexity makes chemical reactions time- and
resource-intensive [7, 8]. Exploiting the growing vol-
ume of chemical reaction data could enhance synthesis
planning and potentially boost success rates [9–11]. In
recent years, machine learning has shown applications
to a broad variety of challenges in chemistry [12–19].
Graph neural networks, transformers, and recurrent
neural networks have proven effective in reaction pre-
diction and synthesis planning tasks [20–27].

However, these tools can only excel when trained on
high-quality data formatted in a structured, machine-
readable manner [28]. Usually, laboratory experiment
records are documented in varied ways by scientists,
leading to complexities in retrieving and applying es-
sential underlying metadata [29, 30]. With the advent
of semi-automated reaction screening capable of run-
ning hundreds of reactions in parallel, [31, 32] the
detailed and digital capturing of chemical reactions
and procedures is becoming paramount. Consequently,
there is a pressing need to close the gap between the
laboratory and the data science worlds (Figure 1).

The challenges in documentation practices also extend
to publications, where comprehensive reaction data,

including parameters, reagents, quantities, and roles,
should ideally be disclosed. However, this information
is often buried within the supplementary materials of
publications, presented as unstructured text or, occa-
sionally, substrate scope tables. These tables may also
appear in the main manuscript of methodology publica-
tions but frequently include footnotes highlighting ex-
ceptions, further complicating systematic analysis. Fur-
thermore, both types of documents are typically avail-
able in the challenging-to-process Portable Document
Format (PDF). Consequently, the barrier to accessing
complete reaction data sets in a time- and cost-efficient
manner remains high [33]. Additionally, data sourced
from scientific literature and patents frequently omit de-
tails about unsuccessful reaction outcomes. Yet, these
negative results are vital for training machine learning
models, as they crucially contribute to generating reli-
able predictions [34–37].
These challenges are evident in the state of currently
accessible public and commercial databases that en-
compass chemical reactions. Public resources in this
domain are notably limited, with examples including
the dataset covering chemical reactions from US patents
spanning from 1976 to 2016 [38]. There are commer-
cial offerings like Reaxys [39] and SciFinder [40], but
these, too, face constraints in providing comprehen-
sive and well-structured reaction data. Although these
databases do contain a considerable number of reactions
from scientific literature and patents, they frequently
fall short in terms of providing essential information
regarding reaction conditions and outcomes. More-
over, there can be a noticeable bias towards including
high-yielding reactions, potentially neglecting the valu-
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Figure 1: The missing connection between the laboratory and the data science worlds. Informa-
tion covering chemical reactions is highly complex as it compromises multiple data points leading to a wide
range of documentation methods and, often, to unstructured and not machine-readable data (left). As a con-
sequence, it remains difficult to make use of the experimental information for data science applications. This
discipline requires structured data including unsuccessful reaction outcomes (right). Importantly, the data must
be machine-readable and interoperable with other file types to allow seamless sharing, analysis and utilization of
the reaction data. Bridging the gap between the two disciplines therefore remains a challenging task.

able insights that can arise from reactions with lower
yields or unsuccessful outcomes [41, 42]. A multitude
of different file formats, in which this data is stored,
further complicates access to and harmonization of re-
action data. Among the most common formats are
Reaction Data File (RDFile), ChemDraw Extensible
Markup Language (CDXML), Reaction International
Chemical Identifier (RInChI), Reaction File (RXN-
File), JavaScript Object Notation (JSON), and Chem-
ical Markup Language Reaction(CMLReact) [43–46].
While these formats can effectively store molecular
structures and corresponding chemical reaction dia-
grams, they tend to lack a controlled vocabulary and
detailed reaction conditions, such as equivalents. Their
usability is often compromised by the specialized tech-
nical knowledge required to work with them, which can
hinder accessibility and understanding. Hence, there
exists a notable gap in achieving findable, accessible,
interoperable, and reusable (FAIR) standards for the
reporting, collection, and storage of reaction data. Ad-
dressing this gap is imperative to facilitate and advance
data-driven research in the field of chemistry. [47].

Recently, two initiatives have been introduced with the
aim of capturing reaction data in machine-readable and
uniform formats.

1. The Unified Data Model (UDM), initially devel-
oped by Roche and Reaxys and now managed by
the Pistoia Alliance, is an open, extendable, and
freely available data format for exchanging exper-
imental information on compound synthesis and
testing [46]. UDM employs a controlled vocabu-

lary, an explicit hierarchical data model, and sup-
ports various molecule and reaction representa-
tions. UDM, implemented through an Extensible
Markup Language (XML) schema, provides the
advantage of utilizing widely accessible, generic
tools for parsing, validation, and transformation.
The format also captures analytical data, liter-
ature references, and legal information, with ex-
tension points allowing the inclusion of vendor- or
process-specific data.

2. The Open Reaction Database (ORD) was in-
troduced as an open-access platform for making
chemical reaction data available in a structured
format [48]. The ORD schema, implemented us-
ing Protocol Buffers [49], offers nine sections to
comprehensively cover all experimental details,
including the integration of raw and processed
analytical data, ensuring reproducibility. ORD’s
high flexibility accommodates varying levels of de-
tail based on available information. Moreover,
the authors of the ORD emphasize usability by
enabling data submission via software programs
and through a web interface. Leveraging these
features, ORD data is compatible with machine
learning applications and even provides descrip-
tive fields for reaction featurization.

While UDM and ORD represent important steps to-
wards improving the standardization of reaction data
for information sharing and machine learning appli-
cations, they pose certain challenges in day-to-day
laboratory and data science environments: (i) Com-
plexity: The availability of numerous fields and options
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Figure 2: The simple user-friendly reaction format (SURF) can handle various input sources from
the laboratory to aid a broad range of data science applications. SURF files serve as a connector
between multiple input sources from literature and the laboratory environment (blue, top) with a broad range
of output applications in data science and machine learning (orange, bottom). The format is interoperable with
the Unified Data Model (UDM) and the Open Reaction Database (ORD) (purple, middle). The data flow is
demonstrated through arrows, highlighting the central role of SURF in connecting data from the laboratory with
data science utilization.

for data entry may lead to fewer entries and missing
data, as laboratory scientists have limited time for
documentation. Focus and simplification, within the
constraints of chemistry, are essential for capturing as
many data points as possible, including unsuccessful
reactions. (ii) IT barrier: Although ORD offers the
option of entering and searching reaction data through
a web interface in addition to programmed input, this
still necessitates multiple manual steps in an exter-
nal environment. UDM provides programmed input
only, requiring IT skills or dedicated specialists, which
precludes most chemists from using UDM for their
reaction data. (iii) Data sharing between disciplines:
Efficient exchange of reaction data within and across
research groups, departments, or companies can accel-
erate research. With UDM and ORD, direct sharing
of data between scientists in the same discipline, such
as chemist to chemist, or across disciplines, such as
chemist to machine learning scientist, may be hindered
depending on available IT skills and infrastructure, as
these formats are not easily human-readable for un-
trained individuals. Finally, the nested data structure
complicates streaming reactions from these file formats.

Adopting accessible data practices in chemistry is
paramount for advancing machine learning applications
in the field [42]. We have developed the "Simple User-
Friendly Reaction Format" (SURF) at Roche. SURF
addresses certain limitations of UDM and ORD, com-
plementing these existing data formats while maintain-
ing interoperability. It structures reaction data report-

ing through a straightforward, yet comprehensive tab-
ular format, requiring only a basic understanding of
spreadsheets. SURF eliminates the need for coding ex-
perience, advanced IT skills, or a web interface, empow-
ering every chemist to document and share their chemi-
cal syntheses in a human- and machine-readable format.
As a result, the SURF format has the potential to fur-
ther democratize reaction data. We advocate making
the attachment of a SURF file to the supplementary in-
formation of manuscripts mandatory, thereby improv-
ing reaction data reporting and ultimately allowing a
broad scientific community simplified access to valuable
data.

Simple-user friendly reaction format

The development of SURF emerged from the need
for efficient sharing of reaction data among labora-
tory chemists, data scientists, and machine learning
researchers. Given the involvement of such a diverse
group of stakeholders with different backgrounds in
computer science and chemistry, creating a structured
model interpretable by both humans and machines
was of paramount importance for improving the drug
discovery process. Based on these considerations, we
opted to use simple spreadsheets, as they facilitate data
capture in a tabular format, are widely used, and re-
quire minimal training. Using spreadsheets addresses
the existing information technology barrier of other
formats and democratizes FAIR reaction data docu-
mentation and sharing. Figure 2 illustrates the current
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Table 1: Overview of the reaction data documentation and storage landscape. The major options for
the documentation of reaction data are assessed based on a range of criteria relevant to bridging the gap between
the laboratory and data science worlds. Three ✓denotes best, one ✓indicates worst. Examples for databases are
Reaxys or Chemical Abstracts Service (CAS). ELN: Electronic Lab Notebook, ORD: Open Reaction Database,
RD / RXN: reaction data file formats, UDM: Unified Data Model.

Handwritten ELN Databases ORD UDM RD / RXN SURF

Human editable ✓✓✓ ✓✓✓ ✓ ✓ ✓✓ ✓ ✓✓✓
Machine readable ✓ ✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Vendor reliance ✓✓✓ ✓ ✓ ✓✓✓ ✓✓✓ ✓✓ ✓✓✓
IT requisite ✓✓✓ ✓✓ ✓✓ ✓✓ ✓ ✓ ✓✓✓
Structured data ✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Data richness ✓✓ ✓✓ ✓✓ ✓✓✓ ✓✓ ✓ ✓✓✓

role of SURF at Roche, serving as a connector between
the laboratory and data world, enabling FAIR reaction
data capture, storage, sharing, and application.

Through SURF, laboratory scientists can indepen-
dently report their reaction data, eliminating the need
for expensive software or specialized training. Other
means of single-batch reaction documentation, such as
data from electronic laboratory notebooks or spread-
sheets, can also be imported or transformed. Fur-
thermore, various types of literature data can be cu-
rated into SURF. At Roche, we are funnelling all high-
throughput experimentation reaction data from multi-
ple sources into SURF.

SURF enables direct data loading into machine learning
models, as structural molecular features are captured
through public compound identifiers, i.e., Chemical
Abstracts Service (CAS) numbers, simplified molecu-
lar input line entry system (SMILES) or international
chemical identifier (InChI) strings. This feature enables
forward reaction prediction, supports the determination
of useful reaction conditions and training of retrosyn-
thesis prediction tools. Due to its structure, reaction
databases and corresponding visualization can be eas-
ily built and harnessed. Moreover, SURF files enable
scientists in the laboratory to efficiently track their
reaction data, directly work with their data by con-
ducting analyses, and make data-driven decisions for
designing new experiments based on previous outcomes.

Due to these characteristics, SURF has advantages
when compared to other means of currently available
reaction data documentation and storage possibilities
(Table 1). Specifically, the hybrid structure of SURF,
i.e., usable by humans and machines, bridges the gap
between the laboratory and data science worlds. Pre-
viously available reaction formats have focused on be-
ing either human-editable or machine-readable, often
focusing on the latter. SURF, on the other hand, em-
powers experimentalists to document reaction data in
a flexible yet comprehensive manner, without neces-
sitating any IT expertise. It concurrently generates
machine-readable files suitable for data analysis or ma-
chine learning applications.

Structure of SURF

In a SURF spreadsheet, each row stores data for one re-
action. The column headers structure the data and are
divided into constant (CC) and flexible (FC) columns.
CCs remain unchanged and should always be present,
independent of the number of reaction components.
They capture the identifiers and provenance of the re-
action, as well as basic characteristics (reaction type,
named reaction, reaction technology) and conditions
(temperature, time, atmosphere, scale, concentration,
stirring/shaking). Add-ons, such as the procedure or
comments, also belong to the CCs. The FCs describe
the more variable part of a reaction, including different
starting materials, solvents, reagents, and products.
Each reaction component is represented by an iden-
tifier, such as the CAS number or molecule name, a
SMILES or an InChI string storing the chemical struc-
ture. While the SMILES/InChI string is available for
every compound and can serve as structural input for
machine learning models, the CAS number can be use-
ful for chemists in the laboratory to order, itemize, and
find chemicals. To account for starting materials and
reagents, including catalysts, ligands, and additives, a
third column is incorporated to specify the stoichio-
metric amount, that is, equivalents. SURF’s flexibility
enables the capture of multiple starting materials and
reagents, as these can be accommodated by adding
three additional columns (CAS/name, SMILES/InChI,
and equivalents). If desired, further columns for ad-
ditional identifiers or lot numbers can be added. As
shown in Figure 3, the headers are populated by adding
ascending numbers to record all used components. The
same applies to multiple solvents or products; however,
due to their role, they possess more and partly dif-
ferent column headers. While the CAS number/name
and/or the SMILES/InChI string remain as identifiers,
the solvent fraction (recorded in decimals from [0,1])
is used instead of equivalents, allowing for the exact
determination of the ratio between solvents. The prod-
uct category contains the largest number of headers,
as the basic SURF records the reaction yield (in per-
cent, %), complemented by the reaction yield type (i.e.,
isolated, LCMS, GCMS, etc.), as well as the detected
mass by mass spectrometry and the nuclear magnetic
resonance (NMR) spectroscopy sequence(s) in addition
to the common identifiers CAS and SMILES/InChI.
Additional information, such as detailed product char-
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Figure 3: The structure of the simple user-friendly reaction format (SURF). Top: Detailed structure of
a SURF file, which contains constant (CC), flexible (FC), and optional columns (OC) to comprehensively capture
reaction data information. Reaction components are described with two identifiers, one of them containing struc-
tural information, e.g., SMILES or InChI, and the used equivalents. For solvents, an exception applies, instead of
the equivalents, the fraction is recorded (orange). In the product section, depending on the granularity required,
multiple columns for product characterization can be added (blue). In the basic SURF structure, yield, yield
type, nuclear magnetic resonance and mass spectroscopy information are added. Bottom: Condensed example
of a SURF file that demonstrates the simple structure of the format.

acterization (e.g., enantiomeric excess (ee) or purity),
can be captured by introducing respective columns
with headers following the standard snake case nomen-
clature.

Utilizing the basic structure of SURF, all relevant
data for reproducing the experiment is readily avail-
able. Laboratory chemists can order chemicals, draw
structures, calculate the masses of molecules, or com-
pare NMR data without the need to consult sepa-
rate files. Since most electronic laboratory journals
already record the aforementioned parameters of the
basic SURF structure, enforcing documentation com-
pliance combined with automated data extraction and
cleaning pipelines has the potential to make numerous
new reaction data accessible in the SURF format and
available for machine learning applications.

File formats and interoperability

As SURF captures data in a tabular format, we rec-
ommend using universally readable file formats such
as TXT, CSV, or TSV files. Since chemical data can
contain delimiters such as commas or semicolons, we
suggest using only TAB-delimited TXT or TSV files.
These file types can be written and read with all popu-
lar spreadsheet or text editor software available on mul-
tiple operating systems. One point to consider when
using SURF is that data is not validated upon capture.
We acknowledge that this does not prevent users from
entering false or incomplete reaction data. However,
we recommend performing validation only upon reading
SURF files into a database, transforming them to other
formats, or using the data for machine learning pur-
poses. SURF files are interoperable, as they can be in-
troduced into hierarchical databases and converted into
other existing reaction formats, such as the ORD Pro-

tocol Buffers format or UDM XML format. As part of
this manuscript, we open-source the respective Python
code enabling the transformation between different data
formats (http://reaction-surf.com).

Applications

When preparing for a new series of reactions, such as in
a high-throughput setting, chemists have the capability
to populate a SURF file with all the necessary condi-
tions and reagents to be tested in advance. They can
link these entries to the specific vessels, tubes, or plates
used for the reactions through the reaction identifier.
Furthermore, having the CAS numbers available for all
compounds greatly aids in locating the corresponding
materials in the laboratory. Subsequently, as the re-
actions are executed and data on their outcomes are
recorded, any potential gaps or missing data become
immediately visible and accessible within the SURF
format.

A frequently observed barrier to machine learning ap-
plication is data pre-processing and cleaning. With
SURF, reaction data is presented in a structured, both
human and machine-readable format. Hence, SURF
has shown to be a key enabler for several reaction pre-
diction case studies at Roche [28, 50]. The use of SURF
necessitated minimal data cleaning, mainly focusing on
structural information validation and the exclusion of
non-relevant columns. This approach allowed for the
rapid extraction and analysis of reaction data using
standard data science libraries. The SURF header con-
vention as shown in Figure 3 ensures reproducibility
and allows for easy identification of relevant columns
needed for model training.

The tabular SURF format allows users to browse and
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filter available reaction data directly in a spreadsheet.
Straightforward analyses to visualize yields or find all
reactions of a certain type, using a specific technol-
ogy, substrate, or reagent, can be conducted without
the need to load the data into a database. Correlat-
ing individual columns like reaction characteristics with
reaction outcomes becomes a straightforward task in
SURF. Lastly, capturing reactions in a universally read-
able spreadsheet format facilitates data sharing. Using
the snake case naming convention for headers gener-
ates tables that are both human and machine-readable.
Additionally, by utilizing CAS numbers as identifiers,
compounds can be universally recognized even without
loading the SMILES/InChI.

Discussion and Conclusion

SURF offers a streamlined and accessible solution for
chemists to document and share their chemical syn-
theses in a format that is both human- and machine-
readable. By adopting SURF, researchers can overcome
the limitations of existing data formats, promote suc-
cessful data-driven chemistry research, and foster a
culture of open data sharing and collaboration, thereby
accelerating the pace of discovery and innovation in the
field. The availability of reliable data and accompany-
ing code provided by SURF enables other researchers
to rapidly verify research findings, thereby reducing the
risk of publishing irreproducible results. Importantly,
the adoption of SURF facilitates efficient exchange of
reaction data within and across research groups, depart-
ments, and companies, which can accelerate research
progress.

Funding agencies and journals have an opportunity to
play a more prominent role in promoting open access
and FAIR publication of reaction data, ensuring that
the necessary incentives and support are in place for
researchers to embrace these principles. By encourag-
ing the adoption of SURF as a standard for publications
and requiring its attachment to the supplementary in-
formation of manuscripts, the scientific community can
facilitate reaction data sharing and ultimately advance
chemistry research.
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