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Abstract

Recently, the field of explainable artificial intelligence has attracted significant re-

search interest, with a particular focus on “feature attribution” in the field of chem-

istry. However, studies comparing the relationship between artificial-intelligence- and

human-based feature attributions when predicting the same outcome are scarce. Hence,

the current study aims to investigate this relationship by comparing machine-learning-

based feature attributions (graph neural networks and integrated gradients) with those

of chemists (Hansch–Fujita method) when predicting water solubility. The findings re-

veal that the artificial-intelligence-based attributions are similar to those of chemists

despite their distinct origins.

Introduction

In recent years, advancements in neural network technology have spurred significant research

interest in explainable artificial intelligence.1–5 In particular, studies focusing on ”feature at-
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tribution,” which analyzes the contributions of certain descriptors to the prediction results,

have begun gaining traction in the field of chemistry. For instance, Kim et al.6 clarified the

influence of molecular structure coordinates as descriptors on the reaction coordinate of tran-

sition state structures in differentiation reactions by employing methods such as adapting

local interpretable model-agnostic explanations7 and SHaplay Additive exPlanations.8 Sim-

ilarly, Okuno et al. successfully developed a retrosynthetic reaction prediction system using

integrated gradients (IGs), enabling the visualization of atoms pertinent to the reaction.9

Chemists have also proposed alternative concepts similar to feature attribution. Among

these, the ”substituent” or ”functional group” concept is particularly notable. This concept

was first proposed in the 19th century based on ”the radical theory”10–12 and ”the theory

of type”13–16 through experiments on various chemical reactions.17 Later, in the early 20th

century, Hammett et al. established a method to theoretically predict hydrolysis reactions

using substituents,18 thus elucidating the contributions of substituents to such reactions.

Consequently, substituents represent an important concept that originated from the link

between chemists’ experimental observations and theoretical frameworks.

The fields of machine learning and chemistry share similar concepts known as ”feature

attribution”. However, owing to the distinct development periods and backgrounds of these

concepts, as well as their differing prediction targets, comparative studies focusing on these

concepts are scarce, at least to the best of our knowledge. Hence, if these concepts were

capable of predicting the same physical property, would the feature attributions of machine-

learning methods and chemists exhibit similarity? To answer this question, herein, we com-

pare the feature attributions for water-solubility prediction acquired through graph neural

networks (GNNs) and IGs with those obtained through the Hansch–Fujita method. Evi-

dently, water solubility is a highly invariant and a crucial physical used in a wide range of

applications such as designing imaging molecules,19–21 drugs22–24 and related compounds.

Thus, the discussion of feature attribution in this investigation will prove significant for such

design applications.
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Methods

Model and descriptors

In this study, we employed the GNNs architectures proposed in our previous study.25 The

model comprised four components: convolution and concatenation layers, fully connected

layers in each atom, a pooling layer to construct molecular features, and fully connected

layers to obtain target properties. Among these, for the convolution and concatenation

layers, we employed two descriptor sets: molecular-atomic properties (MAPs) and isolated-

atomic properties (IAPs).26 As indicated in Table 1, the MAPs represent atomic properties

extracted from molecular calculations, whereas the IAPs represent atomic properties defined

in each isolated atom.

Table 1: Descriptors employed in this study

molecular-atomic properties (MAPs) isolated-atomic properties (IAPs)
constrained spatial electron density distribution charge effective charge
partial Fukui function (+) atomic polarization
volume atomic radius
atomic dispersion coefficient ionization energy
fractional anisotropy of the magnetic shielding constant electron affinity
absolute value of the effective atomic orbital energy mass
accessible surface area accessible surface area
atomic fluctuation atomic fluctuation

Datasets

In this study, we selected water solubility as the basis for comparing feature attributions.

This choice was motivated by its advantageous features in machine learning and chemistry.

Moreover, the abundant experimental data on water solubility is expected to facilitate the

construction of accurate learning models. Moreover, chemists have also acknowledged the

relationship between solubility and substituents.

The original dataset for this study was obtained from the dataset provided by DeepChem.27
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From this dataset, we filtered out molecules containing more than 35 non-hydrogen atoms or

ions. Ultimately, the modified dataset contained 1027 molecules, and this dataset was then

divided into training and test datasets at a ratio of 8:2.

Definition of feature attribution

In the field of chemistry, researchers have proposed numerous methods defined on substituent

constants to explain the physicochemical properties of molecules. The Hansch–Fujita ap-

proach is one such method, designed to elucidate the water-octanol partition coefficient (log

P) of a molecule by focusing on the constants defined on the substituents.28 Within the

model framework, the substituent constant πX is determined using the log P value of matrix

benzene (H) and the substituent (X), as follows:

πX = logPX − logPH (1)

If πX is negatively (positively) large, the substituent (X) makes the molecule more hydrophilic

(hydrophobic). From this character, we can use πX as the attribution to explain the molecular

solubility. Here, when πX is significantly negative (Positive), the substituent (X) imparts

increased hydrophilicity (hydrophobicity) to the molecule. Leveraging this, we can use πX

as an attribution to explain molecular solubility.

In a previous study, we proposed another attribution utilizing the GNNs and IGs tech-

nique.25 The proposed attribution Ḡin , was defined for atomic feature i and atomic site n.

In this study, the attribution for the substituent X is defined as follows:

GX =
∑

in∈X

Gin (2)
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Results and discussions

The primary purpose of this study was to assign attributions for determining the atomic

groups crucial for hydration. However, given that the assignment was performed for the

trained model, validating the reliability of the learning model before engaging in the attri-

bution assignment discussion was crucial. Table 2 summarizes the root mean squared error

(RMSE) and coefficient of determination (R2) values for the prediction of water solubil-

ity (log S) based on two machine-learning models and AlogPS 2.1.29 Among the numerous

solubility prediction models proposed to date, AlogPS 2.1 is known for its high accuracy,

reading it reliable.30 Table 2 reveals that the accuracies of our models of our models de-

rived from MAPs and IAPs are comparable with that of AlogPS 2.1 signifying the successful

development of effective models.

Table 2: Metrics for AlogPS 2.1 and the proposed GNNs models with MAPs and IAPs

RMSE R2

MAPs 0.60±0.02 0.94
IAPs 0.53±0.02 0.95
AlogPS 2.1 0.57 0.93

In chemistry, attributions are predominantly discussed based on atoms. In this study, we

employed modified IGs to obtain the attribution for each atom. Figure 1 displays colormaps

of the IGs used for methanol l (MeOH) and 2,2’,3,3’,4,4’,5,5’-Octachlorobiphenyl (PCB194).

Our choice of these molecules was based on the observation that MeOH was the most soluble

while PCB194 was the least soluble (insoluble) among the molecules in the test dataset.

In the figure, atoms contributing more to solubility appear in red (> 0), whereas those

contributing more to insolubility appear in blue (< 0). For methanol, irrespective of the

explanatory variables, the portion corresponding to the hydroxyl group consistently appears

in red, indicating its successful representation as a hydrophilic moiety. This observation is

consistent, making it a valuable indicator for attribution.

As stated in the Introduction section, the attribution assignment of atom groups has been
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extensively researched in the field of chemistry. Among the developed methods, the Han-

sch–Fujita method is the most prominent attribution assignment approach. The researchers

demonstrated that the changes in the hydrophobicity levels of eight parent structures in-

duced by the introduction of substituents could be defined as the substituent constant (π),

which could be leveraged to discuss the significance of each functional group in structure-

activity studies. Thus, this substituent constant π represents an attribution assignment of

atom groups based on an experimental approach. In this study, we adopted the π value

of phenoxyacetic acids as they have a comprehensive dataset comprising the eight parent

structures. Subsequently, we investigated the correlation between the IGs and π values for

16 functional groups (Scheme 1), using molecules that were not double-counted (excluding

functional groups such as sulfonic and phosphate groups, which are not included in the

substituent constant π).
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Figure 1: Colormaps of the IGs of methanol ((a) and (b)) and 2,2’,3,3’,4,4’,5,5’-
Octachlorobiphenyl ((c) and (d)). The IGs were computed considering the MAPs ((a) and
(d)) and IAPs ((b) and (d)).

The IGs and π values were determined based on log S and log P, respectively. Therefore,

when a functional group was deemed important for water solubility, the IGs values became

significantly positive, whereas the π value became significantly negative. For simplicity, we
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changed the signs of the IGs values in Figure 2. As depicted in Figure 2, the π and IGs

values exhibit good correlations, with minimal dependence on the descriptor. Although the

approaches adopted to derive attributions largely differ between the Hansch–Fujita method

and our method, the obtained attributions exhibit a similar characteristic.

(c)(b) (d)(a)

(e) (f) (g) (h)

Scheme 1: substituent constant(π) defined based on the eight different parent structures
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Figure 2: Correlations between IGs and the substituent constant (π) computed using (a)
MAPs and (b) IAPs

While Figure 2 indicates a good correlation between the π and IGs values, certain sub-

stituents exhibit significant discrepancies. In particular, the disparity for the OH group com-

puted using MAPs is large compared to those for the other groups. To understand the reason

for this, we must consider structural dependency in attribution assignment. For instance, in
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the Hansch–Fujita method, the π value of the OH group is determined using 15 datapoints

based on the following parent compounds: ortho-, meta-, and para-isomers (Scheme 1). In

this study, we plot the variability of each attribution for two types of substituents (Figure

3) to elucidate the structural dependency in attribution assignment.
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Figure 3: Box-and-whisker plot depicting the degree of variation of each attribution for
substituents OH (a) and CH3 (b). Here, the attributions represent the substituent constant
(π), MAPs, and IAPs.

As depicted in Figure 3 (a), the IGs and π values of the OH group exhibit the largest

difference (Figure 2). Conversely, the CH3 group, with a larger dataset, displays relatively

minor differences, implying that the contribution of the OH group to water solubility is

considerably affected by its molecular structure. Figure 3 illustrates that the notable dis-

crepancy in the IGs and π values of the OH group displayed in Figure 2 does not stem from

numerical errors but provides valuable insights into the influence of molecular structures on

water solubility.
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Conclusion

This study examined and contrasted the feature attribution concepts of machine learning and

chemistry. Both learning models, developed using water solubility as a predictor, were found

to exhibit good prediction accuracies. Moreover, the IGs results indicated similar feature

attributions, implying the development of good-quality learning models. The developed fea-

ture attributions exhibited good correlations with the feature attributions based on Hansch’s

π from the field of chemistry. While some functional groups presented large discrepancies

between the machine-learning and chemistry-based feature attributions, we demonstrated

that these discrepancies were attributable to the influence of molecular structures. Through

this comparison, we can conclude that our machine-learning models predict water solubility

using feature attributions similar to those obtained by chemists.
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(3) Barredo Arrieta, A.; Dı́az-Rodŕıguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Bar-

bado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins, R.; Chatila, R.; Herrera, F.

Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and chal-

lenges toward responsible AI. Inf. Fusion 2020, 58, 82–115.

(4) Adadi, A.; Berrada, M. Peeking Inside the Black-Box: A Survey on Explainable Arti-

ficial Intelligence (XAI). IEEE Access 2018, 6, 52138–52160.

(5) Samek, W.; Montavon, G.; Lapuschkin, S.; Anders, C. J.; Müller, K.-R. Explaining

Deep Neural Networks and Beyond: A Review of Methods and Applications. Proceed-

ings of the IEEE 2021, 109, 247–278.

(6) Kikutsuji, T.; Mori, Y.; Okazaki, K.-i.; Mori, T.; Kim, K.; Matubayasi, N. Explain-

ing reaction coordinates of alanine dipeptide isomerization obtained from deep neural

networks using Explainable Artificial Intelligence (XAI). J. Chem. Phys. 2022, 156,

154108.

(7) Ribeiro, M. T.; Singh, S.; Guestrin, C. ”Why Should I Trust You?”: Explaining the

Predictions of Any Classifier. CoRR 2016, abs/1602.04938 .

(8) Lundberg, S. M.; Lee, S. A unified approach to interpreting model predictions. CoRR

2017, abs/1705.07874 .

(9) Ishida, S.; Terayama, K.; Kojima, R.; Takasu, K.; Okuno, Y. Prediction and Inter-

pretable Visualization of Retrosynthetic Reactions Using Graph Convolutional Net-

works. J. Chem. Inf. Model. 2019, 59, 5026–5033.
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(13) Dumas, J. Mémoire sur la constitution de quelques corps organiques et sur la théorie
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