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ABSTRACT:	 Influenza	 A	 viruses	 spread	 out	 worldwide	
causing	several	global	concerns.	Discovering	neuraminidase	
inhibitors	 to	 prevent	 the	 influenza	 A	 virus	 is	 thus	 of	 great	
interests.	In	this	work,	a	machine	learning	model	was	trained	
and	 tested	 to	 evaluate	 the	 ligand-binding	 affinity	 to	
neuraminidase.	 The	 model	 was	 then	 used	 to	 predict	 the	
possibility	of	compounds	from	the	CHEMBL	database,	which	
is	 manually	 curated	 database	 of	 bioactive	 molecules	 with	
drug-like	properties.	The	physical	 insights	 into	 the	binding	
process	 of	 ligands	 to	 neuraminidase	 were	 clarified	 via	
molecular	 docking	 and	 molecular	 dynamics	 simulations.	
Experimental	studies	on	enzymatic	and	antiviral	activity	as	
well	as	cytotoxicity	have	validated	our	computational	results	
and	suggested	that	2	compounds	were	potential	inhibitors	of		
neuraminidase	of	the	influenza	A	virus.	

INTRODUCTION 

Influenza A viruses have caused major influenza outbreak 
or pandemic that affected millions of people worldwide. The 
viruses are divided into subtypes based on two proteins on 
their surface: hemagglutinin (H) and neuraminidase (N). 
These subtypes have been responsible for major pandemics 
throughout the 20th and 21st centuries such as the H1N1 pan-
demic in 1918, H2N2 pandemic in 1957, and H3N2 pandemic 
in 1968.1-2 and H5N1,3-4, H1N1,5-6 H5N8,7 and H7N98 in recent 
years. New strains of the viruses continue to emerge and the 
risk of drug resistance have sparked great interest into find-
ing potential anti-viral compounds.9-15  

Neuraminidase is a key surface glycoprotein which plays 
an important role in viral replication and infection. It is a 
proven target for developing drugs against influenza A vi-
ruses16-17. Several drugs recommended for treating influenza   
virus such as oseltamivir, zanamivir, and peramivir are neu-

raminidase inhibitors. However, these drugs suffer from se-
rious limitations such as the emergence of oseltamivir-re-
sistant strains18-19, the poor oral bioavailability of  zanamivir 
20. On the other hand, more virulent variants, such as H5N1 
and H7N9 has emerged. Therefore, researching novel inhib-
itors capable of effectively inhibiting neuraminidase con-
tinue to be a topic of interest. 
 Computer-aided drug design (CADD) plays as a powerful 
tool for rapidly and accurately screening of several million 
compounds for potential inhibitors of enzymes21. The 
adoption of CADD methods is rapidly increased due to their 
potential to significantly reduce the cost and time of a new 
drug development.22  CADD can be used in both purposes 
including searching for new inhibitors and repurposing for 
existing drugs.23-25 CADD has been donating to the discovery 
of severally available drugs such as dorzolamide,26-27 
saquinavir, ritonavir, and indinavir.21 

In this work, we aim to use a combination of computa-
tional and experimental approaches to find potential inhibi-
tors for inhibiting neuraminidase. In particular, the trained 
machine learning (ML) model was employed to predict the 
ligand-binding affinity of ca. 2 million compounds of 
ChEMBL database to neuraminidase. The experimental stud-
ies were then carried out to validate the ML outcomes. The 
shortlist of potential candidates were obtained. The experi-
ment would be then validated the ML outcomes. Besides, 
molecular docking and MD simulations were used to clarify 
the physical insights into the binding process of these com-
pounds to neuraminidase.  
 
MATERIALS & METHODS 

Data set 
 A set of 1154 compounds with SMILES and their 
corresponding association constants 𝐾" was collected from 
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BindingDB. The binding free energy was calculated from 𝐾" 
as 𝛥𝐺 = 𝑅𝑇𝑙𝑛𝐾", where 𝑅 is the molar gas constant, T = 298 
K is the absolute temperature. The experimental binding 
free energy 𝛥𝐺 was used as a label for training ML regression 
models. The set was randomly divided into a train set 
consisting of 989 compounds and a test set consisting of 165 
compounds. The train set was used to train machine 
learning (ML) models and the test set was used for 
performance evaluation. The 𝛥𝐺 distribution of train and 

test sets is shown in Figure	 1. The best ML model was 
selected to make prediction of binding free energy to 
Neuraminidase for the CHEMBL data set28 consisting of 
nearly 2 million compounds. Compounds which have 
already been in the train and test sets were excluded from 
the CHEMBL set. The top 100 compounds having strongest 
binding affinity were selected for further investigations 
using molecular dynamics simulations, enzymatic activity, 
antiviral activity and cytotoxicity assays.  

 
Figure	1.	Distribution	of	experimental	binding	free	energies	for	the	train	and	test	sets	(left)	and	of	the	binding	free	energies	pre-
dicted	by	GraphConv	model	for	the	test	and	CHEMBL	sets	(right).	

 We trained four regression models including linear 
regression (LR), random forest (RF), extreme gradient 
boosting (XGBoost)29 and convolutional networks on graphs 
(GraphConv).30 LR served as a baseline model due to its 
simplicity and being less prone to overfitting. RF and 
XGBoost are both ensemble methods. They differ in that in 
RF, regression tree learners are fit independently based on 
bootstrapping and random subspace of the train sample, 
while in XGBoost, the learners are sequentially trained such 
that each learner tries to fix the mistake made by previous 
ones. Furthermore, in RF prediction is made by averaging 
over the predictions of all trees in the ensemble, while in 
XGBoost, weighted sum of predictions from all learners is 
used as a final prediction. Features for LR, RF and XGBoost 
are physicochemical descriptors which were calculated 
using the RDKitDescriptors tool kit implemented in 
DeepChem.31 RDKitDescriptors calculated 200 
physicochemical descriptors which were finally reduced to 
104 features after removing the ones having mostly zero 
value and highly correlated features. For LR and RF, missing 
values were imputed with the median, while for XGBoost, 
imputation is not required because it can automatically 
handle missing values. For LR, the features were 
standardized to have a zero mean and a standard deviation 
of one. The deep learning method GraphConv can learn 
features on the fly and therefore, does not require manual 
feature extraction. Input into the model is a molecular graph 
which is passed to convolutional layers. The convolutional 
layers will learn a fixed-length embedding vector called 
molecular fingerprint which is then input into a densely 
connected layer.  
 Hyperparameters of LR, RF and XGBoost were tuned by 
minimizing the mean square error (MSE) estimated from the 
train set using the 10-fold cross validation method. The 
Hyperot library32 was used to search for the optimal set of 
hyperparameters. For the GraphConv model, we tried 

different numbers of units in the graph_cov layers and dense 
layers, learning rate, and dropout rates. The performance 
seemed to be more sensitive to the network size than the 
learning and dropout rates. We used the Python library 
Scikit-Learn33 to train LR and RF models and the XGBoost 
library for XGBoost models. We used the library DeepChem31 
to train the GraphConv model. 
 
Molecular Docking 
AutoDock Vina34 was used to dock CHEMBL ligands into 
binding pocket of neuraminidase whose 3D structure in 
complex with Zanamivir was obtained from the protein data 
bank with PDB ID 4B7Q. The docking empirical parameters 
were modified to improve docking accuracy according to our 
previous study35. The force field parameters from 
AutoDockTools were used to prepare the protein and 
ligands for docking. The chemicalize webserver, a tool of 
ChemAxon, was utilized to predict the ligand protonation 
states.44 The center of docking grid was chosen as the center 
of mass of Zanamivir and the size of the grid as 
24	𝑥	24	𝑥	24	Å3. The docking poses with lowest docking 
energy were selected for subsequent MD simulations. 
  
Molecular Dynamics Simulations 
 MD simulations were performed to sample 
conformational space of complexes between neuraminidase 
and ligands in aqueous solution. Amber99SB-iLDN force 
field36 was employed to parameterized inter-atomic 
interactions of the protein and counter ions. For water 
molecules, TIP3P water model37 was used. The general 
Amber force field (GAFF)38 was employed for Lennard Jones 
and bonded interactions for the ligand. AmberTools1839 and 
ACPYPE packages40 was applied to fit the point charges of 
the ligand using the restrained electrostatic potential (RESP) 
method38. The fitting procedure required as an input the 
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electrostatic potential grid which was calculated by DFT 
based on the double hybrid functional Mp2, basis set 6-
31G(d,p), and implicit solvent (𝜀 = 78.4). The 
neuraminidase-ligand complexes were inserted into a water 
box with dodecahedral periodic boundary conditions. The 
box size was chosen such that there was a minimum distance 
of 16.0 Å between the protein-ligand complex and the box 
edge. The box had a volume of 569.75 nm3 and contained in 
total  56000 atoms. The water box for MD simulations of free 
ligands had a volume of 56.16 nm3 and a total number of 
atoms of 5500. 
Energy minimization with the steepest descent algorithm 
was first performed to remove steric clashes and drive the 
conformation to a local minimum. Then short MD 
simulations of 100 ps under NVT and NPT conditions were 
performed to equilibrate the system. During this 
equilibration step, Cα atoms were restrained by applying a 
weak harmonic restraining potential.  Finally 50 ns MD 
simulations were performed to generate data for structural 
and energetic analyses. To improve statistical sampling, MD 
simulation for the complex was repeated for 2 times using 
different random number seeds. We used the software 
GROMACS version 2019.641 to perform MD simulations. 
 
Cell culture and viral amplification 
MDCK cells were cultured in E10 medium comprising 
Dulbecco's modified Eagle medium (DMEM, Invitrogen, 
Carlsbad, CA) supplemented with 10% fetal bovine serum 
(FBS; JRH Biosciences, Lenexa, KS, USA), 100 U/mL 
penicillin, 100 μg/mL streptomycin (Sigma–Aldrich, St 
Louis, MO, USA), 2 mM L-glutamine (Gibco BRL, 
Gaithersburg, MD, USA), and 0.1 mM nonessential amino 
acid mixture (Gibco). The cells were maintained in a 37 °C 
incubator with 5% CO2. The influenza virus A/WSN/33 
(WSN) obtained from the American Type Culture Collection 
was propagated in MDCK cells. Cells were incubated with 
the influenza virus at a multiplicity of infection (MOI) of 0.5 
for 1 h at room temperature and cultured for 24 or 48 h at 37 
°C in fresh DMEM. Viral titers in supernatants were 
determined using MDCK cells by the 50% tissue culture 
infectious dose (TCID50) assay42. 
 
Neuraminidase enzymatic activity assays 
The NA-Fluor™ Influenza Neuraminidase Assay Kit (Applied 
Biosystems, Foster City, CA) using MUNANA as the 
substrate was utilized to assess the effectiveness of 
compounds43. The virus stock was titrated using the NA 
activity assay, and the optimal virus dilution (1:64 dilution) 
for the neuraminidase inhibition assay was selected. 
Compounds were tested for NA inhibitory activity at 100 μM. 
Fluorescence was measured by an ELISA Reader (Molecular 
Devices; Lmax II384) at an emission of 460 nm and 
excitation of 360 nm. A zanamivir control (0.02 μM, 
MedChemExpress, Monmouth Junction, NJ, USA) was 
included for comparison. 
 
Cell-based antiviral activity and cytotoxicity assays 
The antiviral efficacy of compounds was assessed in MDCK 
cells through quantification of their ability to mitigate virus-
induced cell death. MDCK cells were cultured in a 96-well 
plate (2 × 104 cells per well) in E10 medium and incubated at 

37°C under 5% CO2 overnight. The wells were then washed 
once with phosphate-buffered saline (PBS). Compounds 
were added at a concentration of 50 μM, along with 9 x 
TCID50 of the virus. The cells were subjected to individual 
compound incubation as a means to evaluate its cytotoxic 
effects. The surviving cells were measured with the 
colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 
tetrazolium bromide (MTT) assay. The plate was placed in a 
5% CO2, 37°C incubator for 72 h. After incubation, the cell 
wells were rewashed with PBS, and 50 μL of MTT solution 
was added to each well, followed by incubation for 3 h at 
37°C with 5% CO2. The medium was removed, and 200 μL of 
dimethyl sulfoxide was added to each well to dissolve the 
formazan crystals. The absorbance of each well was 
measured at 570 nm on an ELISA Reader (Molecular Devices; 
Lmax II384). A control group of drug ITA19 with a 
concentration of 5 μM was employed43. 
 
Statistical analysis 
The statistical errors of correlation coefficient and RMSE 
were estimated using 1000 rounds of the bootstrapping 
method.45 The intermolecular sidechain contact (SC) 
between the ligand to the residual neuraminidase was 
counted when the spacing between non-hydrogen atoms of 
them is ≤4.5 Å. The intermolecular hydrogen bond (HB) 
between the residual neuraminidase and ligand was counted 
when the angle ∠ between acceptor-hydrogen-donor is ≥1350 
and the distance between acceptor and donor is ≤3.5 Å.  
The experimental data are depicted as mean values 
accompanied by their standard error of the mean (SEM, 
derived from no fewer than two independent experiments. 
Statistical analyses were conducted using a two-tailed, 
unpaired Student’s t-test with Prism software (version 8.0, 
GraphPad Software, San Diego, CA, USA). Significance levels 
were set at p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***), with 
"ns" denoting non-significant differences between the 
indicated settings. 
 
RESULTS AND DISCUSSION 

Machine Learning Calculations 
 The predictive performance of trained ML models was 
assessed by using three performance metrics, namely, root-
mean-square error (RMSE), Pearson’s R and Spearman’s 𝜌  
correlation coefficients. Table 1 shows performance 
comparison of the four ML models for the test set consisting 
of 165 compounds. The baseline model LR gave the poorest 
performance with large RMSE (RMSE = 2.80 ±	0.32 
kcal/mol) and low correlation (Pearson’s R = 0.46 ± 0.07; 
Spearman’s 𝜌 = 0.58 ± 0.05) with respect to experiment. This 
is not unexpected since LR is a linear model which is unable 
to capture nonlinear relationships between the input 
features and the target label of binding free energy. Using 
more powerful nonlinear methods such as RF, XGBoost and  
GraphConv significantly improves the predictive 
performance as shown in Table 1.  The GraphConv model 
gave the best performance with the lowest test RMSE (RMSE 
= 1.86 ± 0.22) and highest test correlation (Pearson’s R = 0.80 
± 0.04, Spearman’s 𝜌 = 0.84 ± 0.03). Figure	 2 shows 
comparison between predicted and experimental binding 
free energies. However, GraphConv’s performace does not 
differ significantly from XGBoost model which is the second 
best.  
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Table	1.	Comparison	of	ML	models’	performance	in	predict-
ing	binding	free	energy	𝛥𝐺	for	165	test	compounds	to	Neu-
raminidase.	

Model	 RMSE	
(kcal/mol)	 Pearson’s	R	 Spearman’s	𝝆	

LR	 2.80	±	0.32	 0.46	±	0.07	 0.58	±	0.05	

RF	 2.03	±	0.23	 0.76	±	0.03	 0.83	±	0.03	

XGBoost	 1.94	±	0.22	 0.78	±	0.03	 0.83	±	0.03	

GraphConv	 1.86	±	0.22	 0.80	±	0.04	 0.84	±	0.03	

 

 
Figure	2.	Comparison	of	binding	free	energy	between	exper-
iment	and	prediction	made	by	the	GraphConv	model	for	165	
test	compounds.			

 The GraphConv model was chosen to make predictions of 
binding free energies for nearly 2 million compounds in the 
CHEMBL data set. The distribution of predicted binding free 
energies is shown in Fig 1. The mean and standard deviation 
of the distribution are -6.84 kcal/mol and 0.97 kcal/mol, 
respectively. A short list of 400 compounds having strongest 
binding free energy to neuraminidase (ranging from -12.4 
kcal/mol to -10.10 kcal/mol) was chosen for further 
investigations. Among these 400 compounds, 184 of them 
were previously tested and therefore, removed from the list. 
Then 11 compounds (see Table S1 in SI for the list of 
compounds) were randomly selected (see table S1 in SI) for 
experimental investigations to assess their enzymatic 
inhibitory and anti-viral activities and cytotoxicity. 
Moreover, we also performed molecular docking and MD 
simulations to study their binding conformation to the 
enzyme. 
 
Enzymatic and antiviral activities and cytotoxicity as-
says 
Our research, guided by virtual screening, revealed a notable 
breakthrough in the quest for effective influenza A virus 
(IAV) inhibitors. The inhibition of neuraminidase activity 
was then evaluated with the Influenza Neuraminidase Assay 
Kit, using zanamivir as a positive control (Figure 3). Two of 
the eleven compounds (compounds 1 and 7) selected 
through this innovative approach exhibited potential 
inhibition of NA activity. However, four compounds 

(compounds 4-6, and 11) yield higher values of readings than 
the virus-only control. We suspect that these compounds 
may exhibit unexpected stimulatory effects on the 
neuraminidase enzyme, either directly or indirectly, 
resulting in higher enzymatic activity levels compared to the 
virus-alone condition. However, we can’t exclude the 
autofluorescence exhibited by these compounds. Moreover, 
compounds could potentially stabilize the neuraminidase 
enzyme, prolonging its activity and enhancing the signal 
generated by the substrate cleavage. Additionally, these 
compounds might inadvertently interact with assay 
components or viral particles in a manner that artificially 
amplifies the fluorescent signal generated by the cleavage of 
the MUNANA substrate. This may also explain why 
compound 9 did not exhibit clear inhibition of NA activity 
but demonstrated the ability to inhibit viruses in a cell-based 
assay with about 55% protection (Figure 4). Compound 6 
also showed a significant protection of about 30%. 
Nevertheless, it's important to consider that compounds 6 
and 9, with no inhibition in the NA enzymatic activity, have 
off-target effects in the cell-based antiviral activity assay. 
The ineffectiveness of compounds 1 and 7 in the antiviral 
assay might be attributed to their membrane penetration 
ability. 

 
Figure 3. Validation of the compound by NA enzymatic 
activity assay. Eleven compounds were evaluated at a 
concentration of 100 μM, with Zanamivir as the control at 
0.02 μM. 1:64 dilution of virus was selected for the assay. 
Data is normalized to the virus-only group, which is 
arbitrarily set to 100%. The graph summarizes n = 3 
independent experiments. Error bars show mean ± SEM 
(unpaired two-tailed t-test). *p<0.1, **p < 0.01, ****p < 
0.0001, ns = not significant. Comparisons between the virus-
only group and compound 1, compound 7, and Zanamivir 
yielded p-values of 0.0146, 0.0079, and <0.0001, respectively. 
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Figure 4. A cell-based antiviral assay for compounds 
screening. Eleven compounds were assessed at a 
concentration of 50 μM, with ITA19 used as the control at 5 
μM. Data were normalized to the cell-only group, which was 
set at 100%. For cytotoxicity assessment, comparisons 
between the cell-only group and compounds 6, 7, and 9 
yielded p-values of 0.0087, 0.0003, and 0.0047, respectively. 
For drug screening, comparisons between the virus-only 
group and compounds 6, 9, and ITA19 yielded p-values of 
0.0199, 0.0084, and 0.0008, respectively. The graph 
represents n = 2 independent experiments. Error bars 
indicate mean ± SEM (unpaired two-tailed t-test). *p<0.1, **p 
< 0.01, ****p < 0.0001, ns = not significant. 
 
Structural insights from molecular docking and MD 
simulations. 
In order to gain physical insight into the binding process of 
the top CHEMBL compounds to neuraminidase, 11 selected 
compounds were docked into the binding site of 
neuraminidase. Table S1 in SI shows docking energy which 
ranges from -12 to -9 kcal/mol. Docking poses of 11 
compounds binding to neuraminidase are showed in Table 
S2 in SI. For most of these poses, at least two hydrogen bonds 
were formed between the ligand and receptor’s residues.  
A well-known limitation of docking methods is that they 
ignore the dynamics and treat the protein conformation 
essentially as rigid. Therefore, in the next step, we performed 
MD simulations to refine the docking structure of 
CHEMBL1430043 and neuraminidase. Fig S1 (in SI) shows 
the RMSD of the two independent MD trajectories where the 
complex conformation is stabilized after about 25 ns. 

 
Figure 5. Binding pose of CHEMBL1430043 to 
neuraminidase in the representative structure of MD 
trajectory 1. 
 

Fig. 5 shows biding pose of CHEMBL1430043 taken as a 
representative structure in MD trajectory 1.  In this binding 
pose, the compound makes several hydrogen bond contacts 
with neuraminidase’s residues in the binding pocket. A very 
similar binding pose was also observed during another 
independent MD simulation (see Fig S2 in SI) which 
indicates the structure was well equilibrated. 
To study the nature of the interactions between 
CHEMBL1430043 and neuraminidase we calculated the 
probability of the compound making hydrogen bonds and 
hydrophobic contacts with the protein and the result is 
showed in Fig 6. The important residues which make 
significant contacts with the compound include Glu119, 
Asp151, Arg152, Trp179, Glu228, Glu287 and are expected to 
determine the binding process. 
 

 
 
Figure 6. Probability of forming side chain (SC) and hydro-
gen bond (HB) contacts between CHEMBL1430043 and neu-
raminidase. The probability was calculated as the fraction of 
time the contacts were formed over MD trajectory 1. See Fig. 
S3 in SI for the similar plot for MD trajectory 2. 
  
CONCLUSIONS 

 We have employed machine learning approaches to 
virtually screen the large CHEMBL compound database 
consisting of nearly 2 million compounds. The convolutional 
networks on graphs (GraphConv) model show the best 
performance on the test set with Pearson’s R correlation of 
0.8 and RMSE of 1.86 kcal/mol. Molecular docking and MD 
simulations were employed to understand structural 
insights into the binding process between top compounds 
and neuraminidase. The MD simulations shed light into side 
chain and hydrogen bond contacts between the top 
compound and neuraminidase and indicate important 
residues which stabilize the protein-ligand interaction. 
Experimental investigations on the enzymatic inhibition and 
antiviral activities as well as cytotoxicity of 11 compounds 
randomly selected from the top 400 compounds indicated 
that the drug screening hit rate was elevated to an 
impressive range of 9.1% to 18.2% when informed by virtual 
screening predictions. This is starkly contrasting the less 
than 1% hit rates achieved by conventional high-throughput 
screening methods. Such findings underscore the immense 
value of virtual screening in expediting the identification of 
potential drug candidates with IAV-inhibitory properties. 
However, we acknowledge that further refinements are 
essential in our ongoing pursuit. While these compounds 
exhibit promise in NA inhibition, their efficacy in the cell-
based assay was not good compared to the control group. 
This observation suggests the virtual screening process may 
only encompass some relevant factors on the virus's surface. 
As we chart our research path forward, we recognize the 
need for strategic compound modifications to enhance their 
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NA inhibition capacity. Future investigations will be 
dedicated to fine-tuning these compounds to elevate their 
antiviral potential and advance the fight against IAV. 
 
ASSOCIATED CONTENT  

Data and Software Availability 
All relevant data to necessary to reproduce all results in the 
paper are  within the main text, SI file and the GitHub 
repository 
(https://github.com/nguyentrunghai/Neuraminidase). 
Python code for training ML models, training data set, MD 
input files, parameter files, topology files can be found in this 
Github repository. 
 
AUTHOR INFORMATION 

Corresponding Author 
Son Tung Ngo - Laboratory of Biophysics, Institute for 
Advanced Study in Technology, Ton Duc Thang University, 
Ho Chi Minh City, Vietnam; Faculty of Pharmacy , Ton Duc 
Thang University, Ho Chi Minh City, Vietnam; Email: 
ngosontung@tdtu.edu.vn  
Jim-Tong Horng - Department of Biochemistry and 
Molecular Biology, College of Medicine, Chang Gung 
University, Kweishan, Taoyuan, Taiwan; Email: 
jimtong@cgu.edu.tw  
 
ACKNOWLEDGMENT  

This	work	was	supported	by	Ho	Chi	Minh	City	Foundation	for	
Science	 and	Technology	Development	 under	 grant	 number	
115/QĐ-SKHCN.	
 
REFERENCES 

1.	 Palese,	P.,	Influenza:	old	and	new	threats.	Nat	Med	
2004,	10	(12	Suppl),	S82-7.	
2.	 Hsieh,	Y.	C.;	Wu,	T.	Z.;	Liu,	D.	P.;	Shao,	P.	L.;	Chang,	L.	
Y.;	 Lu,	C.	Y.;	 Lee,	C.	Y.;	Huang,	 F.	Y.;	Huang,	 L.	M.,	 Influenza	
pandemics:	 past,	 present	 and	 future.	 J	 Formos	 Med	 Assoc	
2006,	105	(1),	1-6.	
3.	 Ferguson,	N.	M.;	Fraser,	C.;	Donnelly,	C.	A.;	Ghani,	A.	
C.;	Anderson,	R.	M.,	Public	health.	Public	health	risk	from	the	
avian	H5N1	 influenza	 epidemic.	 Science	2004,	304	 (5673),	
968-9.	
4.	 Yen,	 H.-L.;	 Webster,	 R.,	 Pandemic	 Influenza	 as	 a	
Current	Threat.	In	Vaccines	for	Pandemic	Influenza,	Compans,	
R.	W.;	Orenstein,	W.	A.,	Eds.	Springer	Berlin	Heidelberg:	2009;	
Vol.	333,	pp	3-24.	
5.	 WHO	 Pandemic	 (h1n1)	 2009	 briefing	 note	 4.	
http://www.who.int/csr/disease/swineflu/notes/h1n1_situ
ation_20090724/en/.	
6.	 Neumann,	G.;	Noda,	T.;	Kawaoka,	Y.,	Emergence	and	
pandemic	 potential	 of	 swine-origin	 H1N1	 influenza	 virus.	
Nature	2009,	459	(7249),	931-9.	
7.	 Mingxin,	L.;	Haizhou,	L.;	Yuhai,	B.;	Jianqing,	S.;	Gary,	
W.;	Di,	L.;	Laixing,	L.;	Juxiang,	L.;	Quanjiao,	C.;	Hanzhong,	W.;	
Yubang,	 H.;	 Weifeng,	 S.;	 George,	 F.	 G.;	 Jianjun,	 C.,	 Highly	
Pathogenic	Avian	Influenza	A(H5N8)	Virus	in	Wild	Migratory	
Birds,	Qinghai	Lake,	China.	Emerg	Infect	Dis	2017,	23	(4),	637.	
8.	 Wu,	Y.;	Bi,	Y.;	Vavricka,	C.	J.;	Sun,	X.;	Zhang,	Y.;	Gao,	
F.;	Zhao,	M.;	Xiao,	H.;	Qin,	C.;	He,	J.;	Liu,	W.;	Yan,	J.;	Qi,	J.;	Gao,	
G.	 F.,	 Characterization	of	 two	distinct	neuraminidases	 from	

avian-origin	 human-infecting	 H7N9	 influenza	 viruses.	 Cell	
Res	2013,	23	(12),	1347-1355.	
9.	 Perrier,	 A.;	 Eluard,	 M.;	 Petitjean,	 M.;	 Vanet,	 A.,	 In	
Silico	 Design	 of	 New	 Inhibitors	 Against	 Hemagglutinin	 of	
Influenza.	J.	Phys.	Chem	B	2019,	123	(3),	582-592.	
10.	 Choi,	W.-S.;	Jeong,	J.	H.;	Kwon,	J.	J.;	Ahn,	S.	J.;	Lloren,	
K.	K.	S.;	Kwon,	H.-I.;	Chae,	H.	B.;	Hwang,	J.;	Kim,	M.	H.;	Kim,	C.-
J.;	Webby,	R.	J.;	Govorkova,	E.	A.;	Choi,	Y.	K.;	Baek,	Y.	H.;	Song,	
M.-S.,	 Screening	 for	 Neuraminidase	 Inhibitor	 Resistance	
Markers	among	Avian	Influenza	Viruses	of	the	N4,	N5,	N6,	and	
N8	Neuraminidase	Subtypes.	J.	Virol.	2018,	92	(1).	
11.	 Albohy,	A.;	Zhang,	Y.;	Smutova,	V.;	Pshezhetsky,	A.	
V.;	 Cairo,	 C.	 W.,	 Identification	 of	 Selective	 Nanomolar	
Inhibitors	 of	 the	 Human	 Neuraminidase,	 NEU4.	 ACS	 Med.	
Chem.	Lett.	2013,	4	(6),	532-537.	
12.	 Zhang,	G.-Q.;	Chang,	H.;	Gao,	Z.;	Deng,	Y.-p.;	Zeng,	S.;	
Shang,	 L.;	 Ding,	 D.;	 Liu,	 Q.,	 Neuraminidase-Activatable	 NIR	
Fluorescent	Probe	for	Influenza	Virus	Ratiometric	Imaging	in	
Living	Cells	and	Colorimetric	Detection	on	Cotton	Swabs.	ACS	
Materials	Lett	2023,	5	(3),	722-729.	
13.	 Tam,	N.	M.;	Nguyen,	M.	T.;	Ngo,	S.	T.,	Evaluation	of	
the	 Absolute	 Affinity	 of	 Neuraminidase	 Inhibitor	 using	
Steered	 Molecular	 Dynamics	 Simulations.	 J.	 Mol.	 Graph.	
Model.	2017,	77,	137-142.	
14.	 Nagao,	M.;	 Yamaguchi,	 A.;	Matsubara,	 T.;	Hoshino,	
Y.;	 Sato,	 T.;	 Miura,	 Y.,	 De	 Novo	 Design	 of	 Star-Shaped	
Glycoligands	with	 Synthetic	 Polymer	 Structures	 toward	 an	
Influenza	Hemagglutinin	Inhibitor.	Biomacromolecules	2022,	
23	(3),	1232-1241.	
15.	 Waldmann,	M.;	 Jirmann,	R.;	Hoelscher,	K.;	Wienke,	
M.;	 Niemeyer,	 F.	 C.;	 Rehders,	 D.;	 Meyer,	 B.,	 A	 Nanomolar	
Multivalent	Ligand	as	Entry	Inhibitor	of	the	Hemagglutinin	of	
Avian	Influenza.	J.	Am.	Chem.	Soc.	2014,	136	(2),	783-788.	
16.	 Das,	K.;	Aramini,	J.	M.;	Ma,	L.-C.;	Krug,	R.	M.;	Arnold,	
E.,	 Structures	 of	 influenza	 A	 proteins	 and	 insights	 into	
antiviral	drug	targets.	Nature	Structural	&	Molecular	Biology	
2010,	17	(5),	530-538.	
17.	 Klaus,	 S.,	 Preventing	 and	 treating	 influenza.	 BMJ	
2003,	326	(7401),	1223.	
18.	 Hurt,	 A.	 C.,	 The	 epidemiology	 and	 spread	 of	 drug	
resistant	 human	 influenza	 viruses.	 Current	 Opinion	 in	
Virology	2014,	8,	22-29.	
19.	 Bloom,	 J.	 D.;	 Gong,	 L.	 I.;	 Baltimore,	 D.,	 Permissive	
Secondary	 Mutations	 Enable	 the	 Evolution	 of	 Influenza	
Oseltamivir	 Resistance.	 Science	 2010,	 328	 (5983),	 1272-
1275.	
20.	 Cass,	 L.	 M.	 R.;	 Efthymiopoulos,	 C.;	 Bye,	 A.,	
Pharmacokinetics	 of	 Zanamivir	 After	 Intravenous,	 Oral,	
Inhaled	or	Intranasal	Administration	to	Healthy	Volunteers.	
Clinical	Pharmacokinetics	1999,	36	(1),	1-11.	
21.	 Van	Drie,	J.	H.,	Computer-aided	drug	design:	the	next	
20	years.	J	Comput	Aided	Mol	Des	2007,	21	(10),	591-601.	
22.	 Marshall,	G.	R.,	Computer-Aided	Drug	Design.	Ann.	
Rev.	Pharmacol.	Toxicol.	1987,	27,	193-213.	
23.	 Ngo,	 S.	 T.;	 Hung	Minh,	 N.;	 Le	 Thi	 Thuy,	 H.;	 Pham	
Minh,	Q.;	Vi	Khanh,	T.;	Nguyen	Thanh,	T.;	Van,	V.,	Assessing	
Potential	 Inhibitors	 for	 SARS-CoV-2	 Main	 Protease	 from	
Available	Drugs	using	Free	Energy	Perturbation	Simulations.	
RSC	Adv	2020,	10,	40284-40290.	
24.	 Ngo,	S.	T.;	Fang,	S.-T.;	Huang,	S.-H.;	Chou,	C.-L.;	Huy,	
P.	 D.	 Q.;	 Li,	 M.	 S.;	 Chen,	 Y.-C.,	 Anti-Arrhythmic	 Medication	
Propafenone	 a	 Potential	 Drug	 for	 Alzheimer’s	 Disease	
Inhibiting	Aggregation	of	Aβ:	In	Silico	and	In	Vitro	Studies.	J.	
Chem.	Inf.	Model.	2016,	56	(7),	1344-1356.	
25.	 Tam,	N.	M.;	Pham,	M.	Q.;	Ha,	N.	X.;	Nam,	P.	C.;	Phung,	
H.	 T.	 T.,	 Computational	 Estimation	 of	 Potential	 Inhibitors	

https://doi.org/10.26434/chemrxiv-2024-89cw5 ORCID: https://orcid.org/0000-0003-1848-3963 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-89cw5
https://orcid.org/0000-0003-1848-3963
https://creativecommons.org/licenses/by/4.0/


 

 

from	Known	Drugs	Against	the	Main	Protease	of	SARS-CoV-2.	
RSC	Adv	2021,	11	(28),	17478-17486.	
26.	 Vijayakrishnan,	R.,	Structure-based	drug	design	and	
modern	medicine.	J.	Postgrad.	Med.	2009,	55	(4),	301-304.	
27.	 Sliwoski,	 G.;	 Kothiwale,	 S.;	 Meiler,	 J.;	 Lowe,	 E.	W.,	
Computational	Methods	 in	Drug	Discovery.	Pharmacol.	Rev.	
2014,	66	(1),	334-395.	
28.	 Mendez,	D.;	Gaulton,	A.;	Bento,	A.	P.;	Chambers,	 J.;	
De	Veij,	M.;	Félix,	E.;	Magariños,	María	P.;	Mosquera,	Juan	F.;	
Mutowo,	P.;	Nowotka,	M.;	Gordillo-Marañón,	M.;	Hunter,	F.;	
Junco,	L.;	Mugumbate,	G.;	Rodriguez-Lopez,	M.;	Atkinson,	F.;	
Bosc,	 N.;	 Radoux,	 Chris	J.;	 Segura-Cabrera,	 A.;	 Hersey,	 A.;	
Leach,	 Andrew	R.,	 ChEMBL:	 towards	 direct	 deposition	 of	
bioassay	data.	Nucleic	Acids	Res	2018,	47	(D1),	D930-D940.	
29.	 Chen,	 T.;	 Guestrin,	 C.,	 XGBoost:	 A	 Scalable	 Tree	
Boosting	 System.	 KDD	 '16:	 Proceedings	 of	 the	 22nd	 ACM	
SIGKDD	International	Conference	on	Knowledge	Discovery	and	
Data	Mining	2016,	785–794.	
30.	 Duvenaud,	 D.	 K.;	 Maclaurin,	 D.;	 Iparraguirre,	 J.;	
Bombarell,	 R.;	 Hirzel,	 T.;	 Aspuru-Guzik,	 A.;	 Adams,	 R.	 P.,	
Convolutional	 Networks	 on	 Graphs	 for	 Learning	Molecular	
Fingerprints.	 In	 Advances	 in	 Neural	 Information	 Processing	
Systems,	 Cortes,	 C.;	 Lawrence,	 N.;	 Lee,	 D.;	 Sugiyama,	 M.;	
Garnett,	R.,	Eds.	Curran	Associates,	Inc.:	2015;	Vol.	28.	
31.	 Ramsundar,	B.;	Eastman,	P.;	Walters,	P.;	Pande,	V.;	
Leswing,	 K.;	 Wu,	 Z.,	 Deep	 Learning	 for	 the	 Life	 Sciences:	
Applying	 Deep	 Learning	 to	 Genomics,	 Microscopy,	 Drug	
Discovery,	and	More.	O'Reilly	Media:	2019.	
32.	 Bergstra,	J.;	Yamins,	D.;	Cox,	D.,	Making	a	Science	of	
Model	Search:	Hyperparameter	Optimization	in	Hundreds	of	
Dimensions	for	Vision	Architectures.	Proceedings	of	the	30th	
International	Conference	on	Machine	Learning	2013,	28,	115-
123.	
33.	 Pedregosa,	F.;	Varoquaux,	G.;	Gramfort,	A.;	Michel,	
V.;	Thirion,	B.;	Grisel,	O.;	Blondel,	M.;	Prettenhofer,	P.;	Weiss,	
R.;	 Dubourg,	 V.;	 Vanderplas,	 J.;	 Passos,	 A.;	 Cournapeau,	 D.;	
Brucher,	M.;	Perrot,	M.;	Duchesnay,	E.,	Scikit-learn:	Machine	
Learning	in	Python.	J.	Mach.	Learn.	Res.	2011,	12,	2825-2830.	
34.	 Trott,	O.;	Olson,	A.	J.,	AutoDock	Vina:	Improving	the	
speed	and	accuracy	of	docking	with	a	new	scoring	function,	
efficient	 optimization,	 and	 multithreading.	 Journal	 of	
Computational	Chemistry	2010,	31	(2),	455-461.	

35.	 Pham,	T.	N.	H.;	Nguyen,	T.	H.;	Tam,	N.	M.;	Y.	Vu,	T.;	
Pham,	N.	T.;	Huy,	N.	T.;	Mai,	B.	K.;	Tung,	N.	T.;	Pham,	M.	Q.;	V.	
Vu,	V.;	Ngo,	S.	T.,	Improving	ligand-ranking	of	AutoDock	Vina	
by	 changing	 the	 empirical	 parameters.	 Journal	 of	
Computational	Chemistry	2022,	43	(3),	160-169.	
36.	 Aliev,	A.	E.;	Kulke,	M.;	Khaneja,	H.	S.;	Chudasama,	V.;	
Sheppard,	 T.	 D.;	 Lanigan,	 R.	 M.,	 Motional	 Timescale	
Predictions	by	Molecular	Dynamics	Simulations:	Case	Study	
using	 Proline	 and	 Hydroxyproline	 Sidechain	 Dynamics.	
Proteins:	Struct.,	Funct.,	Bioinf.	2014,	82	(2),	195-215.	
37.	 Jorgensen,	W.	 L.;	 Chandrasekhar,	 J.;	Madura,	 J.	 D.;	
Impey,	 R.	 W.;	 Klein,	 M.	 L.,	 Comparison	 of	 simple	 potential	
functions	for	simulating	liquid	water.	The	Journal	of	Chemical	
Physics	1983,	79	(2),	926-935.	
38.	 Wang,	J.;	Wolf,	R.	M.;	Caldwell,	J.	W.;	Kollman,	P.	A.;	
Case,	D.	A.,	Development	and	testing	of	a	general	amber	force	
field.	Journal	of	Computational	Chemistry	2004,	25	(9),	1157-
1174.	
39.	 Case,	D.;	Cerutti,	D.;	Cheatham,	T.;	Darden,	T.;	Duke,	
R.;	 Giese,	 T.;	 Gohlke,	H.;	 Goetz,	 A.;	 Greene,	D.;	Homeyer,	N.,	
Amber18	(University	of	San	Francisco).	2017.	
40.	 Sousa	 da	 Silva,	 A.	 W.;	 Vranken,	 W.	 F.,	 ACPYPE	 -	
AnteChamber	PYthon	Parser	 interfacE.	BMC	Research	Notes	
2012,	5	(1),	367.	
41.	 Abraham,	M.	J.;	Murtola,	T.;	Schulz,	R.;	Páll,	S.;	Smith,	
J.	 C.;	 Hess,	 B.;	 Lindahl,	 E.,	 GROMACS:	 High	 performance	
molecular	 simulations	 through	multi-level	parallelism	 from	
laptops	to	supercomputers.	SoftwareX	2015,	1-2,	19-25.	
42.	 Rosmarinic	 acid	 interferes	 with	 influenza	 virus	 A	
entry	 and	 replication	 by	 decreasing	 GSK3β	 and	
phosphorylated	 AKT	 expression	 levels.	 Journal	 of	
Microbiology,	Immunology	and	Infection	2022/08/01,	55	(4).	
43.	 Sethy,	B.;	Hsieh,	C.-F.;	Lin,	T.-J.;	Hu,	P.-Y.;	Chen,	Y.-L.;	
Lin,	 C.-Y.;	 Tseng,	 S.-N.;	 Horng,	 J.-T.;	 Hsieh,	 P.-W.,	 Design,	
Synthesis,	 and	 Biological	 Evaluation	 of	 Itaconic	 Acid	
Derivatives	 as	 Potential	 Anti-Influenza	 Agents.	 Journal	 of	
Medicinal	Chemistry	February	12,	2019,	62	(5).	
44.	 Chemicalize	 was	 Used	 for	 Prediction	 of	 Chemical	
Properties.	 https://chemicalize.com/,	 developed	 by	
ChemAxon.	
45.	 Efron,	B.,	Bootstrap	Methods:	Another	Kook	at	the	
Jackknife.	Ann.	Stat.	1979,	7,	1-26.	

	
	 	

https://doi.org/10.26434/chemrxiv-2024-89cw5 ORCID: https://orcid.org/0000-0003-1848-3963 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-89cw5
https://orcid.org/0000-0003-1848-3963
https://creativecommons.org/licenses/by/4.0/


 

 

Table	of	Contents	Only	
   

	

https://doi.org/10.26434/chemrxiv-2024-89cw5 ORCID: https://orcid.org/0000-0003-1848-3963 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-89cw5
https://orcid.org/0000-0003-1848-3963
https://creativecommons.org/licenses/by/4.0/

