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ABSTRACT: In mixed quantum-classical dynamics, the quantum subsystem can have 

both wave function and particle-like descriptions. However, they may yield inconsistent 

results for the expectation value of the same physical quantity. We here propose a novel 

detailed complementary consistency (DCC) method based on the principle of detailed 

internal consistency. Namely, wave function along each trajectory tells particle how to 

hop, while particle tells wave function how to collapse based on active states in the 

trajectory ensemble. As benchmarked in a diverse array of representative models, DCC 

not only achieves fully consistent results (i.e., identical populations calculated based on 

wave functions and active states), but also closely reproduces the exact quantum results. 

Due to the high performance, our new DCC method is promising for a consistent and 

accurate mixed quantum-classical description of general nonadiabatic dynamics. 
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In chemistry, physics, biology, and materials science, many important processes 

(e.g., proton transfer,1-3 charge transport,4-6 exciton diffusion,7-9 energy relaxation,10-13 

and singlet fission14-17) all belong to the category of nonadiabatic dynamics. Due to the 

presence of quantum transitions, the traditional Born-Oppenheimer approximation is 

no longer valid, and the electronic and nuclear dynamics become strongly coupled. To 

accurately simulate these nonadiabatic processes, different quantum dynamics methods 

have been proposed, including, for instance, the multiconfigurational time-dependent 

Hartree (MCTDH),18,19 the time-dependent density matrix renormalization group (TD-

DMRG),20,21 and the hierarchical equations of motion (HEOM).22-26 Despite the great 

successes, fully quantum dynamics generally needs high computational cost for large 

complex systems, which has significantly limited its applications. 

Mixed quantum-classical dynamics has emerged as a promising alternative to fully 

quantum dynamics for studying complex nonadiabatic dynamics.27,28 We may consider 

a general system with both electronic and nuclear degrees of freedom (DOFs), whose 

coordinates are r and x, respectively. In a mixed quantum-classical manner, the nuclei 

move classically, and the electron is propagated quantum mechanically along the 

nuclear trajectory. At each time t for each trajectory n, the nuclear coordinates are given 

by ( )xn t  and the electronic wave function ( , )rn tψ  can be expressed as 

( , ) ( ) ( ; ( ))n
n i i n

i
t c t tψ φ=∑r r x ,                   (1) 

where ( ; ( ))i n tφ r x  is the electronic basis for state i and ( )n
ic t  is the corresponding 

expansion coefficient. As a result, the wave function description of the population 

distribution on electronic state i at nuclear position x is given by29 
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2wf 1( , ) ( ) ( )( )n

ii i n
n

t c t
N

tρ δ= −∑x x x , (2) 

where N is the number of trajectories. To give a particle-like description of the same 

distribution, we also assume that each trajectory n occupies an active electronic state 

( )na t  at each time t. Then, the population distribution can also be calculated by the 

probability that a trajectory stays at the specific position x and state i,29 

 , ( )
as 1( , ) ( ( ))x x x

ni ai ti n
n

t
N

tρ δ δ= −∑ . (3) 

In principle, these two descriptions in Eqs. (2) and (3) should yield identical results at 

any time and any place because they represent different interpretations of the same 

population distribution. In the discussions below, this is referred to as the principle of 

detailed internal consistency of mixed quantum-classical dynamics. 

As a seminal mixed quantum-classical dynamics method, Tully’s fewest switches 

surface hopping (FSSH)30 has been widely utilized in many research fields. The FSSH 

hopping probabilities are defined along each trajectory to ensure that the fraction of 

trajectories on each surface at any time follows the statistical populations based on wave 

functions. Although the FSSH results have shown better detailed balance,31,32 the 

detailed internal consistency is not guaranteed due to the presence of frustrated hops 

and lack of decoherence.33-37 Recently, we proposed the auxiliary branching corrected 

surface hopping (A-BCSH)38 and the auxiliary branching corrected mean field (A-

BCMF)39 methods, which have achieved significantly better accuracy and consistency 

simultaneously compared to FSSH, implying a possible intrinsic connection between 

accuracy and detailed internal consistency in mixed quantum-classical dynamics. 
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When inconsistency arises, it is not straightforward to directly equate wf ( , )xii tρ  

and as ( , )xii tρ  due to the ambiguity regarding the accuracy of these two distributions. 

To solve this problem, we apply the consistency correction in order. On one side, along 

each trajectory, the wave function propagated by the time-dependent Schrödinger 

equation (TDSE) could give the first-order derivative of population with respect to time 

and thus defines the population fluxes between electronic states. These population 

fluxes cannot be obtained from the particle-like description based on active states, in 

which the system moves classically on adiabatic surfaces. Thereby, it is natural to utilize 

these population fluxes to redistribute the occupation of active states, which ensures the 

unidirectional consistency from wave function to particle-like descriptions. Namely, 

wave function tells particle how to hop, just as in the traditional FSSH.30 On the other 

side, for systems with localized nonadiabatic couplings (NACs), the occupation of 

active states generally gives a better description of the spatial distribution than the wave 

function by TDSE,40,41 which may give erroneous populations for electronic states with 

too high energies. Thereby, we can use the distribution of active states to properly 

collapse the wave function and introduce decoherence. As a result, the detailed internal 

consistency can be realized for population distributions in both the nuclear phase space 

and the electronic state space. Note that the wave function collapse may significantly 

change the population fluxes, and thus should be made after the surface hops. 

Based on the detailed internal consistency, we present a detailed complementary 

consistency (DCC) method. The total Hamiltonian of a general system is written as 

 ˆ ˆ ˆ ( ; )n eH T H+= r x , (4) 
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where n̂T   represents the kinetic energy operator of the nuclei, and ˆ ( ; )eH r x   is the 

electronic Hamiltonian at the given nuclear position x. By solving the time-independent 

Schrödinger equation, 

 ˆ ( ; ) ; ) ; )((( )e i i iEH φ φ=r x r x x r x , (5) 

we can get all the adiabatic energies { ( )}xiE  and the corresponding adiabatic states 

{ }; )(iφ r x . The electronic wave function ( )ψ r  can be linearly expanded as 

 (( ) ; )i i
i

cψ φ=∑r r x , (6) 

where { }ic  are the expansion coefficients. Substituting Eq. (6) into the TDSE gives 

 ( )x di j ij ij
j

di V i
t

c c
d

= − ⋅∑ 
  , (7) 

where ˆ( ; ) | ( ; ) | ( ; )ij i e jV Hφ φ= r x r x r x   are the matrix elements of the adiabatic 

Hamiltonian and ( ; ) | ( ; )xd r x r xij i jφ φ∇=  are the NACs between adiabatic states i 

and j. The time evolution of the density matrix element *
ij i jc cρ =  along the trajectory 

is then given by30 

 ( ) ( )x d x dij kj ik ik ik kj kj
k

di V i V i
dt
ρ ρ ρ = − ⋅ − − ⋅ ∑  

   . (8) 

The nuclei move on the active surface a through solving the Newtonian equation 

 aa
d

t
V

d
= −∇x

p , (9) 

where p represents the nuclear momenta. 

In principle, different approaches exist to ensure the consistency of active states 

according to the population fluxes. For instance, surface hopping probabilities can be 

defined based on NACs as in FSSH30 and global fluxes as in the global flux surface 

hopping (GFSH).42 Recently, we have shown that both FSSH and GFSH with proper 
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branching correction gives identical results in a large number of multilevel scattering 

problems.43 In principle, this consistency correction can also be realized via coupled  

trajectories.44,45 For simplicity, we here adopt the FSSH hopping probabilities and use 

velocity rescaling along the NAC direction to conserve the total energy for successful 

surface hops in each DCC trajectory. 

Concerning the consistency correction of wave function based on active states, 

each trajectory in the trajectory ensemble has the corresponding wave function, and 

thus there also exist many potential solutions. In this study, we consider the simplest 

approach. For a trajectory n at time t, suppose the nuclear coordinates and momenta are 

given by ( )xn t  and ( )pn t , respectively. After the density matrix is obtained through 

solving Eqs. (7) and (8), the diagonal elements of the density matrix are reset as 

 ,asn
ii iiρ ρ= , (10) 

where ,asn
iiρ  represents the local occupancy of active states on the surface i close to 

trajectory n. Subsequently, we rescale the off-diagonal density matrix elements by29 

 
,as ,as

*
*| |

n n
ii jj

ij i j
i j

c c
c c

ρ ρ
ρ = . (11) 

In detail, we determine the number of local trajectory neighbors on each surface i whose 

positions are within a specified distance ε and directions of momenta are within a 

specified angular distance β, 

 ( )2 2
,

1 ||
|| || cos( )

|| || || l

N
n n l

n l i a
l n l

iN ε β δ
=

 ⋅
Θ − Θ − ⋅ 

= −∑ p px x
p p

, (12) 

where la  is the active state of trajectory l, || ||⋅  represents the Euclidean norm, and 

( )xΘ  is the Heaviside step function defined as 
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1, 0

( )
0, 0

x
x

x
≥

Θ =  <
. (13) 

Given Eq. (12), we can estimate the local trajectory density for the n-th trajectory as 

 ,as
n

n i

jj
nii

N
N

ρ =
∑

. (14) 

Here, we have introduced the parameters ε and θ to estimate the number of local 

trajectories of the specified trajectory, which could significantly enhance the numerical 

stability and efficiency. The computational details and convergence of DCC results are 

given in the Supporting Information (SI). 

To extensively benchmark the performance of DCC, we study a variety of two-

level models proposed in the literature and use the exact quantum dynamics by the 

discrete variable representation (DVR)46-48 and FSSH30 results as references. Atomic 

units are used unless otherwise noted. We first focus on the three standard one-

dimensional scattering models proposed by Tully,30 including the simple avoided 

crossing (SAC), the dual avoided crossing (DAC), the extended coupling with 

reflection (ECR) models. We then study two more challenging two-dimensional 

scattering models proposed by Subotnik,49,50 i.e., the STD-1 and STD-2 models. Finally, 

we consider three one-dimensional bound-state models designed by Agostini,51,52 i.e., 

the BS-1, BS-2 and BS-3 models. To facilitate the discussions about detailed internal 

consistency below, the DCC (FSSH) results based on wave functions and active states 

are named as DCC-wf and DCC-as (FSSH-wf and FSSH-as), respectively. 

In Figure 1A, we show the transmission probability on the upper surface as a 

function of the initial momentum k in the SAC model. While FSSH-as properly 

characterizes the dynamics, FSSH-wf does not perform well for k < 10. In these low-
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energy cases, many trajectories do not have enough kinetic energies to hop to the upper 

surface in the interacting region, leading to frustrated hops and inconsistency between 

active states and wave functions. As these trajectories leave the interacting region, the 

wave function propagated by TDSE still contributes to transmission on the upper 

surface, while the active states do not have such probabilities. Due to the inherent 

detailed internal consistency, DCC naturally solves this problem. Regardless of the 

analysis method, both DCC-as and DCC-wf reproduce the exact quantum dynamics for 

all the investigated k cases. Figure 1B shows strong Steuckelberg oscillations in the 

transmission on the upper surface in the DAC model due to quantum interference.30 

Compared with the exact quantum results, FSSH shows smaller oscillation amplitudes 

and different phases. Again, FSSH-as and FSSH-wf give inconsistent results for small 

k, similar to those in the SAC model. In comparison, DCC-as and DCC-wf with the 

phase correction50 give fully consistent and much more accurate results. 

In Figures 1C and 1D, we show probabilities of reflection on the lower surface and 

transmission on the upper surface in the ECR model, respectively. It is apparent that 

FSSH shows even more significant inconsistency in the small k cases. Both FSSH-as 

and FSSH-wf show evident oscillations and overestimated strengths in the reflection 

probabilities on the lower surface for k < 14 (see Figure 1C). The inconsistency of FSSH 

results in wrong population fluxes when the trajectories re-enter the interaction region. 

As shown in Figure 1D, FSSH-as gives no transmission on the upper surface for k < 25 

because the kinetic energies are not enough to afford the surface hops, but FSSH-wf 

gives completely wrong results due to overcoherence. In comparison, DCC always 
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maintains the consistency and ensures accurate fluxes even when the wave packet 

experiences multiple interaction regions. These results highlight the importance of 

maintaining consistency in mixed quantum-classical simulations of complex systems. 

Besides the final channel populations, we also examine the spatial distribution of 

population at different time to further benchmark the performance of DCC. As an 

illustration, we consider the ECR model with k = 10. Figure 2 shows three critical time 

snapshots of the dynamics, i.e., entry of the initial wave packet into the interaction 

region, reflection of the wave packet on the upper surface, and reentry of the reflected 

wave packet into the interaction region. Due to the nearly degenerate adiabatic surfaces 

in the interaction region, both FSSH and DCC achieve consistent results and the spatial 

distributions of population agree well with the exact quantum dynamics at the first 

snapshot (see Figures 2A and 2D). When the wave packets exit the interaction region 

and branch on different surfaces, however, inconsistency emerges between FSSH-wf 

and FSSH-as results (see Figures 2B and 2E). In particular, FSSH-wf underestimates 

(overestimates) the population of the upper (lower) state for x < -1.5, and it is the 

opposite for x > 1.5. As shown in Figures 2C and 2F, when the wave packets reenter the 

interaction region, the inconsistency of FSSH results in inaccurate transitions and too 

large (small) populations on the lower (upper) surface. Encouragingly, DCC reproduces 

the correct spatial distribution of population throughout the whole dynamics. 

In the one-dimensional scattering models studied above, DCC has demonstrated 

consistency and high accuracy simultaneously. We further investigate whether the DCC 

method can effectively describe more complex problems involving more classical 

https://doi.org/10.26434/chemrxiv-2024-0r04j-v2 ORCID: https://orcid.org/0009-0009-8550-1202 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-0r04j-v2
https://orcid.org/0009-0009-8550-1202
https://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

DOFs. We consider two representative models proposed by Subotnik.49,50 For the STD-

1 model, the Hamiltonian is defined as49 

 11 1 1( , ) tanh( )H x y A B x= − , (15) 

 22 2 2 2 2 2( , ) tanh[ ( 1) cos( / 2)] 3 / 4H x y A B x C D y Aπ= − + + + , (16) 

 2
12 21 3 3( , ) ( , ) exp( )H x y H x y A B x= = − , (17) 

where A1 = 0.05, B1 = 0.6, A2 = 0.2, B2 = 0.6, C2 = 2.0, D2 = 0.3, A3 = 0.015 and B3 = 

0.3. To assess the performance of our DCC method across a broad range of parameters, 

we place the initial Gaussian wave packet on either the lower or the upper surface at 

(x0, y0), where x0 = -4 and y0 takes values of -2, -1, 0, 1, 2, 3, 4 or 5. In addition, the 

initial momentum is oriented at an angle θ of 0°, 15°, 30° or 45° with respect to the x-

axis. When the initial wave packet is placed on the lower (upper) surface, the momenta 

range from 16 to 28 (8 to 20). In total, we have considered 832 initial conditions. We 

use a time step of dt = 0.2. For each set of initial parameters, the maximum simulation 

time for the dynamics corresponds to the time at which the electronic population 

passing through the boundaries (x = -15 or 25, y = -15 or 25) reaches 10-6 in the exact 

quantum dynamics. The entire space is divided by the two central lines (i.e., x = 5 and 

y = 5) into four subspaces, resulting in a total number of eight channels on the two 

surfaces. The population of each channel is calculated by integrating the electronic 

population density within the corresponding subspace. 

To provide a comprehensive measure of the overall accuracy of FSSH and DCC 

methods in predicting channel populations for the large range of initial conditions, we 

define the root mean square error (RMSE) of population as 
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 ( )2method, D
8

1

V ,

1

R1RMSE
8

j
M

j i

j
i iPP

M = =

−= ∑∑ , (18) 

where M represents the number of total initial conditions, method, j
iP  and DVR, j

iP  are 

the populations of the i-th channel at the final snapshot for the j-th initial condition by 

a mixed quantum-classical dynamics method (i.e., FSSH or DCC) and the exact 

quantum dynamics with DVR,46-48 respectively. 

In Figures 3A and 3B, we show the RMSE of population for FSSH and DCC 

results. It is apparent that there exist notable differences between FSSH-wf and FSSH-

as with values of about 0.09 at large k, indicating a considerable inconsistency in FSSH. 

Even when using the active states for trajectory analysis, the error of FSSH-as remains 

at about 0.03. These results imply the similar challenges identified in Figure 1C for the 

ECR model. Namely, after the wave packet encounters steep barriers, the active states 

and wave functions become inconsistent, primarily due to frustrated hopping and wave 

packet branching.43,53 The cumulative errors become apparent when the wave packet 

reenters the interaction region. Encouragingly, DCC is free from these complications 

by holding the detailed internal consistency, significantly reducing the errors to about 

0.01. As expected, both DCC-wf and DCC-as produce identical results. 

The Hamiltonian of the STD-2 model is defined as50 

 11 0( , )H x y E= − , (19) 

 ( )2 2
22 ( , ) exp (0.75 0( ) . ( )25 )H x y A B x y x y= +− − + − , (20) 

 ( )2 2
12 21 0( , ) ( , ) exp (0.25( ) ).75( )H x y H x y C D x y x y= = − + −+ , (21) 

where A = 0.15, B = 0.14, C = 0.015, D = 0.06, and E0 = 0.05. To conduct a thorough 

benchmark, we set the initial conditions with x0 = -8 and y0 in the range from -4 to 1, 
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and the angle θ with respect to the x-axis taking values of 0°, 15° or 30°. When starting 

from the upper (lower) surface, the momenta of the initial wave packet range from 8 to 

20 (4 to 16). As a result, we analyze the channel populations over a set of 468 initial 

conditions. The time step size is set as dt = 0.2. Both x and y are in the range of (-15, 

15). The entire space is divided by the two central lines (i.e., x = 0 and y = 0) into four 

subspaces, and the definition of channel populations is similar to that in STD-1. 

As shown in Figures 3C and 3D, FSSH-wf and FSSH-as still produce inconsistent 

results. Compared with the STD-1 model, although the differences between FSSH-wf 

and FSSH-as results are smaller in the STD-2 model, the errors FSSH-as are increased, 

implying that small inconsistency during the nonadiabatic dynamics may induce large 

errors. In contrast, DCC-wf and DCC-as yield identical results and substantially reduce 

the errors to about 0.01, which are similar to those in STD-1. These results further 

suggest that ensuring the detailed internal consistency can significantly reduce the 

errors inherent in FSSH. Detailed results for the STD-1 and STD-2 models are given in 

the SI. In almost all initial conditions, DCC performs much better than FSSH, indicating 

a systemic improvement of accuracy for nonadiabatic dynamics simulations. 

We further select a representative initial condition for the STD-2 model, where the 

initial wave packet starts from the excited surface with the initial parameters of x = -8, 

y = 0, θ = 15° and k = 16. In Figures 4A and 4D, we show the population distributions 

by DVR at the final snapshot (i.e., t = 1900 au) on the upper and lower surfaces, 

respectively. As the initial wave packet enters the interaction region from the left side, 

a new wave packet component is generated on the upper surface due to the strong NAC. 
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These two wave packet components branch in the interaction region. While the initial 

wave packet remains in this region, it spawns another wave packet component on the 

lower surface. However, because the NAC is weak at the edge of the interaction region, 

the intensity of the new wave packet component is relatively weak. Finally, the wave 

packets are completely separated, resulting in two primary population channels and a 

secondary population channel (see Figures 4A and 4D). As shown in Figures 4B and 

4E, the population distribution of FSSH-wf even shows wrong numbers of wave packet 

components on both upper and lower surfaces due to the lack of decoherence. In 

contrast, DCC successfully reproduces both the shape and intensity of the exact 

quantum dynamics, demonstrating the accuracy of DCC in handling branching within 

the interaction region. 

To further examine the potential of DCC in condensed-phase applications, we 

consider a one-dimensional bound-state model, which consists of one nuclear DOF and 

two electronic states. The Hamiltonian reads51,52 

 2
11 1

1
2

( ) ( )H x K x R= − , (22) 

 2
22 2

1( ) ( )
2

H Kx x R= − + ∆ , (23) 

 ( )2
12 21 3( ) ( ) e p ( )xH x x b a xH R−= = − , (24) 

where K = 0.02, a = 3.0, R1 = 6.0 and R2 = 2.0. Considering different energy differences 

Δ and reorganization energies 2
1 2( ) / 2rE K R R= − , BS-1 and BS-3 are in the direct 

regime and BS-2 is in the inverted regime as in the Marcus theory of charge transfer.54 

The other parameters are listed in the SI. In BS-1 and BS-2, the initial wave packets are 
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fully promoted to the excited state (S1). In BS-3, 20% of the population is vertically 

placed on the excited state creating a coherent superposition. 

The time-dependent excited-state populations based on active states and wave 

functions can be respectively calculated as 

 as
2,22 ( )

1( )
na t

n
t

N
ρ δ= ∑ , (25) 

 2

22
wf

2
1( ) ( )n

n
t c t

N
ρ = ∑ , (26) 

where 2 ( )nc t  is the wave function component of the excited state at time t for the n-th 

trajectory. With the population distributions in Eq. (2), the indicator of coherence can 

be defined as51 

 
wf wf

11 22
12 wf wf

11 22

( ) ( )( )
( ) (

,d
, )
,

,
t t

t
t

t
ρ ρσ
ρ ρ

=
+∫

x xx
x x

, (27) 

which corresponds to the intensity of overlap between wave packets on the two surfaces. 

As shown in Figure 5, because the nuclear wave packet periodically propagates 

through the crossing region, the excited-state population in the exact quantum dynamics 

experiences stepwise transitions to the ground state. And the coherence shows periodic 

increase and subsequent decay to zero due to the reflection and separation of wave 

packets on different surfaces. In all the three investigated bound-state models under 

different parameters and initial conditions, DCC-wf and DCC-as show accurate and 

consistent results, while both FSSH-wf and FSSH-as yield significant deviations. In the 

BS-3 model, the excited-state population of FSSH-wf even erroneously increases with 

time, which is the opposite of that in the exact quantum dynamics (see Figure 5E). In 

addition, FSSH-as strongly overestimates the population transfer from the excited state 
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to the ground state due to the lack of decoherence (see Figure 5E). The shortcomings 

of FSSH become more pronounced when the inconsistent wave function is used to 

calculate coherence. As shown in Figures 5B, 5D and 5F, FSSH remains overcoherent 

after the wave packet leaves the crossing region for the first time. In comparison, DCC 

perfectly captures the decoherence in the exact quantum dynamics. It is important to 

note that Agostini and coworkers have extensively studied the BS-3 model with many 

different methods,52 none of which could reproduce the strong coherence peak at about 

t = 100 fs (see Figure 5F). In our present study, the DCC results are almost on top of 

the exact solutions, further highlighting the excellent performance of DCC. 

In summary, we have presented the principle of detailed internal consistency for 

mixed quantum-classical nonadiabatic dynamics simulations. Namely, the population 

distributions based on wave functions and active states should be identical at any time 

and any space. Based on this principle, we have proposed a novel DCC method, which 

naturally involves surface hopping based on the wave function in individual trajectories 

and wave function collapse (i.e., decoherence) based on the local occupation of active 

states with neighboring trajectories. DCC has been extensively benchmarked in both 

one-dimensional and two-dimensional problems with localized NACs. Both scattering 

and bound-state systems have been studied. In all investigated cases, DCC has exhibited 

high accuracy, regardless of using active states or wave functions for trajectory analysis. 

Due to the remarkable performance, DCC has presented significant potential for the 

application in general complex systems. From some point of view, our DCC method 

can also be regarded as a self-consistent wave-particle description of the quantum 
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subsystem in contact with a classical bath and deserves further study. 

Finally, there are still a few points worth discussing. (1) For clarity, we here adopt 

the simplest algorithm to ensure the principle of detailed internal consistency. Namely, 

for a specified trajectory, the population of each state follows the local occupation of 

active states in the trajectory ensemble. We have shown that even such a local trajectory 

density approximation could give encouraging results. In principle, better solutions are 

possible. For instance, we may consider the spatial gradient or higher-order derivatives 

of the trajectory density to include non-local effects. (2) In the present study, we focus 

on illustration of the importance of detailed internal consistency in mixed quantum-

classical dynamics. The number of trajectories needed for DCC simulations with the 

current algorithm, however, may increase significantly with the spatial dimensionality. 

To consider the principle of detailed internal consistency for more complex condensed-

phase systems (e.g., the Fenna-Matthews-Olson complex,55 the spin-boson models,56-59 

and the Holstein-Peierls models60-62), more efficient algorithms are still needed to 

reduce the computational cost. These studies are currently under way. 
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Figure 1. Transmission probabilities on the upper surface for (A) SAC and (B) DAC 

models, and (C) reflection probabilities on the lower surface and (D) transmission 

probabilities on the upper surface for the ECR model. The black open circles represent 

the exact quantum dynamics by DVR. The results of FSSH-wf, FSSH-as, DCC-wf and 

DCC-as are shown by blue, light blue, red and light red solid circles, respectively. 
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Figure 2. Population distribution on the (A-C) upper and (D-F) lower surfaces for the 

ECR model with the initial momentum of k = 10 au. The black lines represent the exact 

quantum dynamics by DVR. The results of FSSH-wf, FSSH-as, DCC-wf and DCC-as 

are shown by blue, light blue, red, and light red lines, respectively. The upper and lower 

adiabatic surfaces are shown by grey lines to guide the eyes. (A, D), (B, E) and (C, F) 

correspond to t = 3000, 4000 and 6000 au, respectively. 
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Figure 3. RMSE of population for the STD-1 model when initially starting from the 

(A) lower and (B) upper surfaces, and RMSE of population for the STD-2 model when 

initially starting from the (C) lower and (D) upper surfaces. The results of FSSH-wf, 

FSSH-as, DCC-wf and DCC-as are shown by blue, light blue, red and light red solid 

circles, respectively. 
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Figure 4. Spatial distribution of population for the STD-2 model on the (A-C) upper 

and (D-F) lower surfaces at t = 1900 au. The initial wave packet is placed on the upper 

surface with the parameters of x = -8, y = 0, θ = 15° and k = 16. (A, D), (B, E) and (C, 

F) are the results of exact quantum dynamics, FSSH-wf, and DCC-wf, respectively. The 

lighter colors indicate higher populations.  
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Figure 5. Time-dependent excited-state population and coherence for the (A, B) BS-1, 

(C, D) BS-2 and (E, F) BS-3 models. The black lines represent the exact quantum 

dynamics. In (A, C, E), the results of FSSH-wf, FSSH-as, DCC-wf and DCC-as are 

shown by blue, light blue, red and light red lines, respectively. In (B, D, F), the results 

of FSSH and DCC are shown by blue and red lines, respectively. 
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