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Abstract 16 

The rapid emergence of large language model (LLM) technology presents significant 17 

opportunities to facilitate the development of synthetic reactions. In this work, we leveraged the power 18 

of GPT-4 to build a multi-agent system to handle fundamental tasks involved throughout the chemical 19 

synthesis development process. The multi-agent system comprises six specialized LLM-based agents, 20 

including Literature Scouter, Experiment Designer, Hardware Executor, Spectrum Analyzer, 21 

Separation Instructor, and Result Interpreter, which are pre-prompted to accomplish the designated 22 

tasks. A web application was built with the multi-agent system as the backend to allow chemist users 23 

to interact with experimental platforms and analyze results via natural language, thus, requiring zero-24 

coding skills to allow easy access for all chemists. We demonstrated this multi-agent system on the 25 

development of a recently developed copper/TEMPO catalyzed aerobic alcohol oxidation to aldehyde 26 

reaction, and this LLM multi-agent copiloted end-to-end reaction development process includes: 27 

literature search and information extraction, substrate scope and condition screening, reaction kinetics 28 

study, reaction condition optimization, reaction scale-up and product purification. This work 29 
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showcases the trilogy among chemist users, LLM-based agents, and automated experimental platforms 1 

to reform the traditional expert-centric and labor-intensive reaction development workflow. 2 

Introduction 3 

Designing proper chemical synthesis reactions and routes towards target compounds is one of 4 

core tasks during both drug discovery and process development, requiring significant time and cost 5 

investments1. Currently, due to the enormous design space and necessity of experimental validation, 6 

this process mainly relies on expert chemists and chemical engineers to go through iterative design-7 

make-test-analyze cycles to identify an efficient synthesis route2,3. The multifaceted and complex 8 

requirements for synthesis reaction design, such as efficiency, cost, sustainability, safety, scalability, 9 

and impurity control, make it hard to formulate this task into a well-defined problem that can be tackled 10 

algorithmically and autonomously without customized inputs and decisions from experts4. 11 

The recent advancement of machine learning (ML) technologies has shown great potential in 12 

expediting various subtasks during the synthesis design5,6. Notable examples include deep learning 13 

based quantitative structure–activity relationship (QSAR) model facilitating drug molecule design7,8 14 

and catalyst design9, rapid identification of promising synthetic routes using machine-learning-aided 15 

synthesis planning10,11, guiding automated high-throughput experimental platforms to search for 16 

optimal reaction conditions12–15, and direct translation of multistep synthesis procedures from literature 17 

to experimental execution via natural language processing (NLP) models16. Despite this rapid 18 

involvement of machine learning methods in synthesis related tasks, the monolithic input-to-output 19 

nature of existing machine learning methods makes them to only function as powerful single-purpose 20 

tools for experts, while the goal of fully autonomous end-to-end synthesis reaction design and 21 

development still remains to be realized. 22 

In November 2022, OpenAI released the large language model (LLM) based ChatGPT tool, 23 

marking a significant leap towards the artificial general intelligence (AGI). The enormous knowledge 24 

and information packed in the LLM enables it to make decisions flexibly according to the complex 25 

and non-standardized inputs (prompts). LLM-based agents, characterized by their strong 26 

generalization abilities and broad applicability, have demonstrated significant advancements in 27 

language proficiency and interaction with humans17,18. Motivated by the outstanding performance of 28 

these agent, scholars have explored and exploited their capability in the various tasks of chemical and 29 

material research, such as literature mining19–22, molecule and material design23–25, reaction condition 30 

recommendation and optimization22,26–28, and lab apparatus automation27–29. 31 

 32 
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 1 

Fig. 1 | Overview of LLM-based multi-agent system for reaction development. a) Workflow for 2 

chemical synthesis development facilitated by LLM technology, and comparison with representative 3 

published works. (The gray lines denote the involvement of LLMs). b) Diagram illustrating the 4 

interactions between human chemists and the LLM-based agents for performing tasks in the synthesis 5 

reaction development. c) The web application with LLM-based agents as backend for end-to-end 6 

reaction development. 7 

The existing reports of LLM-based agents showed scattered coverage of the stages in chemical 8 

synthesis reaction development but have not presented a path to fully exploit the potential of LLM-9 

based agents in the entire development process. Herein, we demonstrate a unified LLM-based reaction 10 

development framework (LLM-RDF) to explore the universality and performance of LLM-based 11 

agents in the entire of chemical synthesis reaction development process (Fig. 1a). The findings of this 12 

work serve to map out the viable path to the autonomous end-to-end chemical synthesis development 13 

using the emerging LLM technology. 14 

 15 

 16 
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Results and discussion 1 

LLM-based agents for end-to-end chemical synthesis reaction development 2 

A typical chemical synthesis reaction development workflow consists of five steps: (1) literature 3 

search and information extraction, (2) substrate scope and condition screening, (3) reaction kinetics 4 

study, (4) reaction condition optimization, and (5) reaction scale-up and product purification. To 5 

exploit the capabilities of LLM facilitating this development process, we developed a set of LLM-6 

based intelligent agents in LLM-RDF to handle the fundamental tasks necessary to complete the 7 

development steps above (Fig. 1b). These agents were constructed based on GPT-4 model30 to 8 

maximize their capabilities in context understanding and chemical knowledge reasoning. In addition, 9 

they were pre-promoted using customized instructions and documents to achieve consistent behavior 10 

and performance for a specific task. These intelligent agents include: (1) Literature Scouter: An agent 11 

(based on GPT-4 application, Consensus31) leverages LLM’s capability to understand user’s reaction 12 

search request and lookup most relevant literatures in academic journal database, and extract reaction 13 

condition and procedures from the literature document. (2) Experiment Designer: An agent translates 14 

reaction processes and parameters described in natural language into standardized reaction execution 15 

protocols to interface with experimental platforms. (3) Hardware Executor: An agent composes 16 

automation hardware running codes according to the reaction protocols such that no manual coding 17 

work would be required to execute the experiments. (4) Spectrum Analyzer: An agent processes raw 18 

spectral data obtained from analytical apparatus (e.g., gas chromatograph and NMR) to identify the 19 

target compound peaks and calculate the corresponding product yield. (5) Separation Instructor: An 20 

agent instructs to identify the appropriate thin-layer chromatography (TLC) eluent composition which 21 

will be used for the subsequent flash column chromatograph separation. (6) Result Interpreter: An 22 

agent interprets and concludes reaction results based on fundamental chemical knowledge. 23 

With the set of LLM-based agents developed above, we created a web application to allow users 24 

to access them using natural language in a centralized manner, such that no coding was required during 25 

the synthesis reaction development (Fig. 1c). After agents receive prompts and related reference 26 

documents from the users describing the chemical task, they will analyze the requests and infer the 27 

appropriate responses or solutions through in-context learning32. If necessary, they would employ 28 

external tools to enhance their capability to respond information out of the scope of the LLM 29 

knowledge itself, including Python interpreter, academic database search, and self-driven reaction 30 

optimization algorithms. In addition, there is a chain-of-thought mechanism to allow agents to interact 31 

with these tools step-by-step, thus maximizing their reasoning capability. Despite the advanced 32 

intelligence of GPT-4 model used for these agents, human chemists are still necessary in the decision-33 
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making loop, responsible for evaluating the correctness and completeness of agents’ responses and 1 

deciding whether to directly implement their suggestions or further communicate with them to tweak 2 

the responses. 3 

To explore and evaluate the capabilities of the engineered LLM-based agents, we opted alcohol 4 

oxidation to the corresponding aldehyde as the model transformation considering the prevalent 5 

presence of hydroxyl and carbonyl functional groups in the fine chemical and pharmaceutical 6 

compounds33. In particular, the synthesis sustainability has been one of the key considerations of the 7 

future green chemistry. Compared to the hazardous oxidants used for alcohol oxidations, such as 8 

chromium(VI) compounds34, Dess-Martin periodinane35, pyridinium chlorochromate (PCC)36, and 9 

manganese dioxide (MnO2)
37, molecular oxygen from air is a promising terminal oxidant due to its 10 

low cost and high atomic efficiency with minimal wastes generated38. Moreover, the implementation 11 

of molecular oxygen as the oxidant could operate under milder conditions, thus tolerating sensitive 12 

functional groups and enabling improved selectivity in the oxidation of alcohols to aldehydes. Thus, 13 

we focused on the search, screening, optimization, and scaling-up of an aerobic alcohol oxidation 14 

protocol to demonstrate the key roles of LLM-based agents during such a typical synthesis 15 

development process, hoping to illustrate the potentials of LLM in the practical synthesis development 16 

beyond the existing chemistry-knowledge-oriented chatting. 17 

Literature search and information extraction 18 

To initiate the synthesis development of the aerobic alcohol oxidation to the corresponding 19 

aldehyde, instead of manually finding relevant reports in conventional academic search engines (e.g., 20 

SciFinder and Web of Science), we directly input the request to Literature Scouter agent with 21 

"Searching for synthetic methods that can use air to oxidize alcohols into aldehydes" prompt. 22 

Leveraging vector search technologies, Literature Scouter automatically sifted through the Semantic 23 

Scholar database containing over 20 million academic literatures. The use of the Semantic Scholar 24 

database instead of relying on the LLM’s knowledge (i.e., training data used by OpenAI to train GPT-25 

4) ensured the accuracy of the chemistry details with proper references (Fig. 2b). 26 

Among the various methods given by Literature Scouter (Fig. 2b), we continued to query which 27 

method had the greatest potential for practical applications. Literature Scouter recommended the 28 

recently developed copper/TEMPO dual catalytic system developed by Stahl group39 as this method 29 

outpaced others in the aspects of the environmental sustainability, simplicity, safety, chemoselectivity, 30 

and substrate compatibility (Fig. 4a). After manually evaluating other recommended methods, this 31 

copper/TEMPO catalytic chemistry indeed avoids the use of heterogeneous catalysts40, high-cost 32 
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palladium catalysts41, or light irradiation42 used in other approaches, proving to have claimed potentials 1 

in practical applications as suggested by the Literature Scouter. In addition, the chemoselective 2 

oxidation of the target hydroxyl group in diols or polyols is attractive in practice as function group 3 

protection and deprotection would not be required, reducing the number of steps required to synthesize 4 

the target compound. The literature Scouter recognized the capability of copper/TEMPO catalytic 5 

system was able to selectively oxidize primary alcohols in presence of the secondary alcohols on the 6 

same molecule (Fig. 2b). 7 

 8 

Fig. 2 | LLM-based agents facilitated literature search and information extraction. a) Workflow 9 

for literature search and information extraction copiloted by Literature Scouter agent. b) The 10 

interaction between human chemists with Literature Scouter. The dialogue presented in the figure is 11 

simplified for the illustrative purpose, and see details in Supplementary Information Section 2. 12 

Having identified the target transformation, we next turned to extract the detailed reaction 13 

conditions for this catalytic system. The literature document was provided to Literature Scouter to 14 

summarize the detailed experimental procedures and options for various reagents and catalysts. This 15 

information served as the basis for the subsequent experimental exploration of this chemistry (Fig. 2b). 16 

As demonstrated in the task of method search and information extraction from literature, 17 

Literature Scouter demonstrated its capability to assist researchers to identify the possible 18 
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methodologies necessary to achieve the target transformation under desired conditions, and extracting 1 

the required experimental details for executing the reaction. Compared to conventional workflow for 2 

identifying the proper chemistry from literature database, Literature Scouter alleviated the labor-3 

intensive tasks of literature searching and reviewing, thus significantly expedited the process and 4 

lowered the expertise requirement. Especially, when Literature Scouter was connected to an up-to-date 5 

academic journal database, it could propose the new chemistries that were not included in the LLM 6 

model pre-training process (Supplementary Information Section 2.1-2.2). 7 

Methodology substrate scope and condition screening 8 

With the literature reported aerobic alcohol oxidation protocol in hand, understanding the 9 

substrate scope under various reaction conditions for a methodology is essential for selecting the 10 

suitable reaction conditions based on the target compound structure in practical synthesis. It is typically 11 

challenging to predict the reaction yield based on first-principle theories, while recently emerging 12 

machine learning based methods need a decent amount of experimental data to train the neural model 13 

for accurate predictions43–45. Thus, the second step for synthesis development process generally 14 

involves the exploration of substrate scope for a specific protocol. The recent development of 15 

automated high-throughput screening (HTS) technology has been proven as a powerful tool to 16 

accelerate the experimental data acquisition for these substrate scope studies46,47. However, HTS 17 

technology is still not a routine tool that synthesis practitioners would use on their daily reaction 18 

development workflows. Apart from the high costs of the required HTS hardware (e.g., liquid handler 19 

platform, automated synthesis platform, and HTS analytical apparatus), the time-consuming 20 

programming for executing the automation platforms and manual analysis of large amount of HTS 21 

results create barriers for chemists with minimal coding experience to use HTS technology in their 22 

routine workflows. 23 
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 1 

Fig. 3 | LLM-based agents facilitated substrate scope and condition screening. a) Workflow for 2 

substrate scope and condition screening copiloted by Experiment Designer, Hardware Executor, 3 

Spectrum Analyzer, and Result Interpreter agents. b) The aerobic alcohol oxidation reaction screening 4 

task described in natural language for subsequent LLM-based agent understanding and OT-2 liquid 5 

handler reaction execution. c) The interaction between human chemists with Spectrum Analyzer for 6 

GC-FID-MS result analysis (see detailed interaction dialogues in Supplementary Information Section 7 

3.2.2). d) The mass spectra for the retention time within 4.243-4.302 min, matched with substrate 3a 8 

by Spectrum Analyzer. e) The mass spectra for retention time within 3.746-3.800 min, matched with 9 

product 3b by Spectrum Analyzer. f) Visualization of peak area integration for substrate 3a and product 10 

3b by Spectrum Analyzer using GC-FID data. 11 
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To tackle the above-mentioned challenges, we implemented Experiment Designer, Hardware 1 

Executor, Spectrum Analyzer, and Result Interpreter agents to automate HTS investigation of the 2 

substrate scope, such that the barrier for routine usage of HTS technology could be significantly 3 

lowered. The HTS substrate scope study consists of a series of subtasks, including HTS experiment 4 

design, automated HTS experiments, gas chromatography (GC) analysis, and results analysis (Fig. 3a). 5 

In HTS experiment design, Experiment Designer agent parsed the HTS experiment task described 6 

in natural language into a standardized experimental procedure that could be displayed in the web 7 

application (Supplementary Information Section 3.1.1). To execute the HTS task, we chosen the 8 

Opentrons liquid handler (OT-2) as the automated reaction screening platform since the Cu/TEMPO 9 

catalyzed aerobic alcohol oxidation reaction only involved soluble reagents. In addition, the OT-2 10 

liquid handler has a well-written Python API document, based on which Experiment Executor agent 11 

could compose liquid handler running code. Thus, Hardware Executor converted the standardized HTS 12 

experimental procedure to OT-2 execution codes to load the necessary labware and pipettes, plan the 13 

storage locations for stock solutions, prepare the reaction mixtures as dictated by the experimental 14 

procedures, and shake the well plate to perform the aerobic alcohol oxidation. With the seamless 15 

transition from HTS task described in natural language to automated reaction execution, two rounds 16 

of HTS experiments were conducted, and each round contained a full factorial screening of six alcohol 17 

substrates (six monols for the first round and six diols for the second round), four copper catalysts 18 

[CuCl2, CuBr2, Cu(OTf)2 and Cu(BF4)2], and two bases [N-Methylimidazole (NMI) and 1,8-19 

diazabicyclo-[5.4.0]undec-7-ene (DBU)]. 20 

After the HTS experiment, the products were characterized with gas chromatography with parallel 21 

flame ionization detector and mass spectrometer (GC-FID-MS). The use of parallel FID and MS 22 

detectors enabled the simultaneous identification and quantification of the components in the reaction 23 

crudes. Instead of labor-intensive manual identification of peaks for reactants and peaks and yield 24 

calculation, Spectrum Analyzer agent was used to automated this process (see details in Supplementary 25 

Information Section 3.2.2). Specifically, GC-FID-MS analysis instructions and the raw chromatogram 26 

data, including FID intensity chromatogram and total ion chromatogram (TIC) from MS detector, were 27 

provided to Spectrum Analyzer. It could identify the corresponding reactant and product peaks in TIC 28 

by looking for their characteristic fragmentation patterns, and calculated the reaction yield based on 29 

FID intensity chromatogram. With phenylpropynol (3a) and the corresponding product 30 

phenylpropynal (3b) as an example, Spectrum Analyzer thought that 3a should have a 132 mass to 31 

charge (m/z) ratio signal for the molecule itself and 115 m/z signal for the fragment resulting from the 32 

loss of a hydroxyl group, and 3b should have 130 m/z signal for the molecule itself and 102 m/z signal 33 
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for the fragment resulting from the loss of the carbonyl group. Subsequently, Spectrum Analyzer wrote 1 

a Python code to search the TIC data for mass spectrometry peaks containing the characteristic m/z 2 

signals and determine the retention times of the substrate and product (Fig. 3d-e). Next, Spectrum 3 

Analyzer integrated the FID peak areas at the substrate and product retention times to determine the 4 

reaction yield (assuming that the response factors of the products and substrates are the same in FID) 5 

(Fig. 3f). The yields obtained by Spectrum Analyzer were consistent with those derived from manual 6 

analysis using chromatography software. 7 

 8 

Fig. 4 | The substrate scope and condition screening results. The copper/TEMPO-catalyzed aerobic 9 

oxidation reaction of a) monohydric alcohols and b) diols to the corresponding aldehydes in the 10 

screening task. Reaction condition: substrate (0.25 mmol), 5 mol% Cu catalyst, 5 mol% bpy, 5 mol% 11 

TEMPO, and 10 mol% base were dissolved in DMSO solvent (1.25 mL), and reaction was performed 12 

under room temperature and open to air for 2 (monohydric alcohols) or 6 (diols) hours. The aldehyde 13 

products derived from the oxidation of the corresponding c) monohydric alcohol and d) diols. Yield 14 

heat maps for the oxidation of e) monohydric alcohols and f) diols under various combinations of 15 

copper catalyst and base. 16 

Finally, we utilized Result Interpreter agent to summarize HTS results and explain observed 17 

patterns based on fundamental chemistry knowledge (Supplementary Information Section 3.3.2). 18 

Result Interpreter recognized that DBU base significantly outperformed NMI, and the reactivity of 19 
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copper salt followed the order of CuCl2 < CuBr2 < Cu(OTf)2 ~ Cu(BF4)2. In addition, it concluded that 1 

electron-withdrawing functional groups near the hydroxyl group (e.g., aromatic rings or unsaturated 2 

carbon bonds) could increase the oxidation reactivity, which was consistent with chemistry 3 

principles48,49. However, Result Interpreter's ability to conduct further in-depth analysis was still 4 

limited with existing GPT-4 model as the backend. For example, in explaining why diol 9a and 10a 5 

exhibited no reaction in any condition tested, it could only suggest superficially that the arrangement 6 

of functional groups or the spatial configuration of the molecules might play a role. The literature-7 

proposed mechanism involves the chelation of copper catalyst by the vicinal diol substrates (9-10a) to 8 

form an unreactive Cu-phenolate species, thus deactivating the copper catalyst39. This limitation 9 

should stem from that GPT-4 was trained with publicly available information (i.e., only including 10 

general chemistry knowledge), and advanced coordination chemistry knowledge and reaction specific 11 

behavior reported by professional chemistry journals were beyond the knowledge space of the GPT-4. 12 

However, this lack of advanced chemistry knowledge should be solved by further feeding the LLM 13 

with domain-specific information. 14 

Reaction kinetic modeling 15 

As mentioned earlier, this copper/TEMPO catalytic system prefers to oxidize primary hydroxyl 16 

group compared to secondary hydroxyl group. We observed that dimethyl sulfoxide (DMSO) solvent 17 

(used in the HTS experiment) gave superior primary alcohol (12a) oxidation chemoselectivity 18 

compared to acetonitrile (MeCN) solvent (used in the literature39) (Fig. 5b). To investigate the 19 

observed solvent effects, Experiment Designer agent suggested that we could conduct oxidation 20 

kinetics study for different solvent. Recently, automated kinetic profiling has become an efficient tool 21 

to help researchers establish reaction kinetic models50–52. However, similar to the HTS technology 22 

discussed above, it is still not a routine tool used in process development due to the high entry barrier 23 

for mastering automated hardware and intricate programming involved in fitting kinetics models. In 24 

order to avoid extensive coding and data analysis, Experiment Designer, Hardware Executor, Spectrum 25 

Analyzer, and Result Interpreter agents orchestrated to complete the kinetic study task, consisting of 26 

subtasks including kinetics experiment design, automated sampling experiments, proton nuclear 27 

magnetic resonance (1H NMR) analysis, and kinetic model fitting and analysis (Fig. 5a). 28 
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 1 

Fig. 5 | LLM-based agents facilitated reaction kinetic study. a) Workflow for reaction kinetic 2 

modeling copiloted by Experiment Designer, Hardware Executor, Spectrum Analyzer, and Result 3 

Interpreter agents. b) Comparison of the yields for products and overoxidation byproducts of diol 12a 4 

for different and copper catalysts. c) The interaction between human chemists with LLM-based agents 5 

for reaction kinetic study (see detailed interaction dialogues in Supplementary Information Section 4). 6 

d) Characteristic 1H NMR peaks identified by Spectrum Analyzer for calculations of reaction samples’ 7 

compositions. e) The time-course concentration profile in DMSO solvent, and the fitted reaction 8 

kinetic curves given by Result Interpreter. 9 
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In kinetics experiment design, Experiment Designer planned a sampling schedule for time-course 1 

data collection. To provide an approximate reaction rate information for experimental design, we 2 

firstly monitored the reaction via TLC, and found that substrate 12a was rapidly consumed within the 3 

initial first hour reaction time and the reaction slowed down afterwards. Based on this observation, 4 

Experiment Designer proposed a sampling schedule spanning a 10-hour reaction period. Samples were 5 

to be collected at 10, 20, 30, 40, 50, 60, 120, 240, 360, 480, and 600 minutes, such that denser data 6 

points could be obtained during the early stage of the reaction when the reaction rate was large. 7 

Subsequently, Hardware Executor agent generated the OT-2 running code based on the experimental 8 

design proposed by the Experiment Designer. The coded OT-2 liquid handler procedure contained a 9 

series of operations for sampling, such as stopping the reaction's shaking, pipetting to sample, 10 

quenching the reaction in the sample, and resuming shaking. The compositions of the sampled reaction 11 

crude were analyzed by 1H NMR. Instead of manual analysis of the NMR data, we provided Spectrum 12 

Analyzer agent with 1H NMR spectra and approximate chemical shifts for characteristic hydrogen 13 

atoms in the substrate, product, and byproducts (overoxidation products). Spectrum Analyzer wrote a 14 

Python program according to the API documentation for the TopSpin NMR processing software to 15 

automate the analysis of NMR data, the procedure of which included identifying target peaks, 16 

performing peak integration, and calculating the compositions of the samples (Fig. 5d). 17 

Next, providing the obtained kinetics experiment results to Result Interpreter agent, it fitted the 18 

time-course data to the kinetic model equations. The reaction rate for substrate to product followed 19 

saturation kinetic dependence on the substrate alcohol (Eq.(1)53, and in addition, the product 20 

overoxidation was assumed to be a first-order reaction (Eq.(2). Result Interpreter calculated the 21 

corresponding reaction rate constants (𝑘1, 𝑘2,  𝑘3), and the proposed kinetic models fitted well with 22 

the experimental data with the coefficients of determination (R2) of 0.995 (Fig. 5e and Fig. S12). 23 

𝑟𝑃𝑟𝑜𝑑𝑢𝑐𝑡 =
𝑘1𝑘2𝐶𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

1 + 𝑘1𝐶𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
 (1) 

𝑟𝐵𝑦𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 = 𝑘3𝐶𝑃𝑟𝑜𝑑𝑢𝑐𝑡 (2) 

Result Interpreter further concluded that the rate constant for the product overoxidation (𝑘3) was 24 

larger in MeCN than that in DMSO, indicating that the product overoxidation rate had strong 25 

dependence on the reaction solvent choice (Supplementary Information Section 4.5). This analysis 26 

highlighted that the Result Interpreter agent had the ability to understand the underlying kinetics 27 

behind the observed the reaction selectivity. Even though we provided the kinetic model to the Result 28 

Interpreter here without demonstrating the agent’s ability to identify the suitable kinetic model among 29 
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various possible kinetic models, the self-driven kinetic model identification has already been shown 1 

to be feasible using conventional statistical or machine-learning algorithms54,55, which should be able 2 

to be integrated into the LLM kinetic analysis workflow. 3 

Self-driven reaction condition optimization 4 

When a specific target compound is determined for process development towards manufacturing, 5 

reaction condition optimization is necessary to improve the synthesis efficiency along with other 6 

considerations (e.g., costs and impurity generation)56. Instead of traditional manual one-factor-at-time 7 

(OFAT) optimization, the recent development of optimization algorithms, such as Bayesian 8 

optimization (BO)13,15,57, Nelder−Mead Simplex58, stable noisy optimization by branch and fit 9 

(SNOBFIT) algorithm59, and the mixed-integer nonlinear program (MINLP) algorithm60, have enabled 10 

the automated experimental platforms to perform closed-loop reaction optimization in an autonomous 11 

manner. However, akin to the HTS technology mentioned previously, the steep learning curve 12 

associated with mastering automated hardware and optimization algorithms prevents the widespread 13 

adoption of the self-driven reaction optimization workflow as a routine tool in process development, 14 

despite its demonstrated effectiveness. 15 

To address this challenge, we employed Experiment Designer and Hardware Executor agents as 16 

the backend of a reaction optimization module within our developed web application, such that users 17 

could interface with the reaction optimization hardware system via natural language. This hardware 18 

system is a robotic platform capable of performing end-to-end reaction and analysis, and the closed-19 

loop reaction optimization was driven by a Bayesian optimization algorithm. Specifically, an 20 

automated synthesis equipment (Unchained Big Kahuna) conducts the chemical reactions, which are 21 

then analyzed by a high-performance liquid chromatography (HPLC) to provide result feedbacks to 22 

the BO for suggesting the next-round reaction candidates. The capability of LLM as an optimizer has 23 

been evaluated in recent publications. However, although the LLMs have shown superior performance 24 

for optimizing reactions with clear kinetics or prior knowledge, they still fell behind statistical 25 

optimization algorithms (e.g., Bayesian optimization) for complex reaction systems26,28. 26 
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 1 

Fig. 6 | LLM-based agents facilitated self-driven reaction condition optimization. a) The LLM-2 

based agents copiloted self-driven reaction optimization system. The evolution profile of b) yield and 3 

c) PI value during the closed-loop reaction optimization process driven by the BO. d) Result 4 

Interpreter’s recommendations on whether reaction optimization should be terminated at 6th, 12th, 22nd, 5 

and 26th experiment (see detailed interaction dialogues in Supplementary Information Section 5.3). 6 

To demonstrate LLM-based agents copiloted reaction optimization workflow (Fig. 6a), we 7 

conducted the condition optimization for the selective oxidation of diol (12a) to the corresponding 8 

mono-oxidized aldehyde product (12b). The reaction design space included two continuous variables 9 

(i.e., equivalents of base and reaction time) and two categorical variables (i.e., types of bases and 10 

copper catalysts). The optimization objective is to maximize the reaction yield of 12b. First, 11 

Experiment Designer translated synthesis procedure description [To a solution of alcohol (0.25 mmol) 12 

in DMSO (0.25 mL) in a reactor was added sequentially a solution of (1) CuX2/bpy(0.25 mL, 0.05M), 13 

(2) TEMPO (0.25 mL, 0.05M), and (3) NMI (0.25 mL, 0.10M)] into standardized JavaScript Object 14 
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Notation (JSON) procedure steps for the automated synthesis device. Hardware Executor generated 1 

code templates based on these JSON procedure steps to define the automated synthesis platform 2 

operation workflows. Next, Experiment Designer converted the optimization parameter space 3 

described in natural language [I want to optimize four variables: 1. Reaction time: 45-90 minutes, 2. 4 

Base volume: 0.125-0.25 mL, 3. Cu catalyst: CuCl2, CuBr2, Cu(OTf)2, Cu(BF4)2 4. Base type: NMI, 5 

DBU.] into JSON format that was used as inputs for the Bayesian optimizer (Supplementary 6 

Information Section 5.1.1). At last, users reviewed the entire experimental plan before running the 7 

reaction optimization. 8 

The self-driven optimization system iteratively conducted reactions and proposed candidate 9 

experiments based on existing reaction results, thus gradually improving the reaction yield of 12b (Fig. 10 

6b). Multiple high-yield reaction conditions were identified within the design space (Table S2). To 11 

automatically stop the reaction optimization task when the expectation of further yield improvement 12 

was diminished, we compared the statistical stopping criterion and stopping decision given by the 13 

LLM-based agent Result Interpreter. The probability of improvement (PI) metric, a typical statistical 14 

stopping criterion61,62, was first examined by stopping the optimization when the cumulative number 15 

of proposed reaction conditions with PI values below 0.01 reached two. This PI stopping criterion was 16 

met after completing 36 experiments (Fig. 6c), based on which the optimal conditions should be 17 

confidently identified. In comparison, Result Interpreter was used to determine the appropriate 18 

stopping point for the optimization task using the concept of balancing exploration and exploitation 19 

for black-box function optimization (Supplementary Information Section 5.3). During the exploitation 20 

of CuBr2-DBU combination (after 12 experiments), Result Interpreter indicated that the yield was 21 

sufficiently high to consider stopping optimization, however, it still recommended further exploration 22 

in copper catalysts based on exploration considerations. Then, the BO continued to explore two more 23 

catalysts (i.e., Cu(BF4)2 and Cu(OTf)2). After several small condition adjustments proposed by the BO 24 

near the high-yield conditions, the reaction yield did not increase significantly, and a yield decrease 25 

was observed in the 22nd experiment. Result Interpreter once again suggested considering the cessation 26 

of the optimization. After the 26th experiment, Result Interpreter assessed the reaction yield as 27 

sufficiently high and the exploration of the reaction space as comprehensively executed, explicitly 28 

recommending the termination of further optimization (Fig. 6d). This comparison showed that the 29 

optimization stopping suggestions given by Result Interpreter agent were more intuitive and also 30 

required less experiments to identify high-yield reaction conditions compared to the PI stopping 31 

criterion. Unlike the PI stopping criterion relying on human experience to pre-define the stopping 32 
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threshold (improper selection may lead to poor optimization results or prolonged optimization time), 1 

utilizing Result Interpreter to terminate optimization offers better flexibility and adaptability. 2 

 3 

Fig. 7 | LLM-based agents facilitated reaction scale-up and product purification. a) Workflow for 4 

reaction scale-up and product purification copiloted by Experiment Designer and Separation Instructor 5 

agents. b) The interaction between human chemists with Experiment Designer for reaction scale-up 6 

and Separation Instructor for finding the optimal eluent composition (see detailed interaction dialogues 7 

in Supplementary Information Section 5). c) Radar chart of the reaction conditions for selecting the 8 

most potent reaction condition for scale up. d) 1H NMR spectrum of the purified target product (12b) 9 

in DMSO-d6. 10 

 11 
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Reaction scale-up and product purification 1 

In the process development, the scale-up investigation serves as a critical phase to determine 2 

whether a small-scale chemistry is suitable for further large-scale synthesis with similar reaction 3 

efficiency63. Here, we used the high-yield reaction conditions found in the previous reaction 4 

optimization task for targeting 1 gram scale synthesis of the compound 12b to demonstrate the utility 5 

of LLM-based agents in facilitating the reaction process development. 6 

Among various high-yield conditions during the condition optimization of diol oxidation, 7 

Experiment Designer selected the conditions used in 35th experiment for scaling up (Fig. 7b). The 8 

choice of reaction conditions was made based on the preference to the high product yield, short reaction 9 

time, and low catalyst and reagent costs. The 35th experiment used a 45-minute reaction time, Cu(OTf)2 10 

catalyst, and 1.34 equivalent DBU base, achieving a high yield of 94.5% (Fig. 7c). To showcase LLM’s 11 

ability to facilitate reaction scale-up, Experiment Designer accurately calculated the stoichiometries of 12 

the reagents based on selected the reaction condition to produce 1 gram of the desired product (Fig. 13 

7b). We conducted the scale-up experiment according to the stoichiometries proposed by Experiment 14 

Designer. 15 

Prior to the product purification using flash column chromatography, the optimal eluent 16 

composition is typically determined with manual TLC. TLC fine-tunes the eluent polarity to ensure 17 

that the retention factor value (Rf value) of the target compound falls within 0.2-0.3, and, at the same 18 

time, impurities are separated from the target compound. A recent publication has applied machine 19 

learning model to predict the Rf value of a given compound structure in different eluent compositions64. 20 

However, due to the inevitable prediction inaccuracy, this data-driven prediction model can only serve 21 

to provide good initial eluent composition guesses to try, and chemists still need to determine the eluent 22 

suitable for practical separation processes by conducting iterative trial-and-error experiments based on 23 

their own experience and the polarity-controlled separation principles in TLC. To enable automated 24 

identification of optimal eluent composition, we implemented Separation Instructor agent to replace 25 

chemists for making eluent composition decisions during the iterative TLC experiment. Here, TLC 26 

experiments were performed manually, but the automated TLC device is commercially available to 27 

achieve closed-loop optimal eluent composition identification in an autonomous manner. Upon 28 

inputting the initial TLC outcome of 12b separation at hexane : ethyl acetate = 1:1 ratio into Separation 29 

Instructor, it advised to reduce the polarity of the eluent to decrease the Rf value of 12b. Following 30 

two iterative decision-and-experiment rounds, Separation Instructor finalized the eluent composition 31 

(hexane : ethyl acetate = 3:1), under which the product's Rf value was 0.28 with 0.49 Rf value for the 32 

impurity, providing a sufficiently large difference for effective separation. Subsequently, this optimal 33 
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eluent composition was used in the automated preparative column chromatography system to 1 

successfully separate the product, yielding 915 mg of the product (12b) with the isolated yield of 86% 2 

and a purity >98% (Fig. 7d). 3 

Conclusion 4 

In this work, we utilized a large language model (LLM)-based multi-agent system to demonstrate 5 

the end-to-end development of sustainable aerobic alcohol oxidation, from methodological search to 6 

product purification. The specialized LLM-based agents showcased their versatility in autonomous 7 

chemical research, undertaking tasks such as synthesis method search, code composing for automated 8 

equipment, spectrum signal processing and analysis, reaction stoichiometric calculation, optimization 9 

of separation eluent composition, and deriving chemically informed conclusions. The LLM-based 10 

multi-agent system demonstrates a transformative approach to chemical synthesis that integrates user 11 

chemists, LLM-based agents, and automated experimental platforms, significantly streamlining the 12 

traditional expert-driven and labor-intensive workflow of reaction development. Although the LLM 13 

technology is still nascent in chemistry applications primarily due to the lack of the advanced and 14 

professional chemistry knowledge in the existing LLM training dataset, we would envision that this 15 

work outlines a viable avenue to a deeper engagement of LLM technology in reaction development 16 

and relevant fields in the future.  17 

Methods 18 

Construction of LLM-based agents 19 

LLM-based agents developed in this work were based on OpenAI's GPT-4 model. (1) Literature 20 

Scouter: This agent was developed using Consensus31 available from OpenAI's GPT store, which can 21 

access Semantic Scholar database for academic literatures. (2) Experiment Designer: For tasks include 22 

substrate scope screening and self-driven reaction condition optimization, Experiment Designer was 23 

configured through few-shot learning of several examples or pre-prompting to transform reaction 24 

procedures and parameters described in natural language into standardized execution protocols. (3) 25 

Hardware Executor: Specific hardware running code examples or Opentrons Python API manual were 26 

provided in the prompt, such that Hardware Executor could generate running codes for the automation 27 

platforms according to the standardized execution protocols. (4) Spectrum Analyzer, (5) Separation 28 

Instructor, and (6) Result Interpreter: We provided detailed descriptions and instructions as pre-29 

prompts to teach them to perform these tasks. For more details, refer to the Supplementary Information 30 

Section 1. 31 
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Web application 1 

The web application functioned as the interface through which users could interact with agents 2 

and experimental platform. The frontend graphical interface was developed using the Vue.js and 3 

Node.js frameworks, creating a user-friendly and interactive environment. For the backend, the Python 4 

FastAPI framework was employed to manage the logics of multi-agent system and experimental 5 

platform, including interfacing with the LLM-based agents through the GPT-4 APIs hosted on 6 

Microsoft Azure and handling the operations of the experimental platforms. In addition, the web 7 

application was segmented into individual modules corresponding to each task of the chemical 8 

synthesis reaction development workflow. 9 

Liquid handler platform for substrate scope screening and reaction kinetic study 10 

The experimentation for substrate scope screening and reaction kinetic study steps was 11 

conducted using the Opentrons OT-2 liquid handling workstation. In the OT-2, modules including the 12 

pipette module (P300 GEN2, 20-300 μL) for liquid transferring, heater-shaker module (200-3000 RPM, 13 

37-95 °C) for enhancing mixing of reaction mixture, and storage module for storing reaction stock 14 

solutions. Operation codes, generated by the Hardware Executor, were uploaded to the OT-2 via its 15 

desktop application or a Jupyter notebook to initiate automated reaction execution. 16 

Automated reaction platform for self-driven reaction condition optimization 17 

The self-driven reaction condition optimization platform consists of three modules, including an 18 

automated synthesis equipment (Unchained Labs, Big Kahuna), a HPLC (Thermo Fisher Scientific 19 

Vanquish), and a six-axis robotic arm (AUBO-i5) with a linear track. Big Kahuna automated 20 

experimental procedures, incorporating several components, including an extended tip liquid dispenser 21 

(20-3000 μL) for liquid transferring, the vortexing stations (60-3750 RPM) for mixing the reaction 22 

mixture, and a vial/plate gripper for transferring reaction vials and plates. HPLC analyzed reaction 23 

mixtures using a C18 reverse-phase column, with water and MeCN as the mobile phases. The robotic 24 

arm was responsible for transferring samples between Big Kahuna and HPLC. This hardware platform 25 

was controlled via a customized LabVIEW software, and experimental procedures and parameters 26 

were defined by the JSON method files. 27 

Reaction optimization algorithm 28 

The Bayesian optimization algorithm and the PI stopping criterion was developed and discussed 29 

in previous work62. In brief, it is composed of Gaussian process (GP) model and acquisition functions 30 

(AF). GP was a mixed kernel (Eq. S3), combining the Matérn52 kernel (Eq. S1) with the categorical 31 
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kernel (Eq. S2), to handle the reaction's design space, which includes both continuous and categorical 1 

variables. The new experiment candidates are proposed by maximizing the multi-points expected 2 

improvement (𝑞EI) acquisition functions: 3 

{𝒙𝑛𝑒𝑤
(𝑘)

}𝑘=1
𝑞 = argmax𝑞EI({𝒙(𝑘)}𝑘=1

𝑞 ) = argmax𝔼𝑛 (ReLu ( max
𝑖=1,..,𝑞

𝑓(𝒙𝑖) − 𝑓𝑛(𝒙+))) (3) 

where {𝒙𝑛𝑒𝑤
(𝑘)

}𝑘=1
𝑞

 is the 𝑞 newly proposed reaction conditions, 𝒙+ is the current optimal condition, and 4 

𝔼𝑛 indicates that the expectation is taken under the posterior distribution at time n. 5 

The probability of improvement (PI) value is a measure of the possibility that the newly proposed 6 

reaction candidate could have an improvement over the current optimal value (Eq. (4). 7 

PI(𝒙) = ℙ(𝑓(𝒙) ≥ 𝑓(𝒙+) + 𝜉) = Φ (
𝜇(𝒙) − 𝑓(𝒙+) − 𝜉

𝜎(𝒙)
) (4) 

where 𝜇(·) is GP’s mean, 𝜎(·) is GP’s standard deviation, Φ(·) is the normal cumulative distribution 8 

function, and 𝜉 is the trade-off parameter of exploitation and exploration. 9 

Data and code availability 10 

All the relevant data and code are publicly available in the repository (https://github.com/Ruan-11 

Yixiang/LLM-RDF). 12 
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